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Design principles for phase-splitting
behaviour of coupled cellular oscillators:
clues from hamsters with ‘split’
circadian rhythms
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Nonlinear interactions among coupled cellular oscillators are likely to underlie a variety of
complex rhythmic behaviours. Here we consider the case of one such behaviour, a doubling of
rhythm frequency caused by the spontaneous splitting of a population of synchronized
oscillators into two subgroups each oscillating in anti-phase ( phase-splitting). An example of
biological phase-splitting is the frequency doubling of the circadian locomotor rhythm in
hamsters housed in constant light, in which the pacemaker in the suprachiasmatic nucleus
(SCN) is reconfigured with its left and right halves oscillating in anti-phase. We apply the
theory of coupled phase oscillators to show that stable phase-splitting requires the presence of
negative coupling terms, through delayed and/or inhibitory interactions. We also find that
the inclusion of real biological constraints (that the SCN contains a finite number of non-
identical noisy oscillators) implies the existence of an underlying non-uniform network
architecture, in which the population of oscillators must interact through at least two types
of connections. We propose that a key design principle for the frequency doubling of a
population of biological oscillators is inhomogeneity of oscillator coupling.
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1. INTRODUCTION

Rhythmic behaviours of higher organisms can emerge
from the temporal coordination of cellular oscillators
within tissues. This kind of design may lead to complex
states that arise from nonlinear mechanisms (Kuramoto
1984; Strogatz 1994; Winfree 2001), including dysrhyth-
mias (e.g. chaotic activities and abrupt changes of
frequency) and anomalous spatial patterns (e.g. turbu-
lence and spiral waves). The control of intercellular
synchronization within tissues is likely to underlie a
variety of normal functions as well as certain pathologies.

One biologically important behaviour is an abrupt
doubling of rhythm frequency; this may be normal, as
seen with transitions in locomotor cadence (Grillner et al.
1979), or abnormal, as in cardiac tachyarrhythmias
(Ritzenberg et al. 1984). Theoretical analyses of coupled
oscillators have suggested a possible mechanism for
frequency doubling. A group of synchronized cellular
oscillators could double its frequency by spontaneously
splitting into two subgroups, each subgroup oscillating
with a common frequency but now in anti-phase
(Schuster & Wagner 1989; Okuda 1993; Daido 1996).
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We call this phenomenon phase-splitting, by analogy with
terminology used in mathematical physics (Basler et al.
1998; Auffeves et al. 2003). Our aim now is to better
understand biological phase-splitting, and here we apply
mathematical reasoning to infer the essential design
principles, guided by the real constraints of an actual
living tissue.

Recently, an example of phase-splitting behaviour in a
well-characterized neural tissue has been demonstrated
(de la Iglesia et al. 2000). The suprachiasmatic nucleus
(SCN), a bilaterally paired cell group in the anterior
hypothalamus of the mammalian brain, is the site of an
endogenous timekeeping mechanism that regulates
24 hour (circadian) rhythmicity and its entrainment to
day and night (Takahashi et al. 2001). It is a tissue clock
composed of multiple single-cell circadian oscillators
coupled together to generate a circadian output signal.
In golden hamsters, as in other rodents, the SCN regulates
the night-time expression of locomotor (wheel-running)
activity during the light-dark (LD) cycle and its persistent
rhythmicity in constant darkness (DD; figure 1a). Ham-
sters housed in constant light (LL) also show rhythmic
locomotion, with a longer period than in DD (figure 1b).
After a few months in LL, hamsters can exhibit a
phenomenon known as ‘splitting’, in which an animal’s
single daily bout of locomotor activity dissociates into
two components that each free-run with different periods
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Figure 1. Circadian locomotor (wheel-running) rhythms in
golden hamsters. The number of wheel revolutions per 15 min
interval is plotted for each hamster as an actogram, in which
activity over the course of each 24 hour period is plotted
horizontally from left to right and succeeding days stacked
vertically from top to bottom. (a) Circadian rhythm of a
hamster’s locomotor activity is shown during LD and during
DD. (b) Circadian rhythm in LL shows a longer period than in
DD; after approximately two months in LL, the rhythm
exhibits ‘splitting’, in which the animal’s single daily bout of
locomotor activity dissociates into two components that each
free-run with different periods until they become stably
coupled approximately 180° (12 hours) apart. DD rapidly
restores the split rhythm to its normal unsplit state.

until they become stably coupled approximately 180°
(12 hours) apart (figure 15). DD rapidly restores the split
rhythm to its normal unsplit state (figure 15). Recent
data show that the SCN is dramatically reorganized in
the split condition; its left and right halves continue to
oscillate with a circadian period but now in anti-phase
rather than in-phase (de laIglesia et al. 2000). It has been
proposed that this reconfigured phasing of cellular
oscillators within the SCN tissue leads to the frequency
doubling of the locomotor rhythm.

2. AN IDEALIZED MODEL OF A POPULATION OF
LIMIT-CYCLE OSCILLATORS

If individual cellular oscillators are governed by limit-
cycle processes, and if the attraction to the limit cycle is
strong relative to the coupling between oscillators, then
the global behaviour of the population can be specified
solely by the phases of the oscillators without regard to
their amplitude of oscillation. This concept was
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originally presented as a conjecture by Winfree (1967)
and subsequently supported by others using math-
ematical arguments (Kuramoto 1984; Strogatz 2000).
Such a system can be formally described by

dé; ul
dt =w; + Zl Kijf(ej(t) —0,(1)),

(2.1)

where 6, represents the phase of the ith oscillator; w;,
denotes its intrinsic frequency; Kj; is the strength of
coupling between the ith and the jth oscillator; and f
specifies how the coupling varies with phase. Kuramoto
(1984) and others (reviewed by Strogatz 2000)
described oscillator synchronization in such a system,
which also applies to cells that communicate strongly
via multiple pulse interactions throughout the limit
cycle (Ermentrout & Kopell 1991). If f is an odd
periodic function (e.g. a sine function) and the coupling
strength is symmetrical (i.e. K;;= Kj;), then the overall
frequency of the synchronized system (Q) equals the
average of the individual oscillator frequencies (i.e.
Q=1w,;). Of note, this averaging principle appears to
hold for the SCN (Liu et al. 1997).

We wish to modify equation (2.1) to make explicit the
possibility that there exist delays in the coupling terms.
For example, intercellular communication within the
SCN is not globally instantaneous. In addition, a
circadian output signal (e.g. locomotion) feeds back to
alter the phase of the SCN itself (Mrosovsky 1996), and
the presence of light can modify the strength and timing of
this feedback signal (Schaap & Meijer 2001). To
incorporate such delays and feedback, we write

a9, N )
T - ot LR 0= = 0(0)
N
+ DK 0,(t=74) = 6:(1)), (22)

where 7, represents the internal delay within the
population and 7, is the delay in the feedback of the
population output upon itself; K;f is the coupling term
that specifies the intrinsic interaction between the ith and
the jth oscillator; and K i]-f is the coupling term that
specifies feedback effects upon the oscillators.

