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Maximum strength for intermolecular
adhesion of nanospheres at an optimal size
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Previous studies have emphasized that the adhesion strength between solid objects tends to
increase as the characteristic size of the objects decreases and eventually saturates at the
theoretical adhesion strength below a critical size scale. Here we show that the adhesion
strength between two spheres or between a sphere and a solid half-space actually exhibits
a peak value at an optimal size. This optimal size arises owing to a transition between
surface- and bulk-dominated interaction regimes at the nanoscale.
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1. INTRODUCTION

Intermolecular forces, although usually much weaker
than interatomic forces, are known to play important
roles in many physical properties such as melting point,
vapour pressure, evaporation, viscosity and surface
tension. Recent studies have shown that intermolecular
forces also play a dominant role in the reversible
adhesion mechanisms of gecko and many insects
(Autumn et al. 2000, 2002; Arzt et al. 2003). The
bottom surfaces of the toes of gecko are covered with
scale-like structures called lamellae; each lamella is
coated with hundreds of thousands of fibres called setae;
each seta is approximately 110 mm long and further
branches into hundreds of 200–500 nm nano-hairs
called spatulae. This hairy structure of gecko represents
a class of convergent evolution for dry adhesion. Among
hundreds of animal species that have adopted similar
hairy adhesion structures, gecko stands out in terms of
its body weight and its extraordinary ability to
manoeuvre on vertical walls and ceilings. Arzt et al.
(2003) discussed an interesting correlation between
the size of the smallest hairs of animals and their body
weight: the heavier the animal, the smaller the hairs,
and gecko’s spatulae are the smallest. This size effect
has stimulated a number of theoretical studies showing
that the adhesion strength between solid objects
generally tends to increase as the characteristic size
of the objects is reduced and eventually saturates at
the theoretical adhesion strength below a critical
size (Persson 2003; Gao & Yao 2004; Gao et al. 2005;
Tang et al. 2005). Gao & Yao (2004) showed that
the adhesion strength can also be enhanced by
optimizing the shape of the contact objects at any
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sizes, although shape-insensitive optimal adhesion can
only be achieved at sufficiently small scales.

In addition to adhesion enhancement at small scales,
a somewhat related concept is to achieve robust, flaw-
tolerant adhesion by size reduction and hierarchical
design (Gao et al. 2003; Gao & Chen 2005; Yao & Gao
2006, 2007). In general, crack-like flaws due to surface
roughness or contaminants tend to magnify stresses at
the edges of contact regions, and adhesion failure usually
occurs via crack propagation along the contact interface.
Under this circumstance, the load-carrying capacity of
the interface is not fully used, since only a small amount
of material near the contact edges is loaded near the
theoretical adhesion strength while most of the interface
is subjected to much smaller stress levels. In this regard,
it has been shown that size reduction at the bottom scale
followed by hierarchical design at larger scales can lead
to homogeneous stress distribution at pull-off, thereby
relieving stress concentration effects of random,
uncontrollable flaws along the contact interface
(Gao & Chen 2005; Yao & Gao 2006, 2007).

A common view shared by most of the existing studies
is that the strength of intermolecular adhesion is a non-
decreasing function as the size of the contacting objects is
reduced. However, these studies have all made an implicit
assumption that intermolecular adhesion canbedescribed
as an interaction between two adjacent surfaces. In the
following, we show that this assumption is not valid if one
of the contacting objects is a nanoparticle, in which case
intermolecular adhesion can no longer be described as
an interaction between two solid surfaces because the
particle itself may become completely immersed in the
interaction zone. In fact, we will show that intermolecular
adhesion between two spheres or between a sphere and a
solid half-space exhibits a peak value at an optimal size
determined by a transition between surface- and bulk-
dominated interaction regimes at the nanoscale.

The plan for the rest of this paper is as follows. The
basic concept of conventional inter-surface force models
is briefly reviewed in §2. This then sets the stage for
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Figure 1. Schematic of interactions (a) between a single molecule and a solid half-space and (b) between two solid half-spaces
(adapted from Israelachvili 1992).

