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It is shown that Boltzmann’s methods from statistical physics can be applied to a much
wider range of systems, and in a variety of disciplines, than has been commonly recognized.
A similar argument can be applied to the ecological models of Lotka and Volterra.
Furthermore, it is shown that the two methodologies can be applied in combination to
generate the Boltzmann, Lotka and Volterra (BLV) models. These techniques enable both
spatial interaction and spatial structural evolution to be modelled, and it is argued that they
potentially provide a much richer modelling methodology than that currently used in the
analysis of ‘scale-free’ networks.
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1. INTRODUCTION

It is well known that the methods of statistical mechanics
introduced by Boltzmann provide powerful methods for
model building. His methods have been generalized and
applied widely, in particular to predict flows between
zones in spatial systems. It is also the case thatLotka’s and
Volterra’s prey–predator (PP)modelhasbeenapplied ina
variety of contexts beyond ecology. In this paper, we draw
attention to the way in which the two approaches can be
combined in the building of models to represent urban
structure. It can then be seen that this combined approach
is a fruitful one for a much wider class of dynamical
systems than has hitherto been realized. The resulting
models can be characterized as the Boltzmann, Lotka and
Volterra (BLV) models. The purposes of this paper,
therefore, are threefold: (i) to elucidate this methodology
in general terms using illustrative simple assumptions, (ii)
to explore the range of application, and (iii) to show that
the BLV methodology potentially provides a much more
powerful basis for generating and analysing networks.

We first outline the BLV method in general terms
(§2). In §3, we outline the range of application. In §4,
we show how this methodology overtakes much of the
scale-free modelling enterprise. In §5, we outline the
challenges for future development.
2. THE BLV METHODOLOGY

The deployment of the BLV methods in urban and
regional geography is well established (Wilson 1970a,b,
2000), and it has recently been shown that they can be
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ctober 2007
ovember 2007 865
extended to ecology (Wilson 2006). Here, we present
the methods in a general format, though with one
example, an urban retail system, to help fix ideas.

Consider a spatial system characterized by a set of
origin locations {i}, such as zones (and zone centroids)
or points on a network and a set of destination locations
{j}. Let {Xi} be a set of measures of activity at each
origin and {Zj} a set of measures of activity at each
destination. In terms of the urban retail example, the
{Xi} might be demands for a consumer good and the
{Zj} the availability of those goods in retail centres.
Then, let {Yij} be a matrix whose elements represent
the flows (or ‘interaction’) between zones i and j. In the
specific example, it could be the flow of expenditure
from the consumers in i to shops in j. In the first
instance, we neglect to represent the underlying
network explicitly but can do so implicitly through a
set of measures of the impedance of the interaction
between each i and each j. This can be a matrix {cij}.
Each cij will usually be the sum of different kinds of
costs associated with carrying flows along the routes of
the real network—the so-called ‘generalized’ cost. We
emphasize that, notwithstanding the example, this is a
general formalism.

There aremany possible models that can be generated
within the framework of this methodology. Let us first
assume that the {Xi} are fixed and given, and that the
modelling task is (i) to estimate the flows {Yij},while also
given the {Zj}, and (ii) tomodel the evolution of the {Zj}.
It is the {Zj} in this case that we are taking to represent
spatial structure. We assume that the modelling of the
interactions {Yij} represents a fast dynamic, with a rapid
return to equilibrium after a change, and themodelling of
the structural variables {Zj} is a slow dynamic.
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By a suitable choice of units, we can assume that the
following constraints hold:X

j

Yij ZXi ð2:1Þ

and also that X
ij

Yijcij ZC ; ð2:2Þ

where C is a known total—analogous to an ‘energy’ in
the Boltzmann terms—to support the interactions. We
also add constraintsX

ij

Yijbj ZB; ð2:3Þ

where bj represents the benefit of going to j. To link with
the structural variables, we assume that

bj Z log Zj : ð2:4Þ

That is, if Zj is a measure of ‘size’, then the benefit of
interaction with j is proportional to the log of the size.
Hence, (2.3) can be writtenX

ij

Yij log Zj ZB: ð2:5Þ

Note that if we can estimate {Yij}, then the set of total
flows into a destination j, say Dj, can be calculated as