In the idealized case, we consider N oscillators all
uniformly coupled to each other (K:,] = K~/N),
uniformly receptive to a feedback signal (K;= K /N)
and with sine functions governing coupling between
oscillators (f) and feedback upon the oscillators (f). In
the split condition, we define ,, and ,, as the phases of the
oscillators within the two split subgroups and oscillating
with a common frequency @ but with their phases
displaced by an angle «, where 0<a<w. We assume
that the oscillators are nearly identical such that
the deviation of the phases of the individual oscillators
from the mean phase during synchronization is negligible,
and we define Aw = |{(w,,) — (»,,)] as the difference in the
mean frequencies of the two subgroups. Then, ,, = Qt
and #,, = Qt + «. Substituting in equation (2.2), we obtain

. Aw
sin(a) = — = —.
K cos(Q7) + K cos(Q7)
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Figure 2. Phase-splitting in the idealized model is not stable. In (a-c), 20 globally coupled oscillators are simulated with

wy=0.26 rad s~

! (corresponding to a cycle period of 24.2 hours), K =0.1,7=0, K =0.09 and 7 = 12 hours, and feedback starts

on day 0. Numerical integration is by fourth-order Runge—Kutta method with a time step of 0.1 hours. (a) The idealized model
exhibits phase-splitting of globally coupled, noiseless, identical oscillators. (b) Phase-splitting is not achieved with variability of
the intrinsic oscillator period (the Lorentzian distribution mean period is 24.2 +2 hours (s.d.)). (¢) Phase-splitting is not achieved
with noisy perturbations of phase (the Gaussian variance is 0.005 rad, resulting in s.d. in the period of 0.46 hours).

For K cos(Q7)+ K cos(Q7)>0, a=n cannot be a
solution because a must be in the range of (—/2, 7/2),
as defined by inverse sine functions. Hence, for phase-
splitting (a=m), K cos(Q7)+ K cos(Q7) <0 and the
solution is
1 Aw

K cos(Q7) + K cos(Q7) |
The same reasoning and derivation has been presented
previously by Schuster & Wagner (1989) for two coupled
oscillators without feedback.

Equation (2.3) allows for phase-splitting (a=m)
with the conditions Aw=0 and K cos(Q7)+
K cos(Q7)<0. This can be satisfied in a number of
ways. For example, if the internal delay is negligible,
then the feedback delay must be between T/4 and 37/4
(where T=2n/Q) and K must be greater than K.
On the other hand, if both delays are negligible, then
K + K must be negative. This analysis shows that the
presence of negative coupling terms, through delayed
and/or inhibitory interactions, is necessary for phase-
splitting in the idealized model.

o = T —sin

(2.3)

3. BIOLOGICAL VARIABILITY PRECLUDES
PHASE-SPLITTING IN THE IDEALIZED
MODEL

Equation (2.3) is derived for a population of nearly
identical, noise-free oscillators, which is biologically
implausible. In the SCN, individual cellular oscil-
lators express intrinsic periods over a wide range of

20-28 hours (Welsh et al. 1995; Liu et al. 1997;
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Herzog et al. 1998; Honma et al. 1998). Each of these
cellular oscillators exhibits cycle-to-cycle variability
in the period of approximately 2 hours (Herzog et al.
2004). We now show that stable phase-splitting is not
possible for the idealized model of equation (2.2) in
the face of these known sources of biological
variability.

If two subgroups of oscillators are each considered
as single oscillator units, the only stable solution
would be a— 7w (Schuster & Wagner 1989), and this
would require that ({(w,,)— (w,))—0. Using the
Chebyshev inequality (Papoulis 1984), it can be
shown that this is achieved for non-identical oscil-
lators only if the number of oscillators N— . In fact,
the SCN contains no more than 20000 oscillators
(van den Pol 1980). Furthermore, it can be proved
(see appendix A) that noise at any non-zero level will
destabilize the split state of the idealized model.
Figure 2 illustrates how the idealized phase-splitting
(figure 2a) of equation (2.3) becomes destabilized
when individual oscillators are non-identical
(figure 2b) or when they are subjected to noisy
perturbations of phase (figure 2c).

In actual experiments with hamsters, however, an
observer might consider an animal stably split if the
two locomotor activity bouts were to persist with a
relatively unchanged a=mw for a finite observation
period (e.g. 30 days). We ask whether there is any
possible solution of the idealized model with a drift
sufficiently small such that, for practical purposes, «
would appear to be stable. In appendix A, we use
stability analysis to estimate the minimum drift of «
in the noiseless system and numerical simulations to
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incorporate noise-induced cycle-to-cycle variability
in the period (Herzog et al. 2004). We found that,
without noise, the minimum drift of « is 10 hours per
week and the addition of noise causes loss of
coherence of each split subgroup within 4 hours
(see the end of appendix A for simulation parameters
and results). Such a change in « over time and
loss of coherence in the anti-phase solution
would not be misinterpreted as stable splitting in
the laboratory.

4. STABLE BIOLOGICAL PHASE-SPLITTING
REQUIRES NON-UNIFORM OSCILLATOR
COUPLING

We now consider two constraints of the idealized
model: the coupling functions (f and f) and the
coupling parameters (K, K,7 and 7). Thus far, we
have assigned the simplest odd periodic function (a sine
function) for the coupling functions in equation (2.2).
Hansel et al. (1993) have shown that stable anti-phase
solutions can exist for a population of identical phase
oscillators if the coupling function includes higher order
harmonic terms. For such a solution to be relevant for
circadian phase-splitting, the system must evolve from
an initially synchronized state to the stable split
condition. In appendix B we apply perturbation theory
to determine whether such a transition is possible, and
we find that the synchronized system of the idealized
model (equation (2.2)) cannot evolve to the split state

for any continuous f or f. This analysis does not
exclude the possibility that phase-splitting might be
achievable with discontinuous coupling functions, or
that phase-splitting might be achievable via desyn-
chronization to the incoherent state followed by
instantaneous reconstitution of the anti-phase solution
(Hansel et al. 1993). We know of no biological
observations that would support the existence of such
discontinuous behaviours in the SCN.