1364 Intermolecular adhesion of nanospheres H. Yao et al.
discussions in §3 on the maximum strength for
intermolecular adhesion between a sphere and a solid
half-space at an optimal size. In §4, we generalize the
analysis of §3 to adhesion between two spheres. In §5,
we demonstrate that the adhesion strength between a
hemisphere-ended cylinder and a solid half-space does
exhibit a saturation in strength below a critical size, in
agreement with conventional contact mechanics
models, thereby showing that the phenomenon of
maximum adhesion at an optimal size only arises if
one of the contacting objects is a nanoparticle.
2. INTER-SURFACE FORCE MODEL OF
INTERMOLECULAR INTERACTION

Intermolecular forces can be either attractive or
repulsive. The most dominant attractive force is the
van der Waals force that has an interaction energy
inversely proportional to the sixth power of the
intermolecular separation r, that is, Ua(r)frK6. In
comparison with the attractive force, the repulsive
force has a much shorter interaction range. A common
description of the repulsive force isUr(r)frKn, where n
is an integer normally between 9 and 16. A common
interaction potential between two molecules is the 6–12
Lennard-Jones (LJ) potential,

ULJðrÞZA=r12KB=r6; ð2:1Þ
where A and B are constants.

Assuming the intermolecular potential is additive,
the interaction potential between two solid objects can
be obtained by integrating the LJ potential over the
material domains. Calculations of this type were first
made by de Boer (1936) and Hamaker (1937; e.g.
Israelachvili 1992). For example, the interaction
potential between a single isolated molecule at a
distance D from a solid half-space is obtained by
summing up the interactions between the isolated
molecule and all molecules in the solid as

UðDÞZ 2pr1

ðN
D
dz

ðN
0

A

ðz2 Cx2Þ6
K

B

ðz2 Cx2Þ3
� �

x dx

Zpr1
A

45D 9
K

B

6D 3

� �
: ð2:2Þ

The derivation of the above equation is straight-
forward when one realizes that the number of molecules
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inside a circular ring with infinitesimal cross-sectional
area dx dz and radius x is 2pr1x dx dz, r1 being the
molecular density in the solid (figure 1a). Based on this
result, we can further calculate the interaction energy
per unit area between two solid half-spaces with
surfaces parallel to one another (figure 1b). Consider a
thin sheet of molecules of thickness dz at a distance z
from a solid half-space, as shown in figure 1b. According
to equation (2.2), the interaction energy per unit area
between this sheet and the solid half-space can be
written as

pr1ðA=45z9KB=6z3Þ$r2 dz; ð2:3Þ

where r2 is the molecular density in the second solid.
With this result, the interaction energy between two
solid half-spaces can be expressed as a function of their
surface separation h as

UðhÞZ
ðN
h
pr1r2ðA=45z9KB=6z3Þ dz

Zpr1r2ðA=360h8KB=12h2Þ: ð2:4Þ

The adhesive force per unit area, also referred to as the
interaction stress, is given by

sðhÞZ vUðhÞ
vh

Zpr1r2
B

6h3
K

A

45h9

� �
: ð2:5Þ

The sign of the interaction stress is chosen to be
consistent with the sign convention of elasticity, that is,
tension is positive. Denoting the equilibrium separation
as z0 at which the interaction stress vanishes, equation
(2.5) shows

AZ
15

2
Bz 6

0: ð2:6Þ

Typical values of z 0 range from several angstroms to
several nanometres for van der Waals interaction, and
can be even larger for electrostatic and other long-range
interactions. Substituting equation (2.6) back into
equation (2.5), the interaction stress can be rewritten as

sðhÞZ pBr1r2
6z 3

0

z0
h

� �3
K

z0
h

� �9� �
: ð2:7Þ

Recall that the work of adhesion wad is defined as the
work required to separate two surfaces from the
equilibrium separation to infinity. Equation (2.7)
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Figure 2. LJ and Dugdale interaction laws between two
parallel solid spaces.
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implies that

wad Z

ðN
z 0

sðhÞ dh Z
3z0
8

pBr1r2
6z30

: ð2:8Þ

Since the separation of the interface is accompanied by
the creation of two new surfaces, wad is normally
understood as the differential surface energy DgZg1C
g2Kg12, where g1 and g2 are the surface energies of two
solids and g12 is the interfacial energy. Then equation
(2.8) provides a relationship between the constant B and
theworkof adhesion (wad) and the equilibrium separation
(z0). Inserting equation (2.8) into equation (2.7) yields