Dj Z
X
i

Yij : ð2:6Þ

A good estimate of {Yij} can then be obtained by
Boltzmann’s methods, essentially a statistical aver-
aging procedure (Wilson 1970a). We can work directly
by analogy with statistical mechanics. The system can
be treated as a microcanonical ensemble and the most
probable {Yij}, and hence the model estimate is
obtained by maximizing an entropy term. The entropy
measure based on the microcanonical ensemble used
here can be shown to be formally equivalent to the
information theory measure (see Wilson 1970b). Thus,
maximize

S ZK
X
ij

Yij log Yij ; ð2:7Þ

subject to the constraints (2.1), (2.2) and (2.5). It can
easily be shown that this gives

Yij ZAiXiZ
a
j expðKbcijÞ; ð2:8Þ

where

Ai Z
1P

k Z
a
k expðKbcikÞ

: ð2:9Þ

It can be seen that, from a statistical physics
perspective, 1/Ai plays the role of a partition function.
a and b are parameters, derived from the Lagrangian
multipliers associated with (2.5) and (2.2), respectively.
In the physics model, they represent inverses of
different kinds of temperatures. In the applications
envisaged here, the parameters a and b can be expected
to be positive because the size Zj is assumed to be a
benefit and travel impedance, and cij is assumed to be
a cost.
J. R. Soc. Interface (2008)
Note that Za
j can be written as exp(a log Zj) and

hence

Za
j expðKbcijÞZ expða log ZjKbcijÞ; ð2:10Þ

showing explicitly how log Zj as a benefit measure is set
against the impedance or ‘cost’ cij—weighted by a and
b, respectively.

Equations (2.8) and (2.9) represent the most
probable estimates of {Yij} given {Xi}, {Zj} and {cij}.
It is reasonable in this case to assume that, because this
is overwhelmingly the most probable state, this
represents an equilibrium state, and that, for any
change in the X, Z or c variables, there will be a rapid
return to a new equilibrium, and hence this represents
the ‘fast dynamics’.

To model the {Yij}, we assumed the spatial
structural variables {Zj} to be fixed. We now consider
the possibility of these changing on the basis of a ‘slow
dynamics’ hypothesis. Note that, from equation (2.6),
we can calculate the total flow into each j, Dj. These
flows have been attracted by a pulling power at j of the
structural variable Zj, raised to a power Za

j . For
illustrative purposes, we can now hypothesize (again
assuming that everything is measured in commensurate
units) that if DjOZj—that is if the inflow at j, Dj,
exceeds the notional capacity Zj—then Zj should grow,
and vice versa—if Dj!Zj, then Zj should decline
(Harris & Wilson 1978). Of course, there are many
other possible hypotheses but this assumption serves to
illustrate the method: how Boltzmann can be combined
with Lotka and Volterra. In reality, of course, it would
be important to incorporate stochastic fluctuations in
the dynamics, but we retain the simple assumption
again for clarity of illustration. This hypothesis can be
represented by the following set of difference equations:

DZj Z 3ðDjKZjÞZj ; ð2:11Þ

for a suitable parameter 3. (An extra factor Zj has been
added, which determines the form of growth near ZjZ0.)
These equations are recognizably related to theLotkaand
Volterra equations, albeit, in this case, with the
‘populations’ being spatially distributed but a single
species. These equations, in various forms, turn up in
many fields, particularly ecology, and have been exten-
sively studied.

In this general case, we can note first that—setting
DZjZ0 in (2.11)—the equilibrium condition for {Zj} is

Dj ZZj ð2:12Þ

and it is instructive to make the substitutions for Dj

from (2.6), (2.8) and (2.9) to give an explicit set of
equations in {Zj}—combining Boltzmann, Lotka and
Volterra—the total inflows predicted from the Boltz-
mann component and the evolution of the structural
variables from the Lotka–Volterra hypothesisX

i

XiZ
a
j expðKbcijÞ=

X
k

Za
k expðKbcijÞ

" #
ZZj : ð2:13Þ

Equations (2.13) are complicated nonlinear
equations in the {Zj}. They can be solved numerically,
and it is possible to obtain some explicit insights into
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the way in which spatial structures such as {Zj} evolve.
The l.h.s. of (2.13) can be interpreted in a straightfor-
ward way. Each i term on the l.h.s. of (2.13) is the share
of the origin total at i that flows to j. The factor

Za
j expðKbcijÞP

k Z
a
k expðKbcikÞ

ð2:14Þ

in this expression is the proportion ofXi going to j and is
determined by the ‘attractiveness’ of j, measured as Za

j

and the impedance of connecting i to j, measured as
exp(Kbcij). It is inversely proportional toX

k

Za
k expðKbcikÞ; ð2:15Þ

which represents the ‘competition’ of other destination
zones in an obvious way.

