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Abstract
Gene co-expression analysis has been widely used in recent years for predicting unknown gene function

and its regulatory mechanisms. The predictive accuracy depends on the quality and the diversity of data
set used. In this report, we applied singular value decomposition (SVD) to array experiments in public
databases to find that co-expression linkage could be estimated by a much smaller number of array
data. Correlations of co-expressed gene were assessed using two regulatory mechanisms (feedback loop
of the fundamental circadian clock and a global transcription factor Myb28), as well as metabolic path-
ways in the AraCyc database. Our conclusion is that a smaller number of informative arrays across
tissues can suffice to reproduce comparable results with a state-of-the-art co-expression software tool.
In our SVD analysis on Arabidopsis data set, array experiments that contributed most as the principal
components included stamen development, germinating seed and stress responses on leaf.
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1. Introduction

Oligonucleotide microarrays such as Affymetrix
GeneChip have opened opportunities for the high-
throughput observation of gene expressions. For the
model plant Arabidopsis thaliana (A. thaliana),
.3000 gene-expression data have been measured
by different research groups and stored in online
repositories such as Gene Expression Omnibus
(GEO),1 The Arabidopsis Information Resource
(TAIR),2 and the Nottingham Arabidopsis Stock
Centre Arrays (NASC).3 Also available are the func-
tional prediction tools based on gene co-expression,

such as AthCoR@CSB.DB,4 Genevestigator,5 ATTED-II6

and KAGIANA.7 Most of the prediction tools
measure similarity of co-expression by Pearson’s or
Spearman’s rank correlation with P-value across
various biological and experimental conditions. Such
similarity measure has been exploited to identify
functioning genes among candidates otherwise indis-
tinguishable from sequence annotations.8,9

Since correlation coefficient depends on the quality
and the number of data sets, the selection of
expression data is crucial for better prediction. For
example, Pearson’s correlation results in bad estimates
under the existence of outliers, or when the relation-
ship between genes is nonlinear. Revealing complex
gene-to-gene relationship such as in primary metab-
olism therefore requires a careful data pre-processing,
i.e. selection of microarray data to delineate ‘true’
gene correlations. For example, Obayashi et al. used
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empirically weighted Pearson’s correlation in their
ATTED-II server to reduce information redundancy
in the 1388 GeneChip data from TAIR (see also the
help page in the web site http://www.atted.bio.titech.
ac.jp/). Wei et al.10 manually selected 486 so-called
‘high-quality’ GeneChip data from NASC so that com-
puted correlation would be biologically meaningful.
Although effectiveness of such strategies has been
demonstrated in several studies,8,11 it is unclear how
much data are required, or which data repository
are to be used. Data bias such as tissue distribution
in repositories is also unknown. We examined three
major online repositories (TAIR, NASC and GEO) and
confirmed the benefit of using different, but not
necessarily all, GeneChip data. Our study is based on
singular value decomposition (SVD)12,13 and AraCyc
metabolic pathways for overall verification of gene
co-expressions.

2. Materials and methods

2.1. Gene-expression data sources and pre-processing
In this study, we collected and merged data from

three major online repositories for A. thaliana gene
expressions: TAIR (http://www.arabidopsis.org/),
NASC (http://affymetrix.arabidopsis.info/) and GEO
(http://www.ncbi.nlm.nih.gov/geo/). After removing
redundancy, the combined data set resulted in
2364 Affymetrix ATH1 GeneChip CEL files. (We used
only ATH1 chips, which cover 80% of all genes with
23 000 probes. AG chips with 8000 probes were dis-
carded). Each file was manually classified according to
their sample tissue and experimental conditions. The
classified data represented 133 experimental series,
which are listed in Supplementary Table S1. The raw
CEL files were pre-processed by the Robust Multi-
chip Average (RMA) Algorithm,14 in which perfect
match intensities of array probes are modeled as the
sum of exponential and Gaussian distributions for
the signal and background, respectively.