sðhÞZ 8wad

3z 0

z 0
h

� �3
K

z0
h

� �9� �
: ð2:9Þ

This is the commonly used inter-surface force
expression of the interaction stress between two solids
as a function of their surface separation. Figure 2 plots
this interaction stress as a function of separation,
together with Dugdale’s (1960) simplified interaction
law. Given wad and z 0, the maximum interaction stress
or the theoretical adhesion strength sthZ16wad=9

ffiffiffi
3

p
z0

occurs at hZ31/6z0. Although equation (2.9) is derived
on the basis of two solids with planar parallel surfaces,
it is often applied to unparallel or curved surfaces
(Greenwood 1997) as long as the contact region is much
smaller than the solid surfaces. Based on the above
inter-surface force model, it can be shown that the
actual adhesion strength between two solids tends to
increase as the size of the contacting objects is reduced
and eventually saturates at the theoretical adhesion
strength below a critical size (Persson 2003; Gao & Yao
2004; Gao et al. 2005; Tang et al. 2005). However, at
very small length scales, intermolecular interaction can
occur over a large fraction of the surfaces of contacting
objects. In that case, it becomes questionable whether
the inter-surface force model can still describe inter-
molecular interactions between two solids. In §§3–5, we
shall adopt the more fundamental intermolecular force
model, instead of the inter-surface force model, to
investigate the size dependence of adhesion strength at
small scales. For simplicity, deformation of solids is
neglected in this paper.
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3. SIZE DEPENDENCE OF ADHESION
STRENGTH BETWEEN A SPHERE AND
A SOLID HALF-SPACE

Let us first consider the interaction between a sphere
and a solid half-space. Equation (2.2) shows that the
interaction energy between a single molecule and a solid
half-space is

UM–SSðDÞZpr1
A

45D 9
K

B

6D 3

� �
;

where r1 is the molecular density of the solid and D is
the separation between the molecule and the solid
surface. Taking advantage of this expression, the
interaction potential between a sphere and a solid
half-space, as shown in figure 3a, can be obtained from
the following integration:

US–SSðDÞZp2r1r2

ð2R
0
ð2RKzÞz

!
A

45ðzCDÞ9
K

B

6ðzCDÞ3
� �

dz; ð3:1Þ

where D stands for the shortest distance between the
sphere and the solid surface; andR and r2 are the radius
and molecular density of the sphere, respectively.
Differentiating equation (3.1) with respect to D leads
to the adhesion force,

FS–SSðDÞZ vUS–SSðDÞ
vD

Zp2r1r2

ð2R
0
ð2RKzÞz

!
B

2ðzCDÞ4
K

A

5ðzCDÞ10

" #
dz: ð3:2Þ

Using equations (2.6) and (2.8), equation (3.2) can be
rewritten as

FS–SSðDÞZ 8pwadz0
3

f ð �D ; �RÞ; ð3:3Þ

where

f �D ; �Rð ÞZ
�D
2
C5 �D �R C6 �R

2

�D C2 �Rð Þ3
K

�D
2
K �D �R

�D
3

 !

K
�D
2
C11 �D �R C18 �R

2

28 �D C2 �Rð Þ9
K

�D
2
K7 �D �R

28 �D
9

 !

is a dimensionless function with

�D ZD =z0 �R ZR=z0:

Once wad, z0 and R are given, equation (3.3) expresses
the adhesion force as a function of separation. The
maximum adhesion force, or the so-called pull-off force
F c
S–SS, can be readily determined. Figure 3b plots the

calculated pull-off force F c
S–SS as a function of the

radius R of the sphere. One can see that for small
spheres, F c

S–SS is proportional to R3, suggesting that
the pull-off force is dominated by the volume of the
sphere. As the sphere grows, such cubic dependence
evolves asymptotically into a linear dependence,
signifying a transition between the bulk-dominated
regime at very small sizes to the surface-dominated
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Figure 3. (a) Schematic of a sphere (S) in adhesive contact with a solid half-space (SS). Scale dependence of the pull-off force
normalized by (b) pwadz0 and (c) pwadR. (d ) Scale dependence of the normalized adhesion strength.
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regime at large sizes. Figure 3c shows the evolution of
F c
S–SS=pwadR with R/z 0. As R/N, it is seen that the

pull-off force asymptotically approaches the predic-
tion F c

S–SS=pwadR/2 from classical Bradley and
Derjaguin–Muller–Toporov (DMT) models (Bradley
1932; Derjaguin et al. 1975).