Nonlinear equations exhibit characteristic properties
and this is true of the BLV equations. They often have
multiple stable solutions. Typically, particular solutions
are path dependent, i.e. the solutions at a point in time
are dependent on the initial conditions at earlier points
in time and this has implications for our understanding
of the evolution of structures. And there are phase
transitions—sudden jumps from one kind of structure to
another. The solutions to equations (2.13) can be shown
to exhibit these properties (Clarke & Wilson 1985).

The equilibrium solution gives the spatial structure
at a point in time—if equilibrium has been achieved. It
is more likely in practice of course that stochastic
fluctuations in exogenous variables mean that we
should think in terms of ‘progress towards equilibrium’.
As parameters (or indeed the {Xi} or the {cij}) change
over time, the {Zj}, as represented by the equilibrium
state, will obviously change (through equation (2.11))
and this is the sense in which it is possible to model the
evolution of spatial structure. We have mentioned
phase transitions: there will be critical parameter
values at which sudden changes in structure can take
place. One such transition has been demonstrated
empirically for the ‘corner shop’ to supermarket
transition in retailing (Wilson & Oulton 1983).

We can take the interpretation of the {Zj} equations
(2.13) a stage further by focusing on the structures that
can arise from different combinations of a and b values
(Clarke & Wilson 1985). Model simulations and
analytical interpretations concur with intuition: larger
a implies greater attractiveness as measured by the
size, and smaller b implies higher probabilities of
interaction over longer ‘distances’ to achieve the
benefits of size. Hence (high a, low b) combinations
generate structures with a small number of large Zj’s,
‘centres’, and vice versa.
3. THE RANGE OF APPLICATION

We can now review the range of actual and potential
applications. Recall the characterization of our general-
ized network: the core is a matrix of interactions
between two sets of points {Yij}, and the structures are
represented by the scale of activity attracted, {Dj}, and
the associated infrastructure {Zj}. The flows are carried
on an underlying network. If the elements that make up
J. R. Soc. Interface (2008)
the flows are weakly interacting, like the individuals
going on shopping trips, then a Boltzmann statistical
mechanics methodology can be used to model the
interaction matrix. If the attracting nodes are compet-
ing with each other to achieve their levels of activity,
then a Lotka–Volterra kind of equation is likely to be a
good starting point for modelling structural evolution.
In each particular case, of course, the bare bones of the
models outlined above have to be developed further.
We will show in the rest of this section that many
varieties of models can be developed within the
formalism.

If it happens that the conditions are not satisfied for
a Boltzmann-like interaction model, say for protein–
protein interactions in biology, then the generalized
framework may still be valuable. The hypotheses that
have been used in our illustrative models can be
amended. Some of the examples cited below use the
techniques of network analysis, which we believe could
be fruitfully replaced by the BLV methods. We
explicitly address the scale-free networks (SFN) enter-
prise in §4.

Retailing, our earlier example, is the archetypal
BLV system from urban geography. Consider equations
(2.8), (2.9), (2.11) and (2.13). These can be taken as
representing an idealized retail system if the variables
are defined as follows. The {Xi} represent the (spatially
distributed) spending power within the system, the
{Zj} represent the attractiveness of retail centres
(measured by size) and, hence, the {Yij} are the flows
of expenditure on retail goods from the residents of
zones i to retail centres j. The cij represent (generalized)
travel costs. Equations (2.8) and (2.9) predict the
interaction pattern, (2.11) the dynamics of retail centre
spatial structures and (2.13) the equilibrium retail
structure. These models, particularly the interaction
submodels, have been widely applied in both academic
and commercial environments (e.g. Birkin et al. 1996).

These methods can be extended to modelling all
aspects of the urban and regional systems. The classical
models that represent different aspects of geographical
structure are based on underlying interactions with
structural variables that can be modelled with greater
generality with the BLV methods (Wilson 2000). The
methods can also be deployed in multi-regional
demographic modelling (Rees & Wilson 1977). For
multi-regional economic modelling, see Wilson
(1970a,b); building on Leontief & Strout (1963), for
the theory; and Roy & Hewings (2005) for an example.