The idealized model also includes the constraint that
the oscillator-to-oscillator coupling parameters K and
7 are uniform within the population. In fact, the SCN is
markedly heterogeneous (Silver & Schwartz 2005),
with multiple types of synaptic and non-synaptic
connections. To analyse explicitly the impact of non-
uniform network connectivity, we consider four coupled
non-identical oscillators (figure 3a) whose behaviour is
described by 0;=Qt+y;, where ¢, is the phase
displacement of the ith oscillator from the mean
phase (1) of the four-oscillator ensemble. The simplest
non-uniform configuration of these oscillators is two
subgroups defined by two different types of connec-
tions. Let K, and 7, represent the coupling parameters
within each subgroup, and K, and 7, the coupling
parameters across the two subgroups. We assign
oscillators 1 and 3 to the first subgroup and oscillators
2 and 4 to the second subgroup, and define « as the mean
phase difference across subgroups and § as the mean
phase difference within each subgroup (figure 3b). If
(6:(2) — 0x(1)) = (05(£) — 04(1)) and. if (6:(1) — by(1)) =
(05(t) — 64(1)), it follows that (Y1 — ¥s) = (Y3 — ¥,) and
(1!/1 - lpg) = (IPQ - 1!/4) Substltutlng 0,5 =Qt+ ll/i for
each of the four oscillators in equation (2.2), adding
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Figure 3. (a) Schematic of four coupled non-identical
oscillators. Circles represent each phase oscillator and arrows
depict coupling. (b) Definition of phases between oscillators,
depicted on the phase circle (full cycle is 27). Oscillators 1 and
3 are the first subgroup and oscillators 2 and 4 are the second
subgroup; « is the mean phase difference across subgroups and
(6 is the mean phase difference within subgroups. In the model,
we assume symmetric coupling such that § is identical for
both subgroups.

the solutions for each subgroup and subtracting
between the subgroups, we obtain the following
equations in place of equation (2.3):

[{w15) = (@2.0)]

) = o (8)) (K. cos(@7,) + & cos(@7))
(4.1)
and
sin(8) = (|1 —ws])/(2(K,, cos(Q7,)
+ K, cos(Q7, + «) + K(cos(Q7)
+ cos(Q7 + a)))). (4.2)

For a=m, the numerator of equation (4.1) must be
approximately 0 while the denominator must be less
than 0 (see §2). This is achieved by

[IA(R cos(Q7,) + K cos(Q7)] <0, (4.3)
and since @ must be less than «, we obtain
[KW cos(Q7y) — K, cos(Q7,)] > 0. (4.4)
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Figure 4. Stable phase-splitting in populations of oscillators with non-uniform coupling. In all cases, populations are simulated
with non-identical oscillators (the Lorentzian distribution mean period is 24.24+2 hours (s.d.)) in the presence of noise (the
Gaussian distribution variance is 0.02 rad, resulting in a cycle-to-cycle period with s.d. of 2.1 hours), K,=01,K,=002,7=0,
K =0.05 and 7= 12 hours, and feedback starts on day 0. (a) Twenty oscillators exhibit stable phase-splitting. () The latency to
split depends on both the number of oscillators and the absence or presence of noise. Open circles, no noise; filled circles, noise
with variance equal to 0.02 rad. See appendix C for further details regarding numerical simulation and effects of varying the

intensity of noise.

Now consider a population N beyond four oscillators
and with noisy perturbations n(t). We write

(216;‘ =w;, + K W<fw(6j(t—fw) - 5z(t))>

TR (fu(0(t=7) = 6:1))

w
a

B
+x LI @06+, @)

where (-),, and (-), represent the mean fields corre-
sponding to oscillators within and across the subgroups,
respectively. We previously showed that, for uniform
coupling (K =K ), Doise at any non-zero level will
destabilize the split state of N identical oscillators. For
non-uniform coupling of the simplest type (equation
(4.5)) and using fy(¢)=[fa(d)= /() =sin(¢), we

derive the stability criteria as

[KWCOS(Q%W) +K, cos(Q7,)cos(a)]

+ K cos(Q7)[1 + cos(a)]

+sin(a) [K, sin(Q7,) + K sin(Q7)] >0, (4.6
(K, cos(Q7,) + K, cos(Q7,)cos(a)]
+ K cos(Q7)[1 + cos(a)]
—sin(a)[K, sin(Q7,) + K sin(Q7)]>0.  (4.7)
For a=m,
(K, cos(Q%,) — K, cos(Q7,)] >0.  (48)

J. R. Soc. Interface (2008)

Therefore, the system is stably split under the
conditions of inequalities (4.3) and (4.4).

For N non-identical oscillators coupled by sine
functions, the stability of phase-splitting of equation
(4.5) can be estimated by numerical simulation with
various intensities of noise and various coupling
strengths and delays (see appendix C). We find that
the existence of non-uniform network connectivity
enables the system to remain stably split over a wide
range of parameters, tested for up to 20000 oscil-
lators. The latency to onset of stable splitting
(figure 4a) is prolonged by increasing the number of
oscillators (figure 4b) or reducing the degree of
heterogeneity, i.e. increasing K'a towards K’w
(appendix C). Notably, over the range of N, the
presence of noise reduces the latency to splitting
(figure 4b). The angle « will be m if the mean
frequency of the two subgroups is identical. A range
of stable split angles around = is possible if the mean
frequency of the two subgroups is different. For
example, in a 20-oscillator network in which the mean
frequency of the subgroups differs by 2 hours,
K,=0.1, K,=0.002, K=0.05, 7=0 and 7=12
hours, we find that the stable split angle is 167°.

Our numerical simulations show that the transition
from synchronized to split states can exhibit different
forms. An example similar to the most common
transition seen in hamsters from synchronized to the
split state (figure 1) is shown in figure 44, in which there
is a progressive separation of the phase difference
between the two subgroups. The equation parameters
influence the rate at which the two subgroups separate.
Other transitions—arrhythmic or tri-branching—
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exist for certain parameter combinations and such
transitions are rarely seen in hamster phase-splitting
(see appendix D).

5. DISCUSSION

Here we have sought the essential design principles for
a population of synchronized coupled oscillators to
spontaneously exhibit stable phase-splitting. We found
that the inclusion of biological reality—a finite number
of non-identical noisy oscillators—implies the exist-
ence of an underlying non-uniform network architec-
ture, in which the population of oscillators must
interact through at least two types of connections.
This connectivity requirement follows from our
assumption of continuous coupling functions. Whether
there exist discontinuous coupling functions or instan-
taneous transitions that would obviate the connec-
tivity requirement for phase-splitting of biological
oscillators is a question for further mathematical
study. We have also assumed that coupling among
SCN cellular oscillators is weak relative to the strength
of attraction to each cell’s limit-cycle oscillation. This
assumption is indirectly supported by the observations
of Liu et al. (1997), but further work is needed to test
whether SCN cells can act as phase oscillators and to
estimate the strength and timing of coupling using
quantitative experimental and modelling approaches
at the interface between intracellular oscillations of
‘clock’ genes (Forger & Peskin 2003; Leloup &
Goldbeter 2003; Becker-Weimann et al. 2004; Ueda
et al. 2005) and intercellular coupling of neural
activities (Pavlidis 1971; Carpenter & Grossberg
1983; Diez-Noguera 1994; Antle et al. 2003; Kunz &
Achermann 2003; Nakao et al. 2004; Gonze et al. 2005;
Bush & Siegelmann 2006; Liu et al. 2007; Sim & Forger
2007; To et al. 2007).