2.2. SVD compression of data matrix
SVD was used to reduce the dimension of signal

data. Similar to principal component analysis, it pro-
duces the best lower rank approximation of the orig-
inal data matrix. The technique decomposes a data
matrix A (m � n matrix) into three matrices, U (m �
m matrix), V (n � n matrix), and S (m � n diagonal
matrix) as follows:

A ¼ USVT; ð1Þ

where T denotes transpose. The diagonal of S are
called singular values (SVs) and their absolute values
plotted against their sorted ranks often display a

power-law distribution in real world problems. In
our analysis, the distribution was modeled as y =
x20.88 (data not shown). In such cases, the original
matrix can be well approximated by zeroing all SVs
except k largest ones as in

Ak ¼ USkVT; ð2Þ

where Sk is a m � n diagonal matrix with k largest
elements only, and Ak is the reconstruction. The rank
of Ak is exactly k, i.e. the original dimension n of A is
reduced to k.

2.3. Rank calculation for pathway genes and its
evaluation

Pearson’s correlation coefficient (r-value) and its sig-
nificance (P-value) are used to measure the gene co-
expression. A list of 1638 probe sets related to 219
pathways was first obtained from AraCyc dump file
(ftp://ftp.arabidopsis.org/home/tair/Pathways/aracyc
_dump_20070703), to form the m � n matrix A,
where m is the number of AraCyc genes (m = 1638),
and n the number of arrays (n = 2364), respectively.
The computed SVs of the matrix were sorted and the
largest k SVs were used to reconstruct the approxi-
mated matrix Ak as in Equation (2). Using approxi-
mated matrices, correlation coefficients between all
AraCyc genes were calculated. Co-expressions that did
not satisfy each threshold (r . 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8 and 0.9, respectively) were discarded. The
cutoff threshold was introduced to better separate
inter- and intra-pathway correlations by removing
majority of insignificant (low) correlations. For the
remaining gene co-expressions, the average rank of
intra-pathway co-expressions was calculated on 78
pathways that were associated with �10 metabolic
genes in the database (see also Supplementary
Table S2).

3. Results and discussion

3.1. Distribution of microarray experiments in public
databases

According to tissue types and experimental con-
ditions, the 2364 array data were manually classified
into 133 experimental series, whose complete listing
is available as Supplementary Table S1. TAIR contains
49 experimental series (e.g. development, biotic- or
abiotic-treatments, and hormone treatment), NASC
provides 55 series (e.g. lignification, plant defense
responses, and carbohydrate metabolism through
the diurnal cycle and others), and GEO enlists 29
series (e.g. phenotypic diversity, altered environ-
mental plasticity, stamen development and diurnal
cycle effect in leaves).
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There are notable differences among the three
repositories. First is the tissue distribution in each
repository as in Fig. 1. Data from shoot and cell sus-
pension occupy .15% only in TAIR, and data from
stamen exist only in GEO. Tissue distribution is
almost balanced in TAIR, but significantly biased in
NASC and GEO. Another difference is the number of
GeneChip data. From this, we can at least conclude
that data from all three repositories are necessary to
accurately observe gene expressions in different
tissue types. In the following study, we merged three
data sets into a single collection without duplication.

3.2. Dimensional compression by SVD
We saw that the tissue distribution of microarray

data is biased. Another source of bias is hundreds of
‘reference’ (or wild-type) data in the repositories.

Even if data look biased, i.e. multiple microarrays
seem to show highly similar expression patterns, it is
not easy to tell whether they are indeed redundant.
The SVD algorithm was employed to check this redun-
dancy (See Materials and methods). Fig. 2 shows the
distributions of correlation coefficient for all gene
pairs calculated by matrix approximation recon-
structed using largest 20, 40, 300, 700 SVs and
without SVD. The distribution of correlations fitted
well with the Gaussian distribution for all reconstruc-
tions, and the standard deviations (SD) were 0.34,
0.31, 0.27, 0.26, and 0.26, respectively. The top 20
or 40 SVs could already reproduce the original distri-
bution, implying that we may disregard smaller SVs as
noise. The number 20 (or 40) is not an optimal value,
but serves as a rough estimate. The reason for choos-
ing these values will be explained later.