The classical Lotka–Volterra models in ecology are
the PP and competition-for-resources (CFR) models.
We demonstrate how an N species version with
populations {Zm} can be built as a BLV model. In
this case, we are adding the ‘B’ to the ‘LV’. m (and
later, n) is a species label and we introduce this as a
superscript to facilitate the introduction of spatial zone
labels, i and j, as subscripts later. An obvious notation
can now be developed. Note, however, in this case, that
the {X} and {Z } populations are one and the same.
They are both the same species populations, either on a
PP basis or on a CFR basis, interacting with each other.
In the CFR case, each ‘resource’ also counts as a
‘species’. The dynamics, following the argument in
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Wilson (2006), can be presented in terms of the carrying
capacities {Dn} for each population as

dZn=dt Z 3n½DnðZ1;Z2;.;ZNÞKZN�ZN: ð3:1Þ

The {Dn} are shown as formally dependent on all the
population variables. We can be more specific by
setting

Dn ZKnK
X
m

amnZn; ð3:2Þ

to give

dZn=dt Z 3
n KnK

X
m

a
mnZmKZn

" #
Zn; n Z 1;.;N ;

ð3:3Þ

which resembles equation (2.11). Different assumptions
for the signs of a’s will generate appropriate models—
pure PP, CFR or mixed. The details are given by
Wilson (2006). The dynamical properties of these
equations—the general and the special cases—are well
known and so will not be articulated in detail here.

We can now absorb theKZn term in (3.3) into the a
coefficients by redefining amn as amnC1 without the loss
of generality and then introduce space into the model
through our zone systems {i} and {j}. An obvious
generalization of (3.3) is

dZn
j =dt Z 3nj Kn

j K
X
im

amn
ij Zm

i

" #
Zn
j ; n Z 1;.;N :

ð3:4Þ

We have now introduced the spatial zone labels, i and j
(in ecological terms, ‘patches’), as subscripts to bring
the notation nearer to that of the core BLV model.

We can then make the spatial interaction terms
explicit using the Boltzmann methods and this gives a
new ecological model (Wilson 2006). There is only one
empirical example in the literature known to the author
(Smith 1983). There are two elements of knowledge
transfer from urban to ecological modelling here: first,
an explicit and potentially more effective way of
handling spatial interaction and, second, the ways of
analysing the dynamics of spatial patterns.

Economics is something of a special case. The retail
model, for example, is clearly a model of consumer
behaviour and this is an important element of micro-
economics. However, economists prefer to view the
rationale for the model within their own theoretical
framework, maximizing a utility function. They can
achieve this by defining a utility function that has the
properties of the entropy function used in the model
development here and, of course, deriving equivalent
results. How the model is perceived is perhaps a matter
of preference. However, there is one key issue in
comparing the entropy-based models with more
traditionally formulated economic models: they rep-
resent, from a market perspective, a suboptimal
solution. Consumers do not travel the shortest distance
to achieve their maximum utility. The shortest distance
is achieved by letting b/N (Evans 1973). A finite
value of b indicates longer trips on average. This is
J. R. Soc. Interface (2008)
likely to be closer to reality, of course, because there will
be dispersion from the ‘optimum’, partly from the lack
of perfect information and partly because there will be
preferences not captured by the model.

The {Zj} mechanism has an attractiveness factor Za
j

and, when aO1, there are positive returns to scale. This
turns out to be very important in creating hierarchical
structures and networks but is, of course, contrary to
the usual assumption in the economics of diminishing
returns to scale. We begin to have a model that explains
the SFN distributions and takes us beyond empiricism.
In the case of all the urban models, translated into an
economic framework, it is possible to add evolutionary
equations for prices and rents also using the Lotka–
Volterra principles. These principles have been widely
used in economics in a number of other ways, most
directly and obviously in resource management,
especially fisheries management (Rosser 1991). They
have also been applied in a very interesting way in
organizational settings (e.g. Allen et al. 2006).

An example in epidemiology relates to the spatial
diffusion of infection. There are network models of this
process examining the links from a host to a recipient
(who may or not become infected) and then an infected
person can either be taken out of the population
(in isolation) or in turn become a host. There are
many examples, for instance, exploring the spread of
viruses across the web, as well as the more traditional
epidemiology of infectious diseases (Moreno & Vazquez
2003). There should be a way of formulating the
interaction elements of this modelling task in the
Boltzmann form. We then need to model the sequence
of events through time: the {Z} ‘structures’ would
represent the concentrations of infection.