Our analyses show how coupling strengths
(K4, Ko, K) and delays (7y,7,,7) must interrelate
in order to functionally partition the population into
two split subgroups. The theoretical requirements
imposed by inequalities (4.3) and (4.4) could be
satisfied by a number of parameter combinations. In
the case of hamster phase-splitting, the split sub-
groups are the left and right halves of the paired SCN,
but higher order split clusters may exist (Tavakoli-
Nezhad & Schwartz 2005; Yan et al. 2005). We also
note that the heterogeneity requirement for stable phase-
splitting could be satisfied by feedback coupling acting
differentially on the oscillator network, which (in the
simplest case of only two types of feedback connections)
would yield a canonical phase equation whose form is
identical to (4.5).

So how might LL induce phase-splitting of the
hamster SCN? One possibility would be that the
transition from DD to LL leads to a change in sign of
K, from positive to negative; if all the delays are small
relative to the overall circadian period, then conditions
for stable phase-splitting are satisfied. Indeed, Oda &
Friesen (2002), expanding on earlier models (Daan &
Berde 1978; Kawato & Suzuki 1980), have considered
this idea and performed numerical simulations
using coupled relaxation oscillators. An alternative
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possibility would be that LL does not alter intrinsic
SCN coupling but instead induces phase-splitting by
altering feedback coupling (K, 7). This would require
that K, and K, are both positive in LL (as they are in
DD to achieve synchronization). Since Qpp = ®; (Liu
et al. 1997), all delays in DD must be small relative to
the overall circadian period (see appendix A) and K,
must be greater than K, (inequalities (4.4) and (4.8)).
Under these conditions, the feedback delay (7) required
for stable phase-splitting can be estimated, given
that Q< Qpp. If K >0, 7 must be between m/2Qpy,
and 7/Qyy; if K <0, 7 must be between 37/2Qpp, and
27/ Q1

It is important to realize that, although LL is
defined as constant light, what the animal actually
perceives might be an entirely different matter.
Typically measured are rest and activity cycles, but
not intermittent sleep bouts, during which time the
eyes are closed and the animal assumes a tightly
curled, shielded sleeping posture tucked in the bed-
ding. Thus, we predict that the overall photic input to
the SCN during the rest phase of an animal in LL
must be less than that during the active phase when
the animal is awake running in the wheel. Running in
the light in LL would therefore generate an oscillating,
phase-shifted photic input to the SCN when compared
with the usual situation in an LD cycle, in which a
nocturnally active animal like the hamster restricts its
running bouts to the dark. Our analysis shows that
the long latency to splitting onset reflects nonlinea-
rities in the system (equation (4.5)) and does not
require any change in parameters during the LL
incubation period. However, latency is parameter
dependent (figures 4 and 5; appendix C) and there is
at least one example in the literature in which latency
is dramatically reduced. Administration of a 6 hour
dark pulse timed to precede the expected onset of
locomotor activity in LL has been reported to induce
immediate splitting (Duncan & Deveraux 2000). If K
reflects the amplitude of a sinusoidal photic input, then an
increase in K at such a dark-to-light transition could
trigger more rapid phase-splitting.

The central nervous system contains many bilater-
ally symmetrical neural oscillators in addition to the
SCN, including those that underlie respiratory, auto-
nomic and locomotor activities, and frequency and
phase control are critical to their function. We suggest
that this natural midline symmetry provides an
architectural partition that could promote frequency
doubling by a phase-splitting mechanism.

The hamster wheel running data used in this article are from
experiments that were approved by the Institutional Animal
Care and Use Committee of the University of Massachusetts
Medical School.
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splitting and Steven Strogatz, Bard Ermentrout and Daniel
Forger for reviewing a previous version of the manuscript.
This study was supported in part by the National Institutes of
Health RO1 grants NS046605 and HL71884. The contents of
this article are solely the responsibility of the authors and do
not necessarily represent the official views of the NIH.
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APPENDIX A. STABILITY ANALYSIS AND
ESTIMATION OF THE MINIMUM DRIFT IN «
OF THE IDEALIZED MODEL OF UNIFORMLY
COUPLED, NOISY OSCILLATORS

Consider a population of N oscillators composed of two
subgroups #,, and 6, each subgroup having N; and Ny
oscillators, respectively, both subgroups oscillating
with a common frequency Q but with their phases
displaced by an angle «. Assuming a solution §,, = Q¢
and 6,=Qt+ «, we substitute in equation (2.2).
Solving for Q for each subgroup, we obtain

Q=w, +— [le(—m) + Nof (—07 + a)]

==

+ % [le(—Q%) + Nf(—Q7 + a)} , (A1)
where m=1, 2, ..., Ni, and
— f( n ~ r S
Q=w,+ 5 [NZf(—QT) + N, f (—QT—a)]
+% [NJ(—Q%) + NJ(—Q?—&)}, (A2)

where n=1, 2, ..., Ns.

Consider a perturbation of each oscillator 6,, = Qt+
0, and 0,=Qt+ a+0,, where 0 represents pertur-
bations due to noise. Using stability analysis of coupled
phase oscillators (Strogatz 1994) with time delay
(Yeung 1999), we derive

% _ _li [le’(—m) + Nof' (07 + “)}
+% [NT'(07) + Nof (07 + )] ] Om
(A3)
and
d(ftn _ _lg [NQ f'(=Q7) + Nf' (e — “)}

+% [NQf/(—.Qf') + lel(—Q?—a)H Sy (A4)

For stable phase-splitting, the following conditions
must be satisfied:

N>

- [Nl 708 + Nof' (07 + oc)]

+ % {le/(—Q%) + N, (—QF + a)] >0 (A5)

and
% [NZ 7' (=) + N f (—ei— a)]

S [Ngf’(—m) + N f (—F —a)} >0.

= (46)
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With sine functions, the stability condition of equations
(A 5) and (A 6) becomes

[N, + N, cos(a)]
N

[K cos(Q7) + K cos(Q7)]
+%sin(o¢) [K sin(Q7) + K sin(Q7)] > 0

and

[N, + Ny cos(a)]

N [K cos(Q7) + K cos(Q7)]

—%sin(u) [K’ sin(Q7) + K sin(Q%)] > 0.

Inequalities (A 7) will not be satisfied for a=m and
therefore the system is not stable.