Figure 3d shows the normalized adhesion strength
F c
S–SS=pR

2 as a function of the radius of the sphere.
For R[z0, the adhesion strength rises as R decreases
and reaches a peak value of 0.65sth at Rzz0. Other
than the coefficient 0.65, this peak value agrees with
the prediction of the inter-surface force model.
However, as R decreases further, instead of satura-
ting at a limiting value as would be predicted by
the inter-surface force model, the adhesion strength
actually drops down to zero. Such a behaviour is due
to the R3 dependence of the pull-off force at small size
scale and cannot be captured by inter-surface force
models. The behaviour shown in figure 3b that the
pull-off force changes from a linear (R) to a cubic (R3)
dependence as R decreases holds also for the contact
between the two elastic solids. While the R3

dependence of the pull-off force can only be captured
by the full intermolecular force model, the R
dependence at large R has been captured by all
classical contact models such as Johnson–Kendall–
Roberts (Johnson et al. 1971), DMT (Derjaguin et al.
1975) and M–D models (Maugis 1992).
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4. SIZE DEPENDENCE OF ADHESION
STRENGTH BETWEEN TWO SPHERES

The analysis of §3 can be generalized to interactions
between two spheres. Let us begin with calculating the
interaction potential between a single molecule and a
thin circular disc (figure 4a). The resulting molecule–
disc potential will be used as a basis to construct the
potential between a single molecule and a sphere
(figure 4b) and subsequently the potential between
two spheres (figure 4d ). The detailed derivation is
summarized below.

Consider a single molecule and a circular disc with
infinitesimal thickness dz (figure 4a). If the molecule is
on the axis of revolution of the disc, the interaction
potential can be integrated from the LJ potential in
equation (2.1) as

UM–DðD;rÞZ2pr1 dz

ðr
0

A

ðD 2Cs2Þ6
K

B

ðD 2Cs2Þ3
� �

s ds

Z2pr1 dz
A

10D 10
K

A

10ðD 2Cr2Þ5
� ��

K
B

4D 4
K

B

4ðD 2Cr2Þ2
� ��

; ð4:1Þ

where r and r1 stand for the radius and molecular
density of the disc, respectively, andD is the separation
between the molecule and the centre of the disc.
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Figure 4. A bottom-up integration scheme for calculating the interaction potential between two spheres. One begins with
calculating the potential between (a) a single molecule and a circular thin disc. The obtained result is used to construct the
potential between (b) a single molecule and the bottom sphere. Similar integration scheme is applied to the upper sphere so as to
obtain the potentials between (c) a sphere and a circular thin disc and (d ) two spheres.
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Substituting equation (2.6) into (4.1) gives

UM–DðD;rÞZ pr1B dz

2

3z 6
0

D 10
K

3z 6
0

ðD 2Cr2Þ5
� ��

K
1

D 4
K

1

ðD 2Cr2Þ2
� ��

: ð4:2Þ

Based on equation (4.2), the interaction potential
between a single molecule and a sphere (figure 4b) can
be calculated as

UM–SðD;R1ÞZ
pr1B

2

ð2R1

0

3z 6
0

ðD KR1CzÞ10
�

K
3z 6

0

½ðD KR1CzÞ2Czð2R1KzÞ�5
�
dz

K
pr1B

2

ð2R1

0

"
1

ðD KR1CzÞ4

K
1

½ðD KR1CzÞ2Czð2R1KzÞ�2

#
dz

Z
pr1B

2z 3
0

f ð �D ; �R1Þ; ð4:3Þ

where

f ð �D ; �R1ÞZ
1

3

1

ð �DK �R1Þ9
K

1

ð �D C �R1Þ9
� �

K
6 �R1

�D
6
C7 �D

4 �R
2
1C7 �D

2 �R
4
1C �R

6
1

� �
�D
2
K �R

2
1

� �8
K

1

3

1

ð �DK �R1Þ3
K

1

ð �D C �R1Þ3
� �

C
2 �R1

�D
2
K �R

2
1

� �2
and

�D ZD =z0 �R1ZR1=z0;

where D is the distance between the molecule and the
centre of the sphere; and R1 is the radius of the sphere.
Equation (4.3) is now used to construct the interaction
potential between a circular disc of infinitesimal
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thickness dz and a sphere (figure 4c) as

UD–Sð �D ;�rÞZp2r1r2B

z0
dz

!

