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The potential for modern biology to identify new sources for genetical, chemical and biological
control of plant disease is remarkably high. Successful implementation of these methods within
globally and locally changing agricultural environments demands new approaches to durable control.
This, in turn, requires fusion of population genetics and epidemiology at a range of scales from the
field to the landscape and even to continental deployment of control measures. It also requires an
understanding of economic and social constraints that influence the deployment of control. Here
I propose an epidemiological framework to model invasion, persistence and variability of epidemics
that encompasses a wide range of scales and topologies through which disease spreads. By
considering how to map control methods onto epidemiological parameters and variables, some new
approaches towards optimizing the efficiency of control at the landscape scale are introduced.
Epidemiological strategies to minimize the risks of failure of chemical and genetical control are
presented and some consequences of heterogeneous selection pressures in time and space on the
persistence and evolutionary changes of the pathogen population are discussed. Finally, some
approaches towards embedding epidemiological models for the deployment of control in an
economically plausible framework are presented.
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1. INTRODUCTION
Agriculture is changing fast and with it the landscape
through which disease spreads. This imposes new
demands on our understanding of epidemiology if we
are to control disease efficiently, whether by genetical,
chemical, biological or cultural means. The sorts of
questions that need to be addressed (table 1) are focused
on discovering the factors that influence the invasion and
persistence of new pathogenic strains, how and why they
outcompete resident pathogens and how to promote
durable methods of control. This requires an under-
standing of what controls the variability of epidemics
between one location and another and from one season to
another, and how this impinges upon local, national and
sometimes international crop loss. Can we do all this?
Not yet but I shall argue here that we are beginning to be
able to do so and illustrate some probable new directions.
To help motivate the discussion, I summarize some
illustrative questions in table 1 from which I conclude
that we need to embed modern approaches to sustainable
disease control within an epidemiological framework.

Why is agriculture changing so fast? What is the
evidence? In large parts of the world, intensively
managed farms are becoming larger, interspersed with
smaller, organically and conventionally managed farms
with diverse livestock and cropping patterns. Global
warming is changing the national and international
ranges of pests and disease (Coakley et al. 1999).
Economic pressures and global trade are changing
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national cropping patterns. It is anticipated that the
demand for cereals will increase by 20% by 2020 as
world population grows (Rosegrant et al. 2001). The
corresponding increase in demand for animal products
is estimated to be 50%, in response to increasing
affluence and urbanization, notably in southeast Asia
(Evans 1998; Rosegrant et al. 2001). The recent
accession of 10 new states into the EU along with
reform of the Common Agricultural Policy is likely to
change cropping patterns in Western Europe. Novel
crops for biofuel, plastics and intensive specialized
production of pharmaceutical crops under glass are
probable. Meanwhile, our understanding of the geneti-
cal and chemical bases of disease control is accelerating
following investment in molecular biology (Stuiver &
Custers 2001; Strange 2003). The costs, though, for
release of new varieties and for the development and
registration of new chemicals have escalated. The quest
for durable control itself rests on a paradox. Since most
plants are self-evidently resistant to most pathogens, it
seems perfectly reasonable to assume that advancing
knowledge of the molecular and cellular bases of host–
pathogen interaction will identify the means not only to
engineer or to select durable resistance but also to
produce effective and environmentally neutral forms
of chemical control. Yet failures still occur, whether
from the release of novel resistance genes (Brown &
Hovmøller 2002) or from new pesticides and fungicides
(Chin et al. 2001). Agriculture continues to be
confronted with new and recurrent epidemics. Notable
examples include recent epidemics of cassava mosaic
virus in West Africa (Legg 1999), citrus canker in
Florida (Gottwald et al. 2001; 2002a), rhizomania
This journal is q 2007 The Royal Society



Table 1. Some illustrative questions that may be answered from an epidemiological framework that involves a synthesis of
epidemiology and population genetics embedded in a biologically plausible economic framework for management of disease.

† How are invasion and persistence of agricultural parasites and the variability of epidemics affected by dynamical landscapes
whereby the mosaic and connectivity of the landscape change due to:

– cropping patterns within and between seasons?
– spatial and temporal deployment of novel resistant varieties?
– spatial and temporal deployment of chemical control?

† How are these processes affected by differences in: transmission, dispersal, recombination and intercrop survival typical of
the principal classes of plant pathogens?

† How can epidemiological considerations of invasion, persistence and variability in heterogeneous temporal and spatial
environments be introduced to economic models for management of resistance and decision making under uncertainty?

† What are the consequences for the optimal deployment of novel chemical, genetical and engineered biocontrol agents so as to
minimize the risks of breakdown of control?

† Is there a critical density of susceptible crops below which a virulent race of the pathogen cannot invade?
† How is the risk of invasion affected by the geometry of the susceptible crops relative to the dispersal mechanisms of the

parasite?
† How do differential fitness costs of invading and resident strains during the parasitic and saprotrophic or survival phases affect

the probabilities of persistence?
† Can we predict durability of resistance and how is this affected by the deployment of resistance?
† What is the time to extinction or time to invasion of a novel pathogen strain?
† What are the consequences for the evolution of dispersal rates and switching between asexual and sexual phases?
† What will happen to the threat of disease in organic (pesticide-free farms) when there is less control on surrounding farms?
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disease of sugar beet in the UK and Western Europe
(Stacey et al. 2004), and the arrival and spread of Asian
soya bean rust, caused by Phakopsora pachyrhizi, in
South America and subsequent entry into the United
States (Schneider et al. 2005). Similar problems arise in
natural and semi-natural communities, where the
effects are especially noticeable on forest and amenity
trees: sudden oak death, caused by Phytophthora
ramorum is spreading rapidly on coast live oak and
tanoak in California (Rizzo et al. 2002), for which the
probable strategy for control is sanitation and contain-
ment. Meanwhile, Dutch elm disease may recur in the
UK (Swinton & Gilligan 1996) as may chestnut
blight caused by Cryphonectria parasitica in the US
(Milgroom & Cortesi 2004), for each of which there is
continued interest in biological control by RNA viruses
(Swinton & Gilligan 1999; Milgroom & Cortesi 2004).

Most forms of disease control are screened for
effectiveness at the small scale. Often this is done at
scales as small as the single plant for initial screening,
though more usually it involves field plots and ultimately
fields. Yet successful deployment, and the risk of failure,
occurs at scales much larger than this, at the regional,
national or even international scales. We can reconcile
these scales using an epidemiological framework that
allows us to predict how measurable changes in latent
and infectious periods or transmission rate might affect
the regional spread of disease. This, in turn, requires
fusion of population genetics and epidemiology at scales
extending from the field to the landscape and even to
continental deployment of control measures. Progress
in sustainable disease control measures also requires an
understanding of economic and social constraints.
These are all too frequently ignored in epidemiological
models, while economic models are often biologically
naive, failing particularly to allow for the dynamical
nature of most epidemics (Gilligan 2003).