In actual experiments with hamsters, however, an
observer might consider an animal stably split if the
two locomotor activity bouts were to persist with a
relatively unchanged a=w for a finite observation
period (e.g. 30 days). We ask whether there is any
possible solution of the idealized model with a drift
sufficiently small such that, for practical purposes, «
would appear to be stable. To estimate the minimum
drift in «, we assume (N;/N)=(Ny/N) and define the
growth in « as 6ye*’, where

A =—{1 + cos(a)] [K cos(Q7) + K cos(Q?)}

+ sin(a) [K sin(Q7) + K sin(Q%)}, (A 8)
and ¢ is the initial perturbation from a=rr.

The synchronized frequency of each subgroup during
the split state is

K K
Q =w; — (1 + cos(a)) gsin({}f') +Tsin(9f')

(A9)

Substituting equation (A 8) into equation (2.3), we
obtain

A= (W) — {(w,))cot (%) + 2(w; —Q)tan(g). (A 10)
Similarly, the synchronized frequency during DD
(a=0) is

‘QDD = 62 - K Sin(QDD%) - K Sin(.QDD%), (A 11)
and the synchronized frequency during LL prior to
splitting is

‘QLL = 62 - K Sin(QLL’IA') - K sin(.QLLf'). (A ].2)
Biological observations provide some constraints on the
minimum drift in &. Experimental studies (Welsh et al.
1995; Liu et al. 1997; Herzog et al. 1998; Honma et al.
1998) suggest that the circadian period of the SCN in

DD is approximately the average of the distributed
periods of individual oscillator cells, i.e.

QDD = 5, (A 13)
In LL, the circadian period is lengthened (figure 1),
which results in
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We further consider the biologically plausible assump-
tions that the internal delay in intercellular communi-
cation (7) is small with respect to the period of the
pacemaker, whereas the delay in the external feedback
(7) arises from slower mechanisms and is therefore
large compared with 7. This leads to the condition that
wo7T=0 and w,7=0 during DD. During LL, &;7 =0 as
before, whereas K sin(Qp,7)>0 to satisfy equation
(A 14). Since the oscillators are synchronized, K >0

and K cos(Q7) <0 (from equation (2.3)). This results
in K>0and n/2< Q7< .

Substituting equation (A 11) into equation (A 9), w
can estimate K and K if we estimate the dlfference
between Qpp and Q in the stable split state. From our
experimental records of hamster phase-splitting, we
measured Qpp and estimated Q as twice the frequency
of the split rhythm. Calculating AQ = Qpp—Q for
each hamster, we found for a group of 30 hamsters
AQ=0.040.0008 (mean=s.d.) radh~'. We assume
that the number of oscillators in each subgroup is
10 000; we chose the maximum number of oscillators
since fewer leads to a greater drift in « (figure 4). From
the Chebyshev inequality (Papoulis 1984) for a
probability of 95%, we estimate ((w,)— (w,))=
8.94 X107, We determined the minimum A using a
nonlinear optimization procedure (Press et al. 1992),
which enables us to estimate K, K and 7 from equations
(A 10)-(A 14). The estimated parameters are a = 4/5,
K =0.011 and K =0.015. Using these estimates and
the measured |AQ|=0.0008, the estimate for the
minimum 4 is 0.988 X102

The minimum growth in « is calculated as 6, (e*’ — 1),
where dy is the difference between the anti-phase solution
(a=m) and the estimated initial split angle (a=4mw/5).
Over an observation period of one week, the minimum
drift in « is 10.1 hours. This estimate does not account
for the destabilizing effects of noise. Using the same
estimated parameters and with noise variance equal to
0.02 rad resulting in a cycle-to-cycle period of s.d. of
2.1 hours (Herzog et al. 2004), we find using numerical
simulation of 20000 oscillators that the two split
subgroups become incoherent in 4 hours.

APPENDIX B. EVOLUTION OF SUBGROUPS
FROM THE SYNCHRONIZED TO THE SPLIT
STATES

Based on stability analysis (appendix A), the con-
ditions for stable phase-splitting of N identical oscil-
lators (each subgroup having N; and N, oscillators) are

5];[ {Nl 708 + Nof' (07 + a)]

+ % [le’(—m) + Ny (-7 + a)} >0 (B1)
and
% [NQ Fl(—e#) + N f (e —a)}
+ % [NJ’(—Q%) + NJ’(—Q%—&)} >0. (B2)
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Figure 5. The latency to split is plotted against (@) noise
intensity, with K,=0.02, and (b) K,, with zero noise.
K“—Ol K= 006 7 =13 hours. Filled circles, N=20
oscillators; open circles, N=2000 oscillators.

Inequalities (B 1) and (B 2) can be satisfied by proper

selection of f and f. For example, if f (¢ (¢) =sin(¢) and
f(¢)=sin(2¢), the above inequalities can be satisfied
(Hansel et al. 1993). We now ask whether the two
subgroups will be robust to perturbations as the system
evolves from the synchronized state to the split state as
the split angle « increases from zero to approximately .
To study the stability of the system during such a
transition, we assume (N;/N)=(N,/N) and consider a
small split angle Aa as the perturbation parameter
(Yeung 1999).

The synchronized frequency during constant dark-
ness can be expressed as

Qpp = w; + Kf(=8Qpp7) + Kf(—Qpp7). (B3)

Consider a perturbation of the synchronized frequency
and a perturbation of the feedback strength at the onset
of LL in terms of Aa

Qpp = Qpp + (Aa)dQ; + (Aa)® dQ, +
+(Aa)” dQ, (B 4)
and
K- K+ (Aa)K| + (Aa)’Ky +++ (Aa) K,. (B5)

Substituting equations (B 4) and (B 5) into equation
(B 3) and comparing the coefficients on both sides of the
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Figure 6. (a) Arrhythmic and (b) tri-branching transitions in (i) hamster locomotor activity and (ii) phase model. See text for
parameter values.

resulting equation, we obtain

Kf'(—Qup?) + Kf'(—Qpp7) =0  (B6)
and

dQ, = K, f(—Qpp7). (B7)

Now consider a perturbation of the synchronized
frequency at the onset of splitting in LL

Q- Qpp + (M) K, f(—Qpp7) + (Ax)’Q,.  (BS)

Subtracting equation (A 2) from equation (A 1)
(appendix A), we obtain

K(N,— Ny) ; N,)

2 i) + L f )

% (Mo (<07 + @) = M (—@7 —a)]

+% [Ny (—Q7 + ) — Nif (~Q@F —a)] =0. (B9)

Substituting equations (B 6)—(B 8) into equation (B 9)
and expanding in terms of A«

(8)™ (R f (~2on?) + 2,) [K]"(~ Qo) + K]

(—2on?) + (80) K ] (= Qop?) + O(8a™)]| = 0.
(B 10)

The above condition will be satisfied only if

(K, f(—Qpp7) + 2,) =0, (B 11)

and substituting equation (B 11) into equation (B 8),
we obtain Q = Qpp.