ðr
0

�tf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t 2C �D

2
p

; �R1

� �
d�t; ð4:4Þ

where

�rZr=z 0 �D ZD =z0;

r and r2 are the radius and molecular density of the disc,
respectively, and D is the distance between the disc and
the centre of the sphere. Recalling equation (2.8),

r1r2BZ
16

p
wadz

2
0;

equation (4.4) becomes

UD–Sð �D ;�rÞZ16pwadz0 dz

ðr
0

�t f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t 2C �D

2
p

; �R1

� �
d�t:

ð4:5Þ

Finally, the interaction potential between two spheres is
constructed from equation (4.5) as

US–Sð �D; �R1; �R2ÞZ16pwadz
2
0

ð2 �R 2

0
d�z

!

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zð2 �R 2K�zÞ

p

0

�tf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t 2Cð �DK �R2C�zÞ2

q
; �R1

� �
d�t;

ð4:6Þ

where �R2ZR2=z0 and �DZD =z0, R2 and D being the
radius of the second sphere and the separation between
the centres of the two spheres, respectively. Without
loss of generality, we assume R1RR2. According to
equation (4.6), the interaction force between the two
spheres is

FS–Sð �D ; �R1; �R2ÞZ
vUð �D ; �R1; �R2Þ

z0v �D
Z16pwadz0

ð2 �R 2

0
d�z

!

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zð2 �R 2K�zÞ

p

0

�tð �DK �R2C�zÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t2Cð �DK �R2C�zÞ2

q
!f 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t 2Cð �DK �R2C�zÞ2

q
; �R1

� �
d�t:

ð4:7Þ
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Letting

lZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t2Cð �DK �R2C�zÞ2

q
;

equation (4.7) can be rewritten as

FS–Sð �D ; �R1; �R2Þ

Z16pwadz0

ð2 �R 2

0
ð �DK �R2C�zÞd�z

!

ð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zð2 �R 2K�zÞCð �DK�R 2C�zÞ2

p

�DK�R 2C�z
f 0ðl; �R1Þdl

Z16pwadz0

ð2 �R 2

0
ð �DK �R2C�zÞ

! f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�zð2 �R2K�zÞCð �DK �R2C�zÞ2

q
; �R1

� ��

Kf ð �DK �R2C�z; �R1Þ
�
d�z: ð4:8Þ

Once �R1, �R2, wad and z0 are given, equation (4.8) gives
FS–S as a function of the normalized centre–centre
distance between the spheres. Numerical quadrature
can be used to calculate FS–S and the pull-off force F c

S–S.
Taking R1/R2Z1.0 and 10, the pull-off force is

calculated as a function of R2 and plotted in figure 5a.
For comparison, the pull-off force between a sphere and
a solid half-space is also plotted as in the limiting case
of R1/R2/N. As expected, the pull-off force between
two spheres exhibits a linear dependence on R2 at large
sizes irrespective of the ratio R1/R2. This behaviour is
consistent with Bradley’s (1932) model in which the
pull-off force between two rigid spheres is proportional
to the composed radius (R1CR2)/R1R2 and therefore
J. R. Soc. Interface (2008)
to R2 when the ratio R1/R2 is given. On the other
hand, in the small-size limit, the scale dependence of the
pull-off force depends on R1/R2. For instance, when
R1/R2Z1, the pull-off force scales with R6

2. This is
because at small scales the pull-off force is proportional
to the product of the volumes of the two spheres and
therefore to R6

2 when R1ZR2. For R1/R2 ranging from
1.0 to N, the pull-off force at the small-size scale is
found to be proportional to Rm

2 , where 3!m!6. For
example, when R1/R2Z10.0, our numerical results
show that mz4.1. Figure 5b displays the size depen-
dence of the adhesion strength defined as the pull-off
force normalized by the projected area of the smaller
sphere pR2

2. Similar to the case discussed in §3, the
adhesion strength between two spheres exhibits a peak
value at R2zz 0, while it approaches zero in the
extreme cases of R2/0 and R2/N. The absence of
strength saturation at small length scales is at odds
with the prediction of inter-surface force models
(Persson 2003; Gao et al. 2005; Tang et al. 2005).
Nevertheless, figure 5b shows that the maximum
adhesion strength would never exceed 0.65sth, irrespec-
tive of the value of R1/R2, suggesting that sth can still
serve as a reasonable estimate for the upper bound of
adhesion strength between two spheres, as we did in
previous work (Yao et al. 2007).
5. INTERACTION BETWEEN A HEMISPHERE-
ENDED CYLINDER AND A SOLID
HALF-SPACE