An epidemiological framework for sustainable disease
control requires a suite of models to analyse and predict
the effects of control on the spatial and temporal
dynamics of disease, together with methods to
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parametrize the disease. One important switch of
emphasis is from within-field to regional control of
disease. Underlying this analysis is a shift in emphasis
from private to public benefit (Geoffard & Philipson
1997), whereby optimization of control strategies may
increasingly be exercised from a regional perspective over
a population of growers rather than seeking to optimize
control in each field. Many of the components for an
epidemiological framework have been individually stu-
died but not always at the same scale and often with little
overlap. These include models from both medical and
botanical epidemiology (to analyse and predict the effects
of control strategies on the spatial and temporaldynamics
of disease), population genetics (for the evolution of
virulence and pesticide resistance), landscape ecology
(for the spatial structure of susceptible host populations)
and environmental economics (to allow for cost con-
straints and decision making under uncertainty).
Progress in developing an epidemiological framework
for sustainable control of disease also depends upon
theoretical advances in mathematics and statistical
physics (particularly for transient behaviour, spatially
extended dynamics, percolation and network theory) as
well as in probability and statistics (for stochastic
dynamics and parameter estimation of nonlinear models
using modern computer-intensive methods to explore
large regions of parameter space). The relationships
among some of these are shown schematically in figure 1.
Here discussion is confined to strategic issues: math-
ematical details are not given but may be found in cited
publications. Comprehensive treatments of model
structure and analysis are also available in Gilligan
(2002) for epidemics of fungal and fungal-like diseases
and by Madden et al. (2000) for virus diseases.
2. EPIDEMIOLOGICAL FRAMEWORK
(a) Scale: within-plant, field, farm, regional,

national and continental scales

Whereas, convention suggests that the plant is the
natural unit to monitor epidemiological dynamics, this
is not necessarily so for many diseases or for the
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Figure 1. Schematic relationships of selected components of an epidemiological framework encompassing population dynamic,
population genetic, landscape dynamics and economic approaches.
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development of optimal control strategies. The appro-
priate scale of interest may occur both up and down
from the level of the plant.
(i) Within-plant dynamics, topology and crop ideotype
For a crop plant, such as wheat, that can produce 10 or
more leaves, 40 or more roots and several tillers, the
single plant is frequently too crude a measure to
understand the dynamics of infection. It is not unusual
for all plants to be scored as diseased within a field
(Werker & Gilligan 1990) yielding a spuriously
asymptotic level of infection of 100%. This may have
little impact on yield, when levels of infection within
plants are low, while masking highly nonlinear changes
in infection within plants and in the availability of
susceptible tissue for infection. Although much atten-
tion has been focused on the molecular and physio-
logical interactions at the host–pathogen interface and
their genetical control, relatively little attention has
been given to the importance for epidemics of the
dynamics and topology of host growth within crops.
Phil. Trans. R. Soc. B (2008)
The amount and location of susceptible tissue changes

as leaves and roots are produced, expand and die.

Accordingly, the individual leaf, root, tiller or stem may

appropriately be considered the natural unit for

infection and disease. Each unit is then categorized as

to whether or not it is susceptible (S ), infected (I ) or

removed (R, an epidemiological euphemism that

encompasses dead, recovered or moribund tissue).

This categorization leads to SIR models, common to

human, animal and botanical epidemiology.

The availability of susceptible tissue modulates the

invasion and persistence of epidemics, yet is often

overlooked. For wheat infected by the take-all fungus,

small levels of disease early on in an epidemic lead to an

overcompensation of the plant in producing susceptible

roots to replace diseased roots (Bailey & Gilligan

2004). The extra roots enable the plant to compensate

for loss of tissue but the pathogen also benefits from the

provision of new susceptible roots. The birth and death

of roots therefore changes the topology of the system

through which disease spreads. These function as
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epidemiological ‘stepping-stones’ in bridging the gap
between infected and otherwise susceptible roots,
perhaps on adjacent plants, and so facilitate continued
invasion by the pathogen. Only as the epidemic
progresses and the average burden of diseased roots
per plant increases, does the plant fail to compensate
and the epidemic slow down (Bailey & Gilligan 2004;
Bailey et al. 2006). Further analysis of this epidemio-
logical response for disease escape by the host suggests
that there is differential expression among cultivars
(Bailey et al. 2006) from which selection may be
initiated. Analogous properties hold for the dynamics
and geometry of leaf growth and dispersal of aerial
pathogens. Thus, Lovell et al. (1997) and Arraino et al.
(2006) have shown how cultivars of wheat differ with
respect to the orientation of leaves and propensity for
splash dispersal of Mycosphaerella graminicola within
and between leaves. We conclude from these and other
studies that, in the renewed interest in re-constructing
crop ideotypes (Denison et al. 2003), including
reconstruction of genomes to bypass evolutionary
bottlenecks, there is scope also for selection of traits
that impinge on epidemiological dynamics.

(ii) Beyond the field: treating fields as natural units
for infection
The switch of emphasis from within-field to regional
spread of disease leads naturally to considering the field
as the natural unit for epidemiological analysis. This
can occur in two obvious ways. The first is simply to
classify fields as susceptible, infected or removed, and
to analyse the spread of disease through populations of
fields using the same mathematical machinery as for
epidemics within fields. The second is to allow for
dynamics of disease within and between fields by
considering fields as structured metapopulations
(Gyllenberg et al. 1997; Park et al. 2001, 2003; Gilligan
2002). Epidemics now occur within fields but are
subject to dual sources of inoculum from within and
between fields (Park et al. 2001). In this case, there is
therefore a transit time as a field first becomes infected
until it begins to export inoculum that causes infection
in other fields (Swinton 1998; Gilligan 2002). In each
of these paradigms, the topological arrangement of
susceptible crops within the landscape and the
dispersal dynamics of the pathogen, or its vector,
together determine the dynamics of disease spread.
How far the infection spreads within and between fields
is defined by the dispersal kernel. For many splash-
borne pathogens, dispersal may be restricted to
neighbouring fields, but for wind-dispersed pathogens
dispersal may extend over several kilometres and
exceptionally over hundreds of kilometres (Limpert
1999; Linde et al. 2002). For systems with large-scale
dispersal, farms, counties or even larger regions may
form the natural scales of interest (Stacey et al. 2004).