J. R. Soc. Interface (2008)

The stability conditions from equations (B 1) and
(B 2) become

Ta [f(fﬂ(—QDDf') + RJ?N(—QDD%)} >0

and (B 12)
_Aa [Kf (—Qpp?) + KT ”(—QDD%)] >0.

For any Aa>0, both the above conditions will not be
satisfied and hence the system will become unstable
during the transition. Our analysis suggests that,
although the anti-phase solution may be stable for
certain coupling functions (Hansel et al. 1993), it is
impossible for the system to evolve from the synchro-
nized condition to the anti-phase solution in the
presence of noise. This analysis does not exclude the
possibility that phase-splitting might be achievable via
desynchronization to the incoherent state followed by
instantaneous reconstitution of the anti-phase solution
(Golomb et al. 1992; Hansel et al. 1995).

APPENDIX C. LATENCY TO SPLITTING IS
INFLUENCED BY THE STRENGTH OF
COUPLING BETWEEN TWO SUBGROUPS OF
OSCILLATORS AND BY NOISE IMPINGING
UPON THE INDIVIDUAL OSCILLATORS

We numerically integrated equation (4.5), using a
fourth-order Runge—Kutta method with a fixed time
step of 0.8 hours, to simulate the behaviour of a
population of N oscillators containing two identical
subgroups with N/2 non-identical oscillators, with a
Lorentzian distribution of periods having a mean of
24.2 hours and s.d. of 2 hours. The phase of each
oscillator was subjected to noisy shifts of phase; the
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distribution of such stochastic perturbations was
Gaussian and had a mean of zero and specified variance
that defined the noise intensity.

We assumed that the internal delays (7, 7,) were
negligible relative to the mean period of the oscillation,
and in the simulations we set these delays to zero. The
initial phases were randomized across the cycle and we
computed the subsequent time evolution of the system.
We simulated DD by setting the feedback delay (7) to
zero; synchronization of the population corresponds to
the normal circadian rhythm of the coupled oscillators.
To simulate the effect of LL, we introduced a large
feedback delay (7) when the system was in the
synchronized condition and observed its subsequent
evolution for approximately 90 simulated days. The
results of these simulations, shown in figure 5, reveal
that the latency to splitting depends on K ,, noise
intensity and the number of oscillators.

APPENDIX D. ARRHYTHMIC AND
TRI-BRANCHING TRANSITIONS FROM
SYNCHRONIZED TO SPLIT STATES

Hamsters can exhibit two unusual transitions from
unsplit to split rhythms, shown in figure 6. Locomotor
activity is plotted for individual animals in double
actogram format, with activity over day n followed by
day n+ 1 horizontally, succeeded by day n+1 and n+2
on the next line, and so on. In figure 6af(i),b(i), an
arrhythmic locomotor transition to splitting and a tri-
branching transition are shown, respectively. These
two patterns can be simulated using equation (4.5) with
appropriate parameter adjustments. Initially, all delays
(7w, Ta,T) were set to zero and the initial phases
randomized; we computed the subsequent time
evolution of the system. When the system synchro-
nized, a large delay in the feedback 7= 12 hours was
introduced to simulate the effect of LL, and the
system’s behaviour was followed for 90 simulated days.

In figure 6a(ii), a transition with dispersion of phases
of 20 oscillators is shown, simulating the arrhythmic
transition of hamster splitting (figure 6a(i)). The
parameters were KW =0.05, K =0.02, K =0.12 and
7=12 hours. In figure 6b(11), a tri- branchmg transition
has been simulated, which is achieved if the s.d. of
periods in one subgroup is larger than the s.d. of periods
in the other subgroup. In figure 6, we used two
oscillators in each subgroup for clarity. In one
subgroup, the frequencies were 0.23 and 0.29 whereas
in the other subgroup they were 0.255 and 0.265. The
parameters were KW =0.1, K =0.005, K =0.06 and
7=12 hours.

REFERENCES

Antle, M. C., Foley, D. K., Foley, N. C. & Silver, R. 2003
Gates and oscillators: a network model of the brain clock.
J. Biol. Rhythms 18, 339-350. (doi:10.1177/0748730
403253840)

Auffeves, A., Maioli, P., Meunier, T., Gleyzes, S., Nogues, G.,
Brune, M., Raimond, J. M. & Haroche, S. 2003

J. R. Soc. Interface (2008)

Entanglement of a mesoscopic field with an atom induced
by photon graininess in a cavity. Phys. Rev. Lett. 91,
230 405. (doi:10.1103/PhysRevLett.91.230405)

Basler, M., Krech, W. & Platov, K. Y. 1998 Rigorous
analytical results on phase locking in Josephson junction
ladder arrays. Phys. Rev. B 58, 3409-3416. (doi:10.1103/
PhysRevB.58.3409)

Becker-Weimann, S., Wolf, J., Herzel, H. & Kramer, A. 2004
Modeling feedback loops of the mammalian circadian
oscillator. Biophys. J. 87, 3023-3034. (doi:10.1529/bio-
physj.104.040824)

Bush, W. S. & Siegelmann, H. T. 2006 Circadian synchrony in
networks of protein rhythm driven neurons. Complezity
12, 67-72. (doi:10.1002/cplx.20145)

Carpenter, G. A. & Grossberg, S. 1983 A neural theory of
circadian rhythms: the gated pacemaker. Biol. Cybern. 48,
35-59. (doi:10.1007/BF00336883)

Daan, S. & Berde, C. 1978 Two coupled oscillators:
simulations of the circadian pacemaker in mammalian
activity rhythms. J. Theor. Biol. 70, 297-313. (doi:10.
1016,/0022-5193(78)90378-8)

Daido, H. 1996 Multibranch entrainment and scaling in large
populations of coupled oscillators. Phys. Rev. Lett. T7,
1406-1409. (doi:10.1103 /PhysRevLett.77.1406)

de la Iglesia, H. O., Meyer, J., Carpino Jr, A. & Schwartz,
W. J. 2000 Antiphase oscillation of the left and right
suprachiasmatic nuclei. Science 290, 799-801. (doi:10.
1126/science.290.5492.799)

Diez-Noguera, A. 1994 A functional model of the circadian
system based on the degree of intercommunication in a
complex system. Am. J. Physiol. 267, R1118-R1135.

Duncan, M. J. & Deveraux, A. W. 2000 Age-related changes
in circadian responses to dark pulses. Am. J. Physiol. 279,
R586-R590.