Based on the intermolecular force model, we have
illustrated that the adhesion strength between a sphere
and a solid half-space or that between the two spheres
eventually drops to zero as the characteristic size of the
system decreases. However, we wish to point out that
this does not mean that the application of inter-
molecular force model necessarily leads to the con-
clusion that there is no saturation of adhesion strength
at small length scales. To demonstrate this point,
consider a hemisphere-ended cylinder in adhesive
contact with a solid half-space (figure 6a). In this
case, the interaction potential is given by

UHC–SSðD Þ

Zp2r1r2

ðR
0
ð2RKzÞz A

45ðzCD Þ9
K

B

6ðzCD Þ3
� �

dz

Cp2r1r2

ðN
0
R2 A

45ðzCD CRÞ9
K

B

6ðzCD CRÞ3
� �

dz;

ð5:1Þ
where D is the distance between the apex of the
hemisphere-ended cylinder and the solid half-space.
Substituting equations (2.6) and (2.8) into equation
(5.1) gives

UHC–SSð �D Þ

Z
8pwadz

2
0

3

ð �R

0
ð2 �RK �zÞ�z 1

ð�zC �D Þ9
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1
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� �

d�z

C
8pwadz

2
0

3
�R
2 1

8ð �D C �RÞ8
K

1

2ð �D C �RÞ2
� �

;
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Figure 6. (a) Schematic of a hemisphere-ended cylinder (HC)
in adhesive contact with a solid half-space (SS). Size
dependence of (b) the normalized pull-off force and (c) the
normalized adhesion strength between a hemisphere-ended
cylinder and a solid half-space.
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where �RZR=z0 and �DZD =z0. Therefore, the
adhesion force between a hemisphere-ended cylinder
and a solid half-space is

FHC–SS Z
vUHC–SS

vD
Z

8pwadz0
3

!
1

ð �D C �RÞK
�DK �R

�D
2

C
�DK7 �R

28 �D
8
K

1

28ð �D C �RÞ7
� �

:

ð5:2Þ

The pull-off force F c
HC–SS, corresponding to the maxi-

mum of FHC–SS, can be readily obtained. Figure 6b
shows the size dependence of the pull-off force. Not
surprisingly, F c

HC–SS scales up linearly with the radius R
of the cylinder at large sizes. However, in the small-size
limit R/0, it exhibits an R2 dependence. This is
because at small length scales, the pull-off force
is proportional to the effective interaction volume,
that is, the volume of material which participates in the
interaction. For a cylinder, the dimension in the
longitudinal direction is much larger than the range of
interaction forces. Hence, the effective interaction
volume is proportional to the cross-sectional area
multiplied by the thickness of the interaction range,

which is normally independent of R, resulting in the R2
J. R. Soc. Interface (2008)
dependence of the pull-off force. Such size dependence
of the pull-off force eventually leads to the saturation of
adhesion strength in the limit of small size, as shown
in figure 6c.
6. CONCLUSIONS

In this paper, we have shown that the conventional
inter-surface force models fail to describe correctly the
interaction force between two spheres at the small-size
limit. This is demonstrated by directly integrating the
intermolecular forces between two spheres to examine
the size dependence of adhesion strength at small
scales. Our analysis is thus more rigorous than the
inter-surface force models in adhesive contact
mechanics. Our results showed that the adhesion
strength between two spheres or between a sphere
and a solid half-space exhibits a peak value at an
optimal size, and eventually drops to zero as the size
decreases further. We also showed that the adhesion
strength between a hemisphere-ended cylinder and a
solid half-space would saturate at the theoretical
adhesion strength below a critical size in agreement
with predictions from inter-surface force models.
Therefore, it cannot be generally concluded that the
adhesion strength would (or would not) saturate at
small contact size. Whether such saturation actually
occurs depends on the limit of the interaction volume
at small sizes. If the interaction volume scales with
the characteristic size R of the system as R3, as in the
case of nanoparticles, there will be no strength
saturation but a maximum strength at an optimal
size. If the interaction volume scales asR2, as in the case
of hairs/fibres, the adhesion strength will eventually
saturate at the theoretical adhesion strength. Although
this study has been based on the assumption of rigid
solids, we expect that the conclusion should hold at
least qualitatively for contact between elastic solids.
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