(b) Simple models

Epidemiological understanding of the sustainable
deployment of disease control requires simple yet
realistic models that capture not only the deterministic
(average) behaviour but also stochastic dynamics
within and between epidemics. The models can be
used to compare alternative strategies for control by
Phil. Trans. R. Soc. B (2008)
mapping the effects of disease control onto the model
parameters (figure 2). Finding the appropriate balance
between simplification and detail remains a serious
challenge for epidemiological analyses of sustainable
disease control. Another challenge is how to deal with
temporal and spatial heterogeneities. Temporal hetero-
geneities occur due to fluctuations in environmental
variables within seasons that can appear to start and
stop epidemics (Truscott & Gilligan 2003). Fluctu-
ations also impinge at the longer scale on the multi-
seasonal dynamics of many botanical epidemics with
periods of survival interspersed between periods of
parasitic activity on susceptible crops (Gubbins &
Gilligan 1997a,b). This exposes the pathogen to quite
different selection pressures within and between
seasons and is particularly acute for pathogens in
which re-establishment each season from resident
inoculum has a marked effect on subsequent epidemics
(Bailey et al. 2004). Spatial heterogeneities arise from
the mosaic of susceptible and non-host crops encoun-
tered by a pathogen as it spreads at the landscape or
regional scales (Gilligan 2002). Surprisingly little
attention has until recently been given to these
important processes in understanding the dynamics
of epidemics and the deployment of control.

Historically, there has been a tendency to focus on
environmental variables, such as temperature and
rainfall, often leading to multiple regression equations
for disease progress (Kranz 1990). This reflected, in
part, the ease with which abiotic variables could be
measured relative to biotic variables such as infection
and disease. Although these models may be useful as
‘black-box’ predictors of disease progress, they lack
mechanistic interpretation of the epidemiological pro-
cesses. Increasingly, therefore, mathematical models for
botanical epidemics resemble those for animal and
human diseases, centring upon the susceptible–
infected–removed (SIR) framework, although the fine
details may differ. Some common variants used for
analysis of the dynamics and control of botanical
epidemics are illustrated in figure 2. The balance between
primary and secondary infection is particularly import-
ant for many plant diseases (Gilligan & Kleczkowski
1997). Primary infection is driven by ingress of inoculum
from outside the system. For soil-borne pathogens,
this often means infection from the reservoir of inoculum
in soil; for aerial pathogens, it usually means allowance
for inoculum coming from a different field or even a
different region. Models for botanical epidemics also
increasingly reflect seasonal dynamics accentuated by
survival during intercrop periods. The emphasis on
seasonal dynamics, together with the balance between
primary and secondary infection, leads to SIX or SIR-X
models for botanical epidemics in which X reflects the
amount of ‘free living’ or simply surviving inoculum
(figure 2). Detailed accounts of model structures for viral
and fungal pathogens are given by Madden et al. (2000)
and Gilligan (2002), respectively.

Just like animal diseases, many plant pathogens
have a latent period between infection and sporulation
and an incubation period between infection and
symptom expression. Often these are short compared
with the infectious period and can be ignored
(Anderson & May 1991). The incubation period is
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Figure 2. Some common epidemiological models. The principal state variables are: S (susceptible), E (exposed, i.e. latently
infected), I (infected and infectious), D (detected, i.e. symptomatic and infectious), R (recovered or removed) hosts; X free-
living inoculum. The following models are illustrated. SIR model with secondary infection, infectious period and net birth of
susceptibles together with criterion for invasion (R0). SIDR model with secondary infection, cryptic ðuK1

1 Þ and symptomatic
uK1
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infectious periods with fixed host population size (Dybiec et al. 2004). SIX model with primary bp and secondary bs

infection, net birth of susceptibles and decay of inoculum. Demographic stochastic version of SI model (Gibson et al. 1999).
SEIR model with secondary infection, latent (sK1) and infectious (mK1) periods for fixed host population size. Dispersal kernel
(with parameters, q) for probability that susceptible (s) is infected by secondary infection from all infected hosts (i) within a
neighbourhood Nhood and by a constant source of primary infection (3) (Keeling et al. 2004). Metapopulation with transmission
between subpopulations in a neighbourhood of interaction for a given strength of coupling (3) in addition to transmission within
subpopulations: model also shows separate density-dependent birth and death processes for susceptibles and criterion for
invasion within a patch or subpopulation (Rp) and entire metapopulation (R0) (Park et al. 2001). Effect of control agent on
transmission rate and infectious period for a single pathogen strain and for two pathogen strains typified by a fungicide-sensitive
(Is) and a fungicide-resistant (Ir) strain with fitness costs rb, rm, in which the efficiency is a function of fungicide concentration
(C ). A criterion for invasion of the resistant strain is given that links the ratio of reproductive numbers and the efficiency of
control, for constant fungicide treatment (Gubbins & Gilligan 1999; Hall et al. 2004). Note that all of the deterministic models
can be readily adapted to stochastic treatments: further details are given in the cited literature and a general mathematical
treatment in Gilligan (2002).
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important only when it is longer than the latent period,

allowing cryptic infection to occur (figure 2). This

happens with many virus diseases. The phenomenon of

cryptic infection becomes important for almost all

pathogens when the epidemiological unit of interest
Phil. Trans. R. Soc. B (2008)
switches to large units such as trees or to entire fields. In

each case, significant transmission of infection can

occur between trees or fields before symptoms are

detected. The delay is of immense practical importance

when, as is usual, symptom expression triggers a
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reduce disease but there is a significant risk of failure at some sites. Further details are given in Gibson et al. (1999).
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control response. This may be as diverse as the
implementation of removal policies for trees infected
with notifiable diseases such as citrus canker (Gottwald
et al. 2001), or the implementation of a regional
strategy for disease control, as in the recent attempts
to control rhizomania disease of sugar beet in UK
(Stacey et al. 2004). In each case, significant spread of
disease occurred before control was implemented.
Cryptic infection also means that control must be
targeted at symptomless as well as infected sites if the
epidemic is to be brought under control.

(i) The role of variability
Variability is an integral part of epidemics. It is manifest
at a range of spatial and temporal scales. The timing,
intensity and expansion of epidemics differ from one
season to another: there are ‘good’ and ‘bad’ disease
years for some pathogens, while other pathogens
generate epidemics in most years. Even within the
same season, the rates of spread of disease within and
between adjacent fields sown to identical host varieties
differ. Ideally therefore we would like to be able to
predict not only the average trajectory of disease
progress but also the variability. This centres on the
estimation of the probability distribution for the
probable occurrence of disease over time, and possibly
also over space, in a population of susceptible sites.
Individual sites can comprise entire farms, fields,
Phil. Trans. R. Soc. B (2008)
orchards or glasshouses. By mapping the effects of
alternative control strategies onto the probability
distribution for disease progress, it is possible to predict
not only the effect of treatment on the average amount
of disease but also the risk of severe failure and in what
proportion of fields or farms that failure might occur.
The general approach is illustrated in figure 3a along
with an example (figure 3b) for a model experimental
system involving biological control of damping-off
disease on radish by the hyperparasite Trichoderma
viride (Gibson et al. 1999; Gilligan 2002).