Ermentrout, G. B. & Kopell, N. 1991 Multiple pulse
interactions and averaging in systems of coupled neural
oscillators. J. Math. Biol. 29, 195-217. (doi:10.1007/
BF00160535)

Forger, D. B. & Peskin, C. S. 2003 A detailed predictive model
of the mammalian circadian clock. Proc. Natl Acad. Sci.
USA 100, 14 806-14 811. (doi:10.1073 /pnas.2036281100)

Golomb, D., Hansel, D., Shraiman, B. & Sompolinsky, H
1992 Clustering in globally coupled phase oscillators. Phys.
Rev. E 45, 3516-3530. (doi:10.1103/PhysRevA.45.3516)

Gonze, D., Bernard, S., Waltermann, C., Kramer, A. &
Herzel, H. 2005 Spontaneous synchronization of coupled
circadian oscillators. Biophys. J. 89, 120-129. (doi:10.
1529 /biophys;j.104.058388)

Grillner, S., Halbertsma, J., Nilsson, J. & Thorstensson, A.
1979 The adaptation to speed in human locomotion. Brain
Res. 165, 177-182. (doi:10.1016,/0006-8993(79)90059-3)

Hansel, D., Mato, G. & Meunier, C. 1993 Clustering and slow
switching in globally coupled phase oscillators. Phys. Reuv.
E 48, 3470-3477. (doi:10.1103/PhysRevE.48.3470)

Hansel, D., Mato, G. & Meunier, C. 1995 Synchrony in
excitatory neural networks. Neural Comput. 7, 307-337.

Herzog, E. D., Takahashi, J. S. & Block, G. D. 1998 Clock
controls circadian period in isolated suprachiasmatic
nucleus neurons. Nat. Neurosci. 1, 708-713. (doi:10.
1038/3708)

Herzog, E. D., Aton, S. J., Numano, R., Sakaki, Y. & Tei, H.
2004 Temporal precision in the mammalian circadian
system: a reliable clock from less reliable neurons. J. Biol.
Rhythms 19, 35-46. (do0i:10.1177/0748730403260776)

Honma, S., Shirakawa, T., Katsuna, Y., Namihira, M. &
Honma, K. 1998 Circadian periods of single suprachias-
matic neurons in rats. Neurosci. Lett. 250, 157-160.
(doi:10.1016/S0304-3940(98)00464-9)


http://dx.doi.org/doi:10.1177/0748730403253840
http://dx.doi.org/doi:10.1177/0748730403253840
http://dx.doi.org/doi:10.1103/PhysRevLett.91.230405
http://dx.doi.org/doi:10.1103/PhysRevB.58.3409
http://dx.doi.org/doi:10.1103/PhysRevB.58.3409
http://dx.doi.org/doi:10.1529/biophysj.104.040824
http://dx.doi.org/doi:10.1529/biophysj.104.040824
http://dx.doi.org/doi:10.1002/cplx.20145
http://dx.doi.org/doi:10.1007/BF00336883
http://dx.doi.org/doi:10.1016/0022-5193(78)90378-8
http://dx.doi.org/doi:10.1016/0022-5193(78)90378-8
http://dx.doi.org/doi:10.1103/PhysRevLett.77.1406
http://dx.doi.org/doi:10.1126/science.290.5492.799
http://dx.doi.org/doi:10.1126/science.290.5492.799
http://dx.doi.org/doi:10.1007/BF00160535
http://dx.doi.org/doi:10.1007/BF00160535
http://dx.doi.org/doi:10.1073/pnas.2036281100
http://dx.doi.org/doi:10.1103/PhysRevA.45.3516
http://dx.doi.org/doi:10.1529/biophysj.104.058388
http://dx.doi.org/doi:10.1529/biophysj.104.058388
http://dx.doi.org/doi:10.1016/0006-8993(79)90059-3
http://dx.doi.org/doi:10.1103/PhysRevE.48.3470
http://dx.doi.org/doi:10.1038/3708
http://dx.doi.org/doi:10.1038/3708
http://dx.doi.org/doi:10.1177/0748730403260776
http://dx.doi.org/doi:10.1016/S0304-3940(98)00464-9

Behaviour of coupled cellular oscillators

P. Indic et al. 883

Kawato, M. & Suzuki, R. 1980 Two coupled neural oscillators
as a model of the circadian pacemaker. J. Theor. Biol. 86,
547-575. (doi:10.1016/0022-5193(80)90352-5)

Kunz, H. & Achermann, P. 2003 Simulation of circadian
rhythm generation in the suprachiasmatic nucleus with
locally coupled self-sustained oscillators. J. Theor. Biol.
224, 63-78. (doi:10.1016,/S0022-5193(03)00141-3)

Kuramoto, Y. 1984 Chemical oscillations, waves, and
turbulence, pp. 22-34. Berlin, Germany: Springer

Leloup, J.-C. & Goldbeter, A. 2003 Toward a detailed
computational model for the mammalian circadian clock.
Proc. Natl Acad. Sci. USA 100, 7051-7056. (doi:10.1073/
pnas.1132112100)

Liu, C., Weaver, D. R., Strogatz, S. H. & Reppert, S. M. 1997
Cellular construction of a circadian clock: period
determination in the suprachiasmatic nuclei. Cell 91,
855-860. (doi:10.1016,/S0092-8674(00)80473-0)

Liu, A. C. et al. 2007 Intercellular coupling confers robustness
against mutations in the SCN circadian clock network. Cell
129, 605-616. (doi:10.1016/j.cell.2007.02.047)

Mrosovsky, N. 1996 Locomotor activity and non-photic
influences on circadian clocks. Biol. Rev. Camb. Philos.
Soc. T1, 343-372.

Nakao, N., Nishimura, Y., Aoki, K., Katayama, N. 2004
Modeling of the suprachiasmatic nucleus based on reduced
molecular clock mechanisms. In: Eng. Med. Biol. Soc.,
26th Ann. Int. Conf. IEEE, vol. 2, pp. 2897-2900. IEEE.
(doi:10.1109/IEMBS.2004.1403824)

Oda, G. A. & Friesen, W. O. 2002 A model for “splitting” of
running-wheel activity in hamsters. J. Biol. Rhythms 17,
76-88. (doi:10.1177,/074873002129002357)

Okuda, K. 1993 Variety and generality of clustering in
globally coupled oscillators. Physica D 63, 424-436.
(doi:10.1016/0167-2789(93)90121-G)

Papoulis, A. 1984 Probability, random wvariables, and
stochastic processes, pp. 149-151, 2nd edn. New York, NY:
McGraw-Hill.

Pavlidis, T. 1971 Populations of biochemical oscillators as
circadian clocks. J. Theor. Biol. 33, 319-338. (doi:10.1016/
0022-5193(71)90070-1)

Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery,
B. P. 1992 Numerical recipes in C: the art of scientific
computing, pp. 420-430, 2nd edn. Cambridge, UK:
Cambridge University Press.