To check the effect of dimensional reduction in
detail, we first verified Pearson’s correlation coefficient
(r), its rank and P-value (P) for two well-known gene
regulatory mechanisms: negative feedback loop and
transcription factor.

3.2.1. Feedback loop: the central circadian
clock The central circadian clock (Fig. 3)

is a typical non-metabolic regulatory mechanism.
When we used all 2364 arrays, strong positive corre-
lation between two Myb-like transcription factor
genes, Circadian Clock Associated 1 (CCA1) and Late
Elongated Hypocotyl (LHY) was observed, as well as
weak negative correlation between Timing Of Cab
expression 1 (TOC1) and LHY, and between TOC1 and

Figure 1. Pie chart of the biomaterials of array data in each data
repository.

Figure 2. Distribution of correlation coefficient from five types of
data matrices (with- and without-SVD compression)
normalized by RMA. Data matrices were reconstructed by
largest 20 SVs (solid line), 40 SVs (lower dotted line), 300 and
700 SVs (upper dotted lines), and without-SVD (outermost
dotted line). The SD of each distribution are 0.34, 0.31, 0.27,
0.26 and 0.26, respectively.
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CCA1 (Fig. 3A–C and Table 1). These values agreed
well with known facts that TOC1 is a positive regulator
of CCA1 and LHY, and that the two clock-associated
genes form a negative–positive transcriptional feed-
back loop.15 Table 1 shows the trend of their corre-
lations and ranks. The approximation kept the rank of
interaction even for a small number of SVs such as 20.

3.2.2 Transcription factor Myb28 To reconfirm
the usefulness of the compressed data using small
number of SVs, we checked the correlation values
between a well-characterized transcription factor
and its downstream genes using different numbers
of SVs. Myb28 or R2R3-MYB transcription factor, is a
positive regulator of aliphatic methionine-derived

glucosinolates (GSL) investigated in the authors’ insti-
tution,8,16 offering a typical example of metabolic
regulation by a non-metabolic gene. As in the clock
case, the approximation kept the rank of interaction
even for 20 SVs (Table 2). We also compared the
correlation values with that of ATTED-II version 3
(1388 GeneChips from TAIR).6 ATTED-II is a widely
known and regularly updated correlation analysis
software tool for Arabidopsis. Table 2 demonstrates
that correlation values obtained by using largest 20
SVs are comparable with those by ATTED-II.

The two regulatory examples suggest that blindly
increasing the number of GeneChip data does not
automatically lead to increased accuracy. By carefully
choosing a smaller set of expression data, accurate
functional prediction comparable with a state-of-
the-art software tool becomes feasible.

3.3. Using AraCyc metabolic pathways to evaluate
gene co-expressions

Next, we investigated the correlations among meta-
bolic pathway genes. It is impossible to rigorously
assess the effect of dimensional compression due to
the absence of a set of ‘true’ gene–gene association
inside metabolic pathways. As an alternative, we

Figure 3. Scatter plots (with white circles) among three major central oscillator-related genes in Arabidopsis: (A) CCA1 versus LHY, (B) LHY
versus TOC1 and (C) CCA1 versus TOC1. Highly overlapped parts look black. (D) The simplest model of the central mechanism of
circadian oscillator. Co-expressions were calculated by Pearson’s correlation. See main texts for abbreviations.