There are two broad types of variability (Nisbet &
Gurney 1982). Demographic stochasticity relates to
differences among individuals. For epidemics, it simply
reflects the probabilistic nature of transmission of
infection between an infected and a susceptible host
under identical environmental conditions. This leads to
a series of stochastic events giving rise to different
trajectories for different epidemics, even though the
transmission and other parameters remain the same
throughout the course of the epidemic. It is equivalent
to saying that if epidemics were initiated in identical
fields under the same initial conditions and exposed to
identical environmental conditions, the resulting epi-
demics occurring in each field could still be markedly
different. How different depends upon the inherent
demographic stochasticity of the system. This is clearly
difficult to demonstrate in the field, although extensive
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data collection for the evolution of epidemics such as
citrus canker in Florida (Gottwald et al. 2002b) and
citrus tristeza disease (Gottwald et al. 1996), in which a
complete census of the infection status of trees in
replicate sites, comes close to this.

Analysis of demographic stochasticity allows us to
identify the underlying variability of an epidemic, the
so-called dynamical landscape (Gilligan 2002). Environ-
mental stochasticity is superimposed upon this by
changing model parameters in time and space. Histori-
cally, most attention has been given in botanical
epidemiology to environmental stochasticity due to the
obvious sensitivity of plants and micro-organisms to
temperature, relative humidity and other environmental
driving variables. Here the focus has been more on
treating parameters as smoothed deterministic functions
of environmental variables. Hence, the rate of trans-
mission changes, for example with average temperature
throughout the season (Webb et al. 2000). While this
allows for seasonal forcing, it does not show how
fluctuations in environmental variables affect the
variability among replicate epidemics in a way analogous
to the data in figure 3. Yet, owing to the inherent
nonlinearity of epidemics, small differences in par-
ameters, may become amplified or, conversely, large
differences may be dampened. Some analytical work on
this form of dynamically generated variability has been
done for the R. solani–-radish systems by Kleczkowski
et al. (1996). Large numbers of experiments on this
system have subsequently shown that variability among
epidemics, whether driven by demographic or environ-
mental variability, is as mucha signature of the epidemics
as is the intrinsic rate of increase. There is continual
debate about how to quantify, distinguish, analyse and
model the components of variability (Nisbet & Gurney
1982; Engen et al. 1998; Coulson et al. 2004). Future
work in devising sustainable methods of control will
continue to address these issues. The problems for data
collection in the field are accentuated by sampling errors
since complete census is seldom possible, though the
prospects for remote sensing may improve this. Never-
theless, it will be increasingly important to quantify the
variability within and between epidemics. This means
that, wherever possible, we should exploit the availability
of sampling and replicate data that so often in the past
have been aggregated to produce averages that hide the
natural variability.

(ii) Spatial dynamics and mechanisms of spread
Pathogens are dispersed through the landscape by
abiotic agents and by invertebrate and other vectors.
Dispersal also occurs by human intervention through
movement of machinery and produce and by importa-
tion of seed. These features are increasing in import-
ance in modern agriculture as farms become larger,
with single ownership of multiple farms, shared
machinery and cultivation by contractors operating
over large regions. Disease spread occurs through an
agricultural landscape that reflects these changes in
commercial and agricultural pressures. This generates
an epidemiological system with two or more scales of
dispersal, a local scale, driven largely by abiotic and
vector biology, and a global scale, driven by commercial
arrangements. Depending upon the type of pathogen,
Phil. Trans. R. Soc. B (2008)
the local scale operates at the within-field and between
adjacent fields scales and the global scale operates at
longer distances.

There are three ways in which to view this duality
of dispersal scales. Long-distance movement may be
seen as sources of primary infection, with local spread
reflecting secondary infection. Dispersal though the
heterogeneous landscape can be viewed as a network
process, with nearest neighbour movement between
adjacent fields and occasional, long-distance move-
ments giving rise to small-world connections (Strogatz
2001). Finally, for some diseases where most dispersal
occurs within fields (or farms) and movement between
fields (or farms) is less common, the system can be
regarded as a metapopulation in which fields (or
farms) comprise more or less self-contained sub-
populations. Strategies for the deployment of durable
and sustainable control need to address these issues of
how dispersal scales with the unit of interest and how
to prevent invasion and persistence of pathogens in
the landscape.

The conventional question concerning dispersal
kernels is, how far can a disease spread? By this is
usually meant, what is the furthest distance over which
transmission of inoculum can give rise to infection and
disease? This simple question, however, is confounded
by very low probabilities of very long-distance dis-
persal. More enlightened questions are, how far is
infection likely to spread? and how might the
deployment of control strategies affect the dynamics
of spread and the likelihood of disease invasion? The
tail of the distribution for dispersal kernels is certainly
important. Much thought and experimental ingenuity
has been given to the distinction between exponential
and thick-tailed distributions (Shaw 1994, 1995, 1996;
Sackett & Mundt 2005a). Exponential kernels result in
expanding waves about an initial focus, tending to a
constant velocity of expansion after an initial period of
build-up. Thick-tailed distributions give rise to distinct
daughter foci and an entirely different spatial dynamic
for epidemic spread (Shaw 1995; Sackett & Mundt
2005a) with dispersive spread in which the velocity of
spread increases with time. Owing to the complications
of controlling experimental conditions, most experi-
ments to identify dispersal gradients have been
confined to single foci spreading through single
homogeneous field plots (Sackett & Mundt 2005b).
Scaling-up to predict what happens at the larger scales
(Frantzen & van den Bosch 2000) is still in its infancy
for spread through heterogeneous landscapes. It is a
major problem for emerging epidemics of new, rare or
mutated forms of pathogens. Here we need to rely upon
analogous results for related pathogens or to extract
estimates for dispersal and other parameters from the
emerging epidemic.