Ritzenberg, A. L., Adam, D. R. & Cohen, R. J. 1984 Period
multiplying-evidence for nonlinear behaviour of the canine
heart. Nature 307, 159-161. (doi:10.1038/307159a0)

Schaap, J. & Meijer, J. H. 2001 Opposing effects of
behavioural activity and light on neurons of the supra-
chiasmatic nucleus. Fur. J. Neurosci. 13, 1955-1962.
(doi:10.1046/j.0953-816x.2001.01561.x)

Schuster, H. G. & Wagner, P. 1989 Mutual entrainment of 2
limit-cycle oscillators with time delayed coupling. Prog.
Theor. Phys. 81, 939-945. (doi:10.1143/PTP.81.939)

J. R. Soc. Interface (2008)

Silver, R. & Schwartz, W. J. 2005 The suprachiasmatic
nucleus is a functionally heterogeneous timekeeping organ.
Methods Enzymol. 393, 451-465. (doi:10.1016/S0076-
6879(05)93022-X)

Sim, C. K. & Forger, D. B. 2007 Modeling the electrophysi-
ology of suprachiasmatic nucleus neurons. J. Biol.
Rhythms 22, 445-453. (do0i:10.1177/0748730407306041)

Strogatz, S. H. 1994 Nonlinear dynamics and chaos. Reading,
MA: Addison-Wesley.

Strogatz, S. H. 2000 From Kuramoto to Crawford: exploring
the onset of synchronization in populations of coupled
oscillators. Physica D 143, 1-20. (doi:10.1016/S0167-
2789(00)00094-4)

Takahashi, J. S., Turek, F. W. & Moore, R. Y. (eds) 2001
Handbook of behavioral neurobiology. Vol. 12. Circadian
clocks. New York, NY: Kluwer Academic/Plenum.

Tavakoli-Nezhad, M. & Schwartz, W. J. 2005 c-Fos
expression in the brains of behaviorally “split” hamsters
in constant light: calling attention to a dorsolateral region
of the suprachiasmatic nucleus and the medial division of
the lateral habenula. J. Biol. Rhythms 20, 419-429.
(doi:10.1177/0748730405278443)

To, T. L., Henson, M. A., Herzog, E. D. & Doyle III, F. J. 2007
A molecular model for intercellular synchronization in the
mammalian circadian clock. Biophys. J. 92, 3792-3803.
(doi:10.1529/biophysj.106.094086)

Ueda, H. R., Hayashi, S., Chen, W., Sano, M., Machida, M.,
Shigeyoshi, Y., Iino, M. & Hashimoto, S. 2005 System-
level identification of transcriptional circuits underlying
mammalian circadian clocks. Nat. Genet. 37, 187-192.
(doi:10.1038/ng1504)

van den Pol, A. N. 1980 The hypothalamic suprachiasmatic
nucleus of rat: intrinsic anatomy. J. Comp. Neurol. 191,
661-702. (doi:10.1002/cne.901910410)

Welsh, D. K., Logothesis, D. E., Meister, M. & Reppert, S. M.
1995 Individual neurons dissociated from rat suprachias-
matic nucleus express independently phased circadian
firing rhythms. Neuron 14, 697-706. (doi:10.1016/0896-
6273(95)90214-7)

Winfree, A. T. 1967 Biological rhythms and the behavior of
populations of coupled oscillators. J. Theor. Biol. 16,
15-42. (doi:10.1016,/0022-5193(67)90051-3)

Winfree, A. T. 2001 The geometry of biological time, 2nd edn.
New York, NY: Springer.

Yan, L., Foley, N. C., Bobula, J. M., Kriegsfeld, L. J. & Silver,
R. 2005 Two antiphase oscillations occur in each supra-
chiasmatic nucleus of behaviorally split hamsters.
J. Neurosci. 25, 9017-9026. (doi:10.1523/JNEUROSCI.
2538-05.2005)

Yeung, M. K. S. 1999 Time delay in the Kuramoto model of
coupled phase oscillators, pp. 107-116. PhD dissertation,
Cornell University.


http://dx.doi.org/doi:10.1016/0022-5193(80)90352-5
http://dx.doi.org/doi:10.1016/S0022-5193(03)00141-3
http://dx.doi.org/doi:10.1073/pnas.1132112100
http://dx.doi.org/doi:10.1073/pnas.1132112100
http://dx.doi.org/doi:10.1016/S0092-8674(00)80473-0
http://dx.doi.org/doi:10.1016/j.cell.2007.02.047
http://dx.doi.org/doi:10.1109/IEMBS.2004.1403824
http://dx.doi.org/doi:10.1177/074873002129002357
http://dx.doi.org/doi:10.1016/0167-2789(93)90121-G
http://dx.doi.org/doi:10.1016/0022-5193(71)90070-1
http://dx.doi.org/doi:10.1016/0022-5193(71)90070-1
http://dx.doi.org/doi:10.1038/307159a0
http://dx.doi.org/doi:10.1046/j.0953-816x.2001.01561.x
http://dx.doi.org/doi:10.1143/PTP.81.939
http://dx.doi.org/doi:10.1016/S0076-6879(05)93022-X
http://dx.doi.org/doi:10.1016/S0076-6879(05)93022-X
http://dx.doi.org/doi:10.1177/0748730407306041
http://dx.doi.org/doi:10.1016/S0167-2789(00)00094-4
http://dx.doi.org/doi:10.1016/S0167-2789(00)00094-4
http://dx.doi.org/doi:10.1177/0748730405278443
http://dx.doi.org/doi:10.1529/biophysj.106.094086
http://dx.doi.org/doi:10.1038/ng1504
http://dx.doi.org/doi:10.1002/cne.901910410
http://dx.doi.org/doi:10.1016/0896-6273(95)90214-7
http://dx.doi.org/doi:10.1016/0896-6273(95)90214-7
http://dx.doi.org/doi:10.1016/0022-5193(67)90051-3
http://dx.doi.org/doi:10.1523/JNEUROSCI.2538-05.2005
http://dx.doi.org/doi:10.1523/JNEUROSCI.2538-05.2005

	Design principles for phase-splitting behaviour of coupled cellular oscillators: clues from hamsters with ‘split’ circadian rhythms
	Introduction
	An idealized model of a population of limit-cycle oscillators
	Biological variability precludes phase-splitting in the idealized model
	Stable biological phase-splitting requires non-uniform oscillator coupling
	Discussion
	The hamster wheel running data used in this article are from experiments that were approved by the Institutional Animal Care and Use Committee of the University of Massachusetts Medical School.
	Appendix A. Stability analysis and estimation of the minimum drift in alpha of the idealized model of uniformly coupled, noisy oscillators
	Appendix B. Evolution of subgroups from the synchronized to the split states
	Appendix C. Latency to splitting is influenced by the strength of coupling between two subgroups of oscillators and by noise impinging upon the individual oscillators
	Appendix D. Arrhythmic and tri-branching transitions from synchronized to split states
	References