Table 1. Rank of correlations (in parentheses) between three
basal genes (CCA1, LHY and TOC1) in the central circadian clock

SVs used CCA1–LHY TOC1–LHY TOC1– CCA1

20 r = 0.90 (1) r = 20.63 (14) r = 20.70 (4)

40 r = 0.90 (1) r = 20.56 (15) r = 20.63 (6)

300 r = 0.87 (1) r = 20.49 (15) r = 20.57 (3)

700 r = 0.87 (1) r = 20.48 (11) r = 20.56 (4)

2364 r = 0.86 (1) r = 20.48 (12) r = 20.55 (6)
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Table 2. Correlation coefficients and their ranks (in parentheses) among Myb28-regulated GSL biosynthetic genes [NS, not significant (P � 1E2300)]

Probe name AGI code Description SVs used ATTED-II

20 40 300 700 All

247549_at At5g61420 Myb family transcription factor (Myb28) 1.00 1.00 1.00 1.00 1.00 1.00

266395_at At2g43100 Aconitase C-terminal domain-containing protein (AtLeuD1) 0.89 (7) 0.85 (7) 0.80 (8) 0.79 (8) 0.79 (8) 0.74

251524_at At3g58990 Aconitase C-terminal domain-containing protein (AtLeuD2) 0.89 (6) 0.86 (6) 0.83 (5) 0.82 (5) 0.82 (4) 0.78

254687_at At4g13770 Cytochrome P450 family protein (CYP83A1) 0.95 (1) 0.93 (1) 0.90 (1) 0.89 (1) 0.89 (1) 0.80

249866_at At5g23010 2-Isopropylmalate synthase 3 (IMS3) (MAM-1) 0.88 (8) 0.86 (5) 0.82 (6) 0.81 (6) 0.81 (6) 0.70

257021_at At3g19710 Branched-chain amino acid transaminase, putative (AtBCAT-
4) (MAAT)

0.86 (9) 0.84 (8) 0.8 (7) 0.79 (7) 0.79 (7) 0.68

262717_s_at At1g16410 Cytochrome P450, putative (CYP79F1) 0.85 (12) 0.82 (11) 0.76 (12) 0.74 (12) 0.74 (12) 0.67
At1g16400 No entry (CYP79F2)

260745_at At1g78370 glutathione S-transferase, putative (ATGSTU20) 0.77 (29) 0.75 (18) 0.72 (16) 0.71 (16) 0.71 (15) 0.52

263477_at At2g31790 UDP-glucoronosyl/UDP-glucosyl transferase family protein
(UGT74C1)

0.92 (3) 0.89 (3) 0.86 (2) 0.85 (2) 0.84 (2) 0.72

255437_at At4g03060 2-Oxoglutarate-dependent dioxygenase, putative (AOP2) 0.61 (274) 0.6 (156) 0.52 (303) 0.51 (332) 0.5 (328) 0.43

255773_at At1g18590 Sulfotransferase family protein (AtSOT17) 0.8 (19) 0.77 (16) 0.73 (15) 0.72 (15) 0.71 (16) 0.61

264873_at At1g24100 UDP-glucoronosyl/UDP-glucosyl transferase family protein
(UGT74B1)

0.61 (307) 0.58 (249) 0.53 (223) 0.52 (257) 0.52 (257) 0.43

260385_at At1g74090 Sulfotransferase family protein (AtSOT18) 0.90 (5) 0.87 (4) 0.84 (4) 0.83 (4) 0.82 (5) 0.76

263706_s_at At5g14200 AtIMD1 0.77 (30) 0.74 (23) 0.70 (18) 0.70 (18) 0.69 (18) NS

249867_at At5g23020 2-Isopropylmalate synthase 2 (IMS2) (MAM3) NS NS NS NS NS 0.41

263714_at At2g20610 Aminotransferase, putative (SUR1) 0.73 (43) 0.71 (33) 0.67 (24) 0.66 (25) 0.66 (25) 0.54

250633_at At5g07460 Peptide methionine sulfoxide reductase, putative (PMSR2) NS NS NS NS NS 0.44