The challenge of estimating parameters for
epidemics with multiple sites of initial infection has,
with some notable exceptions, received little attention.
Gibson & Austin (1996) and Gibson (1997) have made
progress using likelihood-based and Markov chain
Monte Carlo methods (MCMC) for citrus tristeza
disease for which there was a complete census of
infected and susceptible trees in citrus groves. The
method involves taking successive snapshots of disease
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and estimating the parameters of a dispersal kernel by
inferring the temporal sequence in which individual
trees became infected. Gibson & Austin (1996) and
Gibson (1997) used a simple model for dispersal in
which they compared an exponential with a power-law
(thick-tailed) kernel with and without allowance for the
entry of external infections from outside the groves.
They showed that there was more evidence for the
power-law model. By simulating the control of
epidemics by removal of trees around infected trees,
they showed that the critical removal distance of 14 m,
previously advocated by Marcus et al. (1984), could
lead to a serious risk of failure of eradication. Collection
of census data is expensive and the number of temporal
snapshots will often be limited. Exceptionally, progress
is possible even when there is only one snapshot. By
making certain assumptions about the status of an
epidemic, Keeling et al. (2004) successfully inferred
both spatial and temporal dynamics from single
snapshots of disease, including the citrus tristeza
example. These analyses showed preferential evidence
for a power-law dispersal in common with the MCMC
analyses of Gibson (1997) and with a similar estimate
for the dispersal parameter. Importantly, however, this
proved possible using just the first of two annual
snapshots. Clearly, more work needs to be devoted not
only to the methods of statistical analysis but also to
efficient collection of data for parameter estimation of
emerging epidemics. Prior knowledge helps, but
experience from animal epidemiology militates for
caution: it is striking how different were the dispersal
mechanisms for the widespread 2001 foot and mouth
epidemic in the UK from the previous major, but much
more localized, epidemic in 1967 (Keeling et al. 2001).
The difference partly reflects changes in pathogen
strain but more significantly changes in agricultural
practice, with much more frequent movement of
animals over long distances occurring in 2001.
Comparable large changes are evident in crop
husbandry, with major changes in sowing dates, shorter
intercrop periods, as well as changes in fertilizer and
pesticide applications and the genotypes and frequency
of crops being sown.
(iii) Long-distance continental spread
Historically, much attention has been given to the
characterization of wave speeds for focal expansion
through susceptible fields around isolated sites of initial
infection (van den Bosch et al. 1988a–c, 1999). This
still has an important part to play, especially in the
continental-scale spread of disease in which it is
reasonable to assume that there is enough crop to
trap incoming aerially dispersed spores, without
recourse to detailed analysis of the topological arrange-
ment of susceptible crops on the ground.

Aylor (2003) constructed a stochastic dispersal model
to estimate the rate and extent of seasonal incursions of
two aerially dispersed diseases, stem rust of wheat and
tobacco blue mould, from southern into northern areas
of the US. The model treats the availability of the
susceptible crop as a continuum in space, but one that
changes over time, sandwiched in a seasonal ‘green
wave’. The leading northerly edge is determined by crop
Phil. Trans. R. Soc. B (2008)
sowing date. The receding southerly edge is determined

by an advancing wave of crop maturity.

Both wheat stem rust and tobacco blue mould

appear to spread northward on average at about the

same rate as the seasonal advance of the green wave of

available susceptible host tissue. Aylor (2003) con-

cludes that the concordance of the disease wave with

the green wave underscores two important points.

First, it suggests that disease spread over long distances

may be limited more often by failure of the pathogen to

establish than by the ability to be dispersed over long

distances. The green wave also reduces the stochastic

variability and speed of disease spread by presenting a

barrier to potential long-distance, low-probability

dispersal events. Second, it helps to focus attention

on alternative pathways for disease spread and on

possible unappreciated niches for overseasoning, both

of which can have important implications for disease

control strategies.
(c) Mapping control strategies onto epidemiolo-

gical variables and parameters

Not surprisingly, the effects of different control

methods may be mapped onto each of the epidemio-

logical parameters (figure 2). Thus, genetical, chemical

or biological methods may affect one or more of

transmission rates, infectious periods, detection rates

as well as latent periods. Control can also affect the

dispersal parameters by interfering with vectors or by

preventing long-distance movement. Removal of

infecteds and susceptibles also allows control of

epidemics by reducing the availability of infectious

tissue and susceptible tissue. At the larger (field) scale,

this is manifested by the application of protectant or

eradicant chemicals, by changing cropping density or

by introduction of resistant or partially resistant

varieties. In the extreme, the target of most genetical

and chemical control is to achieve immunity, so shifting

plants from the susceptible to an unavailable class.

Once a control strategy can be interpreted within a

model structure, it is possible to compare efficiencies of

control for different strategies and intensities (table 1).

In principle, this allows simple calculations about the

ability of pathogen strains to invade by computation

and analysis of invasion criteria such as R0, a measure

of the number of new infections per infected unit. It

also allows computation of invasion and persistence

times of resident pathogen strains that are sensitive to

the control method, as well as fungicide-resistant or

virulent strains. Here the temporal and spatial deploy-

ment of the control strategy in the landscape is

important in determining whether virulent and aviru-

lent strains coexist in the pathogen population, or if

one is competitively excluded by the other. The

consequences of this affect the durability of resistance

(Vera Cruz et al. 2000; Parlevliet 2002). More

importantly, it also begs the question as to how

genetical control can be deployed in the population

so as to promote the durability of resistance. Similar

questions apply to the deployment of chemical control

agents and to the fates of fungicide-sensitive and

fungicide-resistant pathogen strains.
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3. CROP MOSAICS, HETEROGENEITY AND
TOPOLOGY OF CROPS IN THE LANDSCAPE
Much thought has been given to the construction and
deployment of crop multilines and mixtures to slow the
spread of disease within fields (Mundt 2002). Following
early work by Browning & Frey (1969) on multilines and
Wolfe (1985) on mixtures, interest in the strategies
waned, partly due to resistance from processors.
Recently, however, interest has been revived in China
(Zhu et al. 2000) and Western Europe (Finckh et al.
2000). Slowing the increase of disease within fields may
have a knock-on effect in slowing the spread of disease
between fields and, hence, restricting invasion through
the landscape. By thinking offields as subpopulations in a
structured metapopulation (Gyllenberg et al. 1997), the
effect of mixtures in the landscape can conveniently be
thought of as delaying the transit time between fields. We
define the transit time as the time from when the first
individual becomes infected in one field and starts an
epidemic in another field. Most theoretical work on
transit times in metapopulations has focused on persist-
ence. Thus, Swinton (1998) showed that above a certain
critical subpopulation size, the expected extinction time
for a metapopulation scales with the number and size of
subpopulations. There is a phase transition (i.e. a switch
in behaviour from short to long extinction times) around
the critical subpopulation size, NC. Below NC, the time to
extinction is very short because the amount of susceptible
hosts is not sufficient to maintain the epidemic before it
spreads to the next subpopulation. As the population of
susceptibles increases above NC, there is a sudden
transition to long extinction times. Increasing the
numbers of subpopulations in the metapopulation delays
extinction but does not affect the critical value of NC at
which the phase transition occurs (Swinton 1998). This
has been demonstrated for animal disease (Swinton et al.
1998) and proposed for botanical epidemics (Gilligan
2002), with additional theoretical work on invasion as
well as persistence (Park et al. 2001, 2003). It is now
ready to be tested in the field.