Chemistry offers a different kind of example. The
physical chemistry of mixtures provides examples of
the application of equations that are structurally
similar to the Lotka–Volterra equations, and perhaps
the best known example is the Belousov–Zhabotinsky
reaction that involves two liquid chemicals oscillating
in proportions in the mixture (Gray & Scott 1990). It is
also possible to model chemical reactions using a more
general form of the Lotka–Volterra equations with
particular reference to the role of catalysts (Jain &
Krishna 2001). Interestingly, in their case, they see the
modelling of the (chemical) populations as the fast
dynamics and the graph of interactions between them
as the slow dynamics.

There are many examples in biology, for example
using the methods of network analysis in cell biology
and proteomics (Albert 2005). In these cases, the
networks are very different and, because there will be
high levels of interdependence between elements, the
Boltzmann conditions are unlikely to apply.

A very different kind of application of network
analysis is offered by geomorphology (Rinaldo et al.
2004). There are explorations of the structure of
networks in the landscape, particularly river networks.
This in turn connects to much earlier work on such
networks (Haggett & Chorley 1969).

Physics provides examples that give us an alterna-
tive approach for formulating the evolutionary model.
This involves deploying a Hamiltonian framework and
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is both interesting in its own right and leads to the
possibility of incorporating a K

P
jZj log Zj entropy

term on the structural variables. The techniques of
interest arise out of modelling populations at the nodes
of a lattice, whether spins or numbers of molecules.

We begin with the Ising model (following Thurner
2005). The model is concerned with spin systems and
the alignment of spins at certain temperatures that
produce magnetic fields. The model is usually based on
a lattice. In the case of the one-dimensional model with
only neighbour-to-neighbour interaction, and spins si
at each lattice point i, then the Hamiltonian is

H ZKJ
X
ij

si$sj ; ð3:5Þ

where Jmeasures the strength of the interaction, and the
probability of a particular configuration r occurring is

pr Z
expðKbHrÞP
r expðKbHrÞ

: ð3:6Þ

We can translate this into our problem as follows.
Consider our j nodes to be the nodes of a lattice. Let r
label a configuration of the structural variables {Zj}. The
task, then, is to find a Hamiltonian Hr , as a function of
the structural vector. We can then write (3.6) as

pr Z
expðKbHrðfZjgÞÞP
r expðKbHrðfZjgÞÞ

; ð3:7Þ

and we have to find the {Zj} that maximizes pr . Suppose
we take the measure of profit from our BLV method-
ology

H Z
X
j

ðDjKKZjÞ; ð3:8Þ

whereK is a unit cost of provision andDj can be obtained
from equations (2.6), (2.8) and (2.9). It can then be
shown that this produces a result that is equivalent to
equation (2.13).
4. SCALE-FREE NETWORKS

At this point, it is convenient to confront the SFN
literature and to contrast it with the BLV method-
ology. We will indicate that the latter has the potential
to overtake the former. The key variable that is used in
the SFN analysis is the number of edges at each node,
and p(k) is taken as the probability that a node has k
edges connected to it. It is found empirically that this
distribution often takes the form of a power law

pðkÞZ akKg; ð4:1Þ

for some parameter g and a normalizing constant a.
A ‘network’ is defined to be a single set of nodes, and

this is a much more restricted concept of a network than
that which underpins the BLV models. To develop the
argument in the terminology of this paper, we can
consider a single set of nodes either as our {i} or {j}
sets. For definiteness, consider the {j} set. Then, if we
measured Zj by the number of edges—which might be
flows above some threshold—at j, then the size
distribution of the Zj would be equivalent to the p(k)
distribution.
J. R. Soc. Interface (2008)
We can immediately see how the BLV models are
much more general than the usual SFN models in a
number of ways.

(i) They are based on a more detailed character-
ization of the system of interest, in particular of
the network and associated flows.

(ii) The flows are being estimated explicitly, and
this is richer than simply counting edges. A
method for articulating network structure based
on flows was given by Nystuen & Dacey (1961)
and used by Rihll & Wilson (1987) in their work
on settlement patterns in Ancient Greece: edges
can be counted if that is thought appropriate
within the BLV formulation.

(iii) Because there is an explicit hypothesis for the
evolution of {Zj} in the BLV formulation, and
for the equilibrium structures that emerge,
(a) an explanation is offered for the spatial
structure and the size distribution (and this is
typically not the case in the SFN analysis) and
(b) if a power law is found for the distribution of
activity levels at nodes, whether measured by
edges or otherwise, then the BLV model will
offer an insight into how this is generated.

(iv) The SFNs are not really networks except in a
topological sense. The ‘edges’ are more like
‘significant interactions’. In many cases, as we
have seen, there are real networks that underpin
the flow models—road networks being an
obvious example. In this case, it is necessary to
model both the interactions and network loads
(which are not the same thing) and the
relationships between them.