258851_at At3g03190 Glutathione S-transferase, putative (ATGSTF11) 0.8 (16) 0.78 (13) 0.73 (14) 0.72 (14) 0.72 (14) 0.71

254742_at At4g13430 Aconitate hydratase family protein (AtLeuC1) 0.68 (97) 0.65 (64) 0.60 (53) 0.6 (55) 0.59 (59) 0.62

259343_s_at At3g03780 Cobalamin-independent methionine synthase, putative
(AtMS2)

0.54 (813) NS NS NS NS NS

252274_at At3g49680 Branched-chain amino acid transaminase 3 (AtBCAT-3) 0.67 (106) 0.65 (68) 0.62 (48) 0.62 (41) 0.61 (44) 0.53
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utilize a credible observation that, on an average, genes
associated with the same metabolic pathway are highly
co-expressed than genes from different pathways.10,17

For assessment, we first selected 78 pathways which
were associated with �10 metabolic genes in the
AraCyc database (Supplementary Table S2).

These pathways contained 1638 genes in total. We
computed the co-expressions between all pairs of
genes and obtained the average rank of intra-
pathway co-expressions as in Wei et al.10 According
to the pathway hypothesis, intra-pathway correlations
are ranked lower (i.e. highly correlated) than inter-
pathway correlations. Fig. 4 shows the trend of the
average rank of intra-pathway correlations using
reconstructed matrices of the SV index k for different
threshold r (see Materials and methods). In the figure,
the lowest average rank was achieved �20 SVs for
most threshold values. In other words, 20 SVs are
enough to separate intra-pathway co-expressions,
and the set of arrays corresponding to these SVs is
considered most informative among 2364 exper-
iments. When r = 0.5, the lowest average rank runs
between 15 and 35 and slightly jumps up at �40.
This effect seems to be an artifact specific to the
threshold 0.5 for unknown reason. Also, average ranks
for different r look stabilized around k = 20. From
these observations, we set the (roughly) minimum
number of SVs as 20 (and 40) in our analysis.

3.4. Estimation of the number of informative arrays
Having confirmed the effectiveness of reconstruc-

tion from a small number of SVs, we estimated the

informative set of arrays, i.e. array information that
are most amplified by the decomposition by regard-
ing the SVs as the amplification factor of orthonormal
basis vectors representing array experiments. The
matrix Ak in Equation (2) was approximated by
zeroing elements less than a threshold l (let Bk =
[Ak].l be this matrix), and the dimension of BT

k
corresponds to the number of significant arrays con-
tributing to the k SVs in Ak. When the dimension
was plotted against the increasing value of l for differ-
ent SVs, it rapidly decreased as the l increased but the
dimension was almost consistent for SVs ranging
between 10 and 50 (Fig. 5). The result partially sup-
ported the dominance of large SVs as in Section 3.2,
but we could not determine an appropriate l to
determine the size of informative arrays.

Most amplified array sets were the stamen develop-
ment (GSE4733) and the Type III effectors on plant
defense response (NASCarrays-59). Other significant
arrays included profiles of early germinating seeds
(ME00332), the response to bacterial-(LPS, HrpZ,
Flg22) and oomycete-(NPP1) derived elicitors
(ME00319), oxidative stress (GSE7211) and alterna-
tive oxidases (GSE4113 and GSE2406). These results
indicated the importance of use of different tissue
types in gene correlation analysis.