How far and how fast a pathogen spreads through a
landscape and, indeed, whether or not it persists and
for how long, depends upon the crop mosaic within the
landscape. Whether or not invasion occurs depends
upon the relative magnitude of the modal dispersal
distances and the scale of heterogeneity in the land-
scape (figure 4). Considering disease spread in this way
is still at an early stage. A convenient starting point is to
assume that disease spreads on a lattice and then to
introduce gaps and so to advance to spread through a
realistic population of fields. For a given pathogen, each
field of a susceptible crop is classified as susceptible
(i.e. healthy), infected or, if appropriate, recovered.
Non-host crops are unavailable to the pathogen and are
treated as gaps. The application of a protectant
fungicide temporarily renders a susceptible field
unavailable for infection (figure 4). Whether or not a
pathogen invades now depends upon the spatial and
temporal dynamics of the crop mosaic. A simple
analysis based upon ideas from percolation, derived
in statistical physics (Stauffer & Aharony 1994),
illustrates an important relationship between dispersal
kernels and invasion. When spread occurs between
adjacent fields, i.e. by nearest-neighbour spread, the
Phil. Trans. R. Soc. B (2008)
dispersal kernel then describes the probability distri-
bution for transmission of infection between an
infected field and its susceptible neighbour (figure 4).
It follows from percolation theory that there is a critical
probability above which disease spreads and below
which it dies out. By increasing the distance between
susceptible fields, it is possible to bring the percolation
probability for a given lattice below the threshold and
so prevent invasion (figure 4). These results are
stochastic: it follows that there will be some spread
when the percolation probability is below the threshold
and occasionally invasion may occur but, on average,
we would expect the strategy to work, albeit under
these idealized conditions. Suppose now that the
density of susceptible crops per unit area of land
exceeds the threshold and invasion is expected.
Introducing gaps into the lattice by the application of
localized chemical control could switch an invasive into
a non-invasive mosaic (figure 4). The fineness of the
control and the precision of the phase transition is
sufficiently striking (figure 4d ) to lead us to question
whether or not it is necessary to treat all fields in the
landscape in order to prevent invasion. The answers
from these theoretical investigations would suggest not.
The ideas have yet to be tested in the field, however;
something that presents significant challenges in large-
scale testing of new approaches towards sustainable
control. Meanwhile in order to gain more insight into
these approaches and, in particular, to understand
variability between replicate epidemics, we have tested
some of the ideas in a series of microcosm experiments
involving R. solani spreading between nutrient sites at
different densities with and without gaps (Bailey et al.
2000; Otten et al. 2004). The results support the
inferences proposed above.

As an epidemic spreads through a heterogeneous
landscape, the dynamical contact structure, which
measures the exposure of susceptible to infected sites,
also changes. This too can slow down or speed up an
epidemic and is a property of the topology of the
system. So far, we have discussed susceptibles and
gaps. What if there are differential susceptibilities for
susceptible crops in a mosaic? This could reflect
incomplete chemical control in treated fields or partial
genetical resistance. By extending the model experi-
mental system to include spread through mixed
populations of radish and mustard in replicated
microcosms, we simulated experimentally the spread
through a heterogeneous landscape. Not surprisingly,
the inclusion of a less susceptible host can slow the rate
of spread of an epidemic compared with spread though
a homogeneous mosaic (Otten et al. 2005). However,
the rate of spread changes nonlinearly with the relative
densities. If this holds for the large-scale transmission
between fields, it follows that the introduction of a
critical proportion of a less susceptible crop could slow
the spread of infection through the landscape. More-
over, the differential rates reflect not only differences in
susceptibility but also differences in infectivity. This
means that for two types of host, four types of
transmission rates occur, depending upon which host
is the donor (infected) or recipient (susceptible). Otten
et al. (2005) showed how to calculate transmission rates
from empirical data which, in turn, can be used to
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Figure 4. Spread through a landscape with nearest neighbour transmission between infected and susceptible sites. (a) Aerial
photograph showing a typical example of a UK crop mosaic. (b) Probability distribution for transmission of infection to
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the invasion of an epidemic measured by the spread of infected (filled circle) sites. (d ) Effects of introducing gaps to simulate
chemical control in the landscape upon a percolating system, showing the fineness of the control about a phase transition; white
squares indicate control, light grey indicate susceptible and dark infected. (b,c) Derived from experimental microcosms (Bailey
et al. 2000; Otten et al. 2004). (d ) Derived from a computer simulation by kind permission of Dr J. Ludlam.
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predict the effects of changes in the topology and
composition of the mixture. By treating fields as units
this approach can, in principle, be extended to gain
insight into the effects of different levels and densities of
partial control at the landscape scale.
(a) Matching the scale of control with the

epidemic scale

The foregoing discussion suggests that control could be
allocated to a proportion of fields in a landscape in
Phil. Trans. R. Soc. B (2008)
order to prevent invasion. For some emerging diseases,

in which initial foci are identifiable, local control may

be implemented. This may involve removal of the

infected site along with protection of surrounding

susceptible sites. This is a classical example of ring

vaccination that has been widely debated in animal

(Keeling et al. 2003) and human (Ferguson et al. 2003)

epidemiology. Obviously, by getting ahead of the

infection, local ‘vaccination’ can bring the epidemic

under control and prevent further spread. Problems
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Figure 5. Matching the scale of control with the epidemic scale when there is cryptic infection. (a) Local epidemic
neighbourhood. There are two scales of spread: local spread in which a region of cryptically infected sites surround a
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neighbourhoods (z) that minimizes the cost of an epidemic (X, calculated as a simple weighted linear sum of treatment and
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(expressed as a percentage), for transmission between an infected and a susceptible site. (d ) Equivalent results for a scale-free
network. Further details are given in Dybiec et al. (2004).
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arise, however, when there is cryptic spread of infection

so that infectious fields export inoculum to adjacent
fields before the disease is detected. This requires

judgement of the size of the zone of cryptically infested

fields around a symptomatic field. It is further
complicated when local spread is augmented by global,

long-distance movements. Taking a stochastic suscep-
tible–asymptomatically infected–detectably infected–

removed (SIDR) model (figure 2) on a two-dimensional
lattice with long-distance movements, Dybiec et al.
(2004, 2005) examined a series of control strategies of

different sizes centred around a symptomatic site
(figure 5a,b). They showed that for small to moderately

severe incidences of infection with a small number of
non-local links, it is possible to bring the spread of

disease under control. The efficiency of a local control

strategy is very sensitive to the choice of the radius.
Importantly, it was also possible to show that there is a

minimum radius associated with such a control
neighbourhood leading to the lowest severity of the

epidemic when costs of treatment and disease are taken
into account (figure 5c). Below the optimal radius, the
Phil. Trans. R. Soc. B (2008)
local strategy is unsuccessful; the disease spreads

throughout the system, necessitating treatment of the
whole population. Clearly, at the other extreme, a

strategy involving a neighbourhood that is too large

controls the disease but is wasteful of resources.
Relatively little is yet known about the topology of

networks for the transmission of crop disease, although
this is an area of intensive theoretical investigation in

animal and human epidemiology (Newman 2002;
Keeling 2005). It is possible that transmission of some

pathogens may be approximated by scale-free

networks, in which there is marked variability in
numbers of contacts, with the rich nodes equating

to nurseries and wholesalers that inadvertently
disseminate infected plants. This makes the local

deployment of control more difficult, especially when

there is cryptic infection. Dybiec et al. (2004, 2005)
showed that it was not possible to stop an epidemic on

scale-free networks by preventive actions, unless a very
large proportion of the population is treated (figure 5).