Note that if p(Z ) is the probability of a destination
having size Z, then it is this distribution that is to be
compared with the p(k) of SFN. It is clearly a more
sensitive measure and it has been modelled in such a
way that it is predicted by a theory—that which is
being modelled—about the system of interest. If this
distribution turns out to be a power distribution, as in
the case with SFN, this will be a by-product of the
analysis rather than a prime focus.

The conventional literature on network evolution
relies on network-generating algorithms. It is possible to
classify these into three groups: random, scale-free and
small world. For the first category, edges are added on a
random basis (Erdos & Renyi 1959). There is less of a
hierarchical structure than in the second (Barabasi &
Albert 1999) where the algorithm is modified to make it
more probable that edges are added to nodes that already
have more than the average number of connections—the
‘rich get richer’ algorithms. It is not surprising in this case
that hierarchies emerge. What is more surprising is their
ubiquitous scale-free power-law properties. The third
class, the small-world networks, is based on the algo-
rithms that generate a higher propensity of clustering
(Watts & Strogatz 1998).

It is not the purpose of this paper to offer an
exposition of these algorithms: there are many such.
Rather it is to review the extent to which there are
systems being modelled using these network algorithms
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for which greater depth of explanation and under-
standing could be achieved by employing the BLV
methodology or a variant of it. First, any system
founded on matrices of flows or interactions—whether
people, goods, money, or whatever is likely to be more
effectively modelled using the Boltzmann-based spatial
interaction models. Second, care should be taken in
understanding the real network structures in the
system of interest. For most real networks, there will
be a set of edges, with intermediate network nodes,
which constitute a route, connecting any origin–
destination pair. The modelling of interactions can
then be separated from the task of loading flows onto
the real network—what transport engineers call the
assignment problem.

Third, great care should obviously be taken in
formulating hypotheses for the modelling of structural
dynamics. We have shown that successful hypotheses
can be developed for retail and other urban systems and
ecosystems, and the range of other examples that have
been considered suggests a much wider potential. These
models are the basis for creating hierarchical
structures. This can be argued for flows of goods, at
different scales, from the local up to international trade
(Baskaran & Bruck 2005), and can also be applied to
utilities flows such as water, gas and electricity. These
are carried on real networks, supplied from origins, used
by the consumers at destinations. It can be applied to
communications technologies, including the World
Wide Web (Pastor-Satorras & Vespigniani 2004). It
has been estimated that this has 800 000 nodes and it
seems to be a clear case where it is potentially
important to model origin–destination flows and to
recognize that these flows are carried on an underlying
physical (or wireless) network. The fact that significant
hubs develop is not surprising: it connects to the
‘economics’ argument about scale economies. The
challenge is to assemble enough data to enable a
sensible model to be constructed. This area has been
explored using entropy-maximizing models (Tomlin
2003), but focusing on the Boltzmann component, not,
as yet, the dynamics.
5. CHALLENGES FOR THE FUTURE

This brief analysis provides the basis for indicating
some of the challenges for the future.

(i) The spatial interaction models based on
entropy-maximizing principles could be applied
more widely in different kinds of systems.

(ii) The matrices of flows could be analysed to
provide richer portraits of network structures.

(iii) It would be possible as a matter of routine to
note the size distributions of the destination flow
totals thus produced to examine the extent to
which these matrices represented, in the narrow
sense, SFN.

(iv) The slow dynamics models could be explored for
a wider range of systems, and it has been argued
that this provides a new generating mechanism
for networks. To what extent, in different
circumstances, are these scale free?
J. R. Soc. Interface (2008)
(v) There are two aspects of network analysis that
need to be borne in mind for future priorities.
First, most real networks have hierarchical
structures—motorway links relative to country
lanes provide an obvious everyday example—
and these are worthy of analysis. Second, while
we have used LV principles to model the
dynamics of nodal evolution, we have not
considered edge evolution on the same basis.
This can be done in principle (Wilson 1983).

(vi) There is a mathematical challenge: to find a way
of explicitly connecting the {Zj} size distri-
butions that arise in the BLV models to the
statistical distributions used as measures of
network structure in the scale-free literature.
We need to find analytical expressions for the
size distributions of {Zj}, which are themselves
the solutions of equations such as (2.13), and
which cannot be solved analytically. The begin-
ning of a way forward can be found (Rosser
1991; Batty 2006).
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