3.5. Correspondence between each SV and genes or
experimental conditions

To evaluate the correspondence between a specific
SV (d) and genes or arrays, d-dependent reconstructed
expression data matrices with the gene sets of AraCyc

Figure 4. Evaluation of AraCyc genes in co-expression rankings against various thresholds (r = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8 and 0.9).
Average ranks of intra-pathway correlations using reconstructed matrices were calculated across the 78 AraCyc pathways that
contain �10 genes in ATH1 GeneChip.
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were examined. The matrices were reconstructed
according to the scheme in Supplementary Fig. S1.
Briefly, we first performed SVD analysis on the data
matrix and the resulting diagonal matrix S was trans-
formed into d-only S0. The diagonal elements of
matrix S0 are zero values, except for the d under focus.
Using this S0, d-reconstructed expression data matrix
was obtained. To see which experimental conditions
and genes most contributed to d (Fig. 6), a hierarchical
clustering approach was performed using the data
matrix. Let us explain five largest SVs by denoting the
ith largest SV as di. In Supplementary Fig. S2, we
provide breakdown charts of GO categories for each
gene cluster corresponding to these SVs.

The contribution of d1 was not limited to any exper-
imental condition or arrays but was related to specific
gene clusters. Two clusters of highly positive values
were formed (Fig. 6A and Supplementary Fig. S2).
Supplementary Data 1 displays the full image of
the hierarchical clusters of arrays marked in Fig. 6.
The upper cluster in Fig. 6A (Group g1 of d1 in
Supplementary Fig. S2) contained genes associated
with aerobic respiration pathway, carbonate dehydra-
tase (in nitrogen metabolism) and photosynthesis.
The middle cluster (Group g2) included genes related
to glycolysis, aerobic respiration, glutamate metabolism
and TCA cycle. The lower cluster (Group g3) included
genes for (deoxy) ribose phosphate degradation,
steroid biosynthesis, and diterpenoid biosynthesis
(gibberellin inactivation). Therefore d1 largely corre-
sponded to a variety of major metabolic pathways in
primary metabolism irrespective of experiments.

On the other hand, values from d2 to d5 were associ-
ated with specific experimental conditions. The d2 was
linked with two large experimental clusters shown in
Fig. 6B. The magenta region in the left-hand side corre-
sponded to the shoot data of stress series (heat, UV-B,
salt, wound, cold, oxidative and drought; Group atr2
of d2 in Supplementary Fig. S2) whereas the right-
hand region contained the root data of the same exper-
imental series (Group atr1 of d2 in Supplementary
Fig. S2. See also Supplementary Data1). Relevant
genes were associated with photosynthesis and glycoly-
sis/gluconeogenesis, but many genes show medium or
low correlations. Notable observation was therefore the
marked contrast between root and shoot irrespective of
experimental series.

Likewise, d3 corresponded to two biotic treatment
conditions: response to virulent (accession, ME00331)
and response to bacterial-(LPS, HrpZ, Flg22) and

Figure 5. The plot of the number of arrays (y-axis) against l (x-axis
from 1 to 10) for different SVs. Each bar corresponds to 10, 20,
30, 40 and 50 SVs from left to right. The number of significant
columns rapidly decreases as the l increases, and contributing
arrays are independent of the number of SVs.

Figure 6. Hierarchical clustering of the reconstructed data matrices
using only one SV d. (A–E) Show the matrix reconstructed by the
largest SV d1 to fifth largest value d5. Columns are experimental
series and rows are genes; both of which are hierarchically
clustered in each figure. Magenta denotes the positive value of
the reconstructed matrix Bk and the cyan the negative value.
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oomycete-NPP1 (accession, ME00332). The d3 still
depends on experimental series (vertical direction in
Fig. 6), but high correlation in certain group of genes
is also observed (horizontal direction in Fig. 6). The
correspondences for d4 and d5 were obscurer, but as
their commonly highlighted experimental conditions
we could recognize stamen development data set
(accession, GSE4733) with gene sets for cytokinins 9-
N-glucoside biosynthesis and cytokinins 7-N-glucoside
biosynthesis.

In summary, we could identify biological functions
related to the largest five SVs, although each SV did
not precisely correspond to specific experimental con-
ditions or genes. We could again confirm the import-
ance of the use of different tissue types (e.g. shoot/
root under stress and stamen development).
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