A practical instance of the problem of controlling a
disease in which there is cryptic infection may be seen
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from experience with the control of rhizomania, a
soil-borne disease of sugar beet in the UK (Stacey et al.
2004). The disease is transmitted by a plasmodiophor-
omycete vector, with spread between fields occurring
principally on agricultural machinery. Prior to the
availability of partially resistant varieties, control was
effected by a mandatory containment policy whereby
sugar beet could not be grown in fields that had shown
symptoms of rhizomania. But by the time symptoms
show, an infested field has already been exporting
inoculum to other fields over several seasons (Stacey
et al. 2004). Accordingly the containment policy was
abandoned. Successful control of disease was shown to
demand a farm scale, rather than a field-scale, response
in which the scale of treatment more closely matches
the scale of epidemic advance (Gilligan et al. 2007).

(b) Durability of control

The risk of failure, particularly of genetical and
chemical control but also of biological control, within
a few seasons is a major concern for sustainable control
of endemic diseases in agriculture, not least due to the
development and registration costs that can approach
£500 M. For new diseases or pathogen strains, the
concern is whether or not often untried methods can
successfully contain the emerging epidemic. Although
much experimental work has focused on the molecular
and biochemical aspects of the breakdown of host
resistance or of fungicide sensitivity in the pathogen,
relatively little is known about the processes that
underlie the durability of control at the population
scale. Some resistance genes are known to have
remained effective for a long time: resistance to cabbage
yellows caused by Fusarium oxysporum f. sp.
conglutinans has lasted for more than 90 years (Vera
Cruz et al. 2000); resistance to leaf rust, Puccinia
triticina, conferred by Lr34 has lasted for 30 years
(Kolmer 1996). Others are remarkably ephemeral, for
example Yr17 for the control of yellow rust on wheat,
was rapidly overcome in two to three seasons by
virulent isolates of Puccinia striiformis f. sp. tritici in the
UK followed by Denmark, France and Germany
(Bayles et al. 2000). The durability of various rice
blast resistance genes is often less than 3 years
(Kiyosawa 1982; Zeigler et al. 1994). Broad spectrum
fungicides remained effective for long periods, but for
those with single-site action the durability is often
short. Following the introduction of strobilurins in
1996 to control a range of cereal pathogens, high
frequencies of resistance in Blumeria graminis had been
detected within 4 years over large areas of Germany,
France and the UK (Chin et al. 2001). Clearly, the
durability of control depends upon the selection
pressure imposed upon the pathogen population and
the fitness of virulent or fungicide-resistant strains
relative to resident, avirulent and fungicide-sensitive
strains. McDonald & Linde (2002) recently reviewed
the durability of resistance for a large number of fungal
and oomycete pathogens and proposed that the risk of
failure of genetical control depended not on the nature
of the resistance genes but on the evolutionary potential
of the pathogen. They identified three factors, popu-
lation size, rate of gene and genome flow (migration)
and the reproduction or mating system (i.e. asexual or
Phil. Trans. R. Soc. B (2008)
sexual), from which to produce a risk factor for loss of
resistance. Garcı́a-Arenal & McDonald (2003) sub-
sequently extended the analysis to viral diseases, noting
that resistance to viruses was generally more durable
than resistance to fungal and fungal-like pathogens.

Traditionally, analyses of virulence dynamics and
fungicide dynamics tended to focus only on the
relative frequencies of genotypes in the pathogen
population. More insight into the likelihood of
invasion and persistence of novel strains is gained by
combining population genetics and epidemiological
dynamics (Gubbins & Gilligan 1999; van den Bosch &
Gilligan 2003; Gudelj et al. 2004; Hall et al. 2004;
Parnell et al. 2005). Combining the approaches takes
account of the influence of a dynamically changing
supply of susceptible tissue on the outcome of
competition between pathogen strains (Gubbins &
Gilligan 1999). It allows for the influences of spatial
structuring of the host population (Parnell et al. 2005,
2006) and for local stochastic elimination of strains
(Gubbins & Gilligan 1999) on the invasion and
persistence of novel strains. It also allows greater
insight into the definition of durable control. Johnson
(1979, 1981, 1984) originally proposed that durability
of a resistance gene should be empirically assessed in
terms of area, time-span, degree of exposure to the
target pathogen. Subsequent analyses have sought to
define and quantify the mechanistic bases for durable
resistance. A population genetics approach leads
naturally to a convention for measurement of the
durability of resistance as the time-span from intro-
duction of the resistant cultivar to the time when the
frequency of the virulence gene reaches a preset
threshold, above which the resistance is considered
to have broken down. This definition fails to take
account of the area receiving the treatment within the
landscape (Johnson 1984; van den Bosch & Gilligan
2003). Consider a resistant crop. The conventional
approach to preserve the durability of newly released
resistance genes is to introduce resistant cultivars at
low cropping ratios (Pink & Puddephat 1999). But
analysis of durability in this way fails to take account of
the yield benefit from sowing the resistant crop over a
greater area. The conventional definition for durability
also assumes that breakdown is inevitable and that the
virulence matching the resistant genotype is already
present in the population, which, of course, may not
be the case. Durability is enhanced, if it is not already
present, by the delay for the virulent genotype to enter
the system, through mutation or immigration, and to
establish a population. These considerations lead to two
new measures of durability (van den Bosch & Gilligan
2003). One is the expected time until invasion of the
virulent genotype, by mutation or immigration, and
expected establishment of a population. The other is the
additional yield measured by the expected number of
uninfected host growth days. Each was compared with
the conventional measure for a range of cropping ratios
for a newly released resistant variety (figure 6). The
results challenge the universality of the buffering effect
of low cropping ratios by showing that the expected time
to invasion can be delayed by high as well as low cropping
ratios. Surprisingly, too, yield gain through cultivation
of the resistant variety is only slightly influenced by
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Figure 6. Measures for durability of resistance. Effects of
cropping ratio (f) of a newly released resistant variety and
different transmission rates (b) for infection on: (a) the
expected time until the virulent pathogen invades (Tinvasion),
(b) the time until the virulent genotype comprises a critical
proportion (arbitrarily set to 90%) of the pathogen popu-
lation (Ttake-over), (c) the total number of additional
uninfected crop growth days due to the release and
deployment of the resistant variety (Tadditional). Further details
are given in van den Bosch & Gilligan (2003).
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cropping ratio (figure 6c). There are cases in which
resistant cultivars have been widely grown without
breakdown of resistance: Steffenson (1992), for
example, describes how the gene Rpg1 successfully
conferred resistance to Puccinia graminis f. sp. tritici on
barley for more than 40 years in the northern great
plains of the US and Canada. Arguably, however,
intentional widescale routine testing of the advantages
of high cropping ratios for the release of resistant
cultivars may be premature. One possible alternative
would be to use a high cropping ratio in a restricted part
of the crop’s area and none in the rest of the area in a
manner similar to refugia for pest resistance (Tabashnik
et al. 2005). I anticipate that this will be an area of
Phil. Trans. R. Soc. B (2008)
intense research, not only for the deployment of
resistant varieties but also for the release and use of
new forms of chemical control.

(c) Invasion and persistence of virulent and

fungicide-‘resistant’ strains

Epidemiological models for the invasion and persist-
ence of chemical control are similar to those for
genetical control. Until quite recently, most models
ignored stochasticity and density dependence imposed
by the dynamical changes in the availability of
untreated tissue. Moreover, by invoking exponential
growth of the pathogen, invasion of fungicide-resistant
forms is inevitable, and attention focuses not on
whether or not a resistant strain can invade but the
time to reach a critical level. This is unrealistic. By
allowing for competition for susceptible (untreated)
sites, it is possible to show that there is a threshold
below which resistance cannot develop within the host
population (Gubbins & Gilligan 1999). The threshold
depends upon the relative fitness of the resistant and
sensitive strains and the effectiveness of control. The
latter may influence one or more of the following:
reduction in the transmission of infection, the duration
of infectiousness and the conversion of host to
infectious pathogen tissue (Hall et al. 2007). The
relative fitness of the resistant strain is given by the ratio
R0r/R0s, where R0s and R0r are the basic reproductive
numbers for the sensitive and resistant strains,
respectively. Even crude estimates for the efficiency of
control and the basic reproductive numbers can
provide a simple rule of thumb for whether or not
invasion may be expected.

Fungicides differ from many forms of genetical
control in being subject to decay over time, requiring
repeated application. By including parameters for the
amount of fungicide applied, longevity and application
frequency of the chemical, it is possible to predict the
outcome of invasion of the resistant strain, even when
there is a time-varying selection pressure on the
pathogen population (Gubbins & Gilligan 1999; Hall
et al. 2004). Notably, these models share a common
generic structure with antiviral drug resistance and
antibiotic resistance (Hall et al. 2004).

The durability of genetical and chemical control
depends not only on the ability of a virulent or
fungicide-sensitive strain to invade an existing
pathogen population but also whether the wild type is
completely replaced or can coexist. Complete exclu-
sion of the resident (controllable) pathogen strain by
the invading strain means that the gene or fungicide
cannot be used again as a sole method of control.
Empirical evidence shows both scenarios with coex-
istence (Chin et al. 2001; Bierman et al. 2002) and
competitive exclusion (Baroffio et al. 2003). To develop
effective resistance management strategies, it is impera-
tive to understand the processes that influence which of
these outcomes is likely to occur. Initially, it was
thought that models could be of little assistance
because coexistence was predicted to occur only
under exceptional circumstances with restrictive
assumptions about the magnitudes of the parameter
values (Gubbins & Gilligan 1999). The obvious way to
account for a spectrum from competitive exclusion to
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coexistence is to allow for spatial heterogeneity in the
selection pressures. This is conveniently done using a
metapopulation framework. Thus, when Parnell et al.
(2005, 2006) allowed for differential selection
pressures due to incomplete coverage of plants by
fungicide either within or between crops, three
scenarios were possible, ranging from failure to invade,
through coexistence, to competitive exclusion of the
resident strain. The outcome within fields depends
upon the balance between incomplete spray coverage
and a cost to resistance, with healthy host density
maximized when there is coexistence. Recent work by
Salathé et al. (2005) suggests that coexistence is
possible within stochastic systems without invoking
costs of resistance.

At the regional scale, invasion of resistant strains is
determined by a trade-off between the fraction of fields
that are sprayed and the intrinsic reproductive ability R0

of the target pathogen (Parnell et al. 2006). If the
between-field movement of the pathogen is high (high
R0), the resistant strain dominates all treated fields but
the sensitive strain dominates all untreated fields. This
occurs because, in the long term, resistant strains are
competitively superior in treated fields and sensitive
strains are competitively superior in untreated fields. If
R0 is very high, mixing is complete and all treated fields
become infested with the resistant strain and all
untreated fields become infested with the sensitive
strain. If, however, R0 is low, strains cannot move
between fields to the extent that allows them to
capitalize on their within-field competitive advantage
and may therefore be excluded. The outcome is then
dependent on the fraction offields sprayed (Parnell et al.
2006). Once again the analogy with refugia is apparent.

Further work on the invasion and persistence of
virulent and fungicide-resistant pathogen strains will
increasingly focus on the integration of genetical and
epidemiological mechanisms. Foremost among these
will be empirical evidence or otherwise for fitness costs
(Vera Cruz et al. 2000; Brown 2003) as well as research
on the evolution of fitness modifiers and evolutionary
trade-offs among epidemiological parameters. Clearly,
there is also a need to identify control strategies that
balance the conflicting aims of resistance management
(to reduce the risk of failure) and yield enhancement by
application of genetical, chemical and other control
methods to suppress disease. Some initial models that
integrate crop yield have been explored by Hall et al.
(2007). Most strategies depend upon host diversifica-
tion within the landscape. We do not, however, know
how introducing host diversity into the landscape
affects evolutionary divergence towards specialist or
generalist pathogens, or even if it might lead to a switch
in pathogenicity from one host to another. This can be
investigated by analysing the evolutionary trade-offs
that occur over successive generations of a pathogen
exposed to two or more hosts. Preliminary results show
that evolutionary outcomes strongly depend on the
shape of the trade-off curve between pathogen
transmission on sympatric hosts (Gudelj et al. 2004).
Using methods based upon adaptive dynamics, it has
been possible to determine criteria under which
evolutionary branching occurs from a monomorphic
into a dimorphic population, as well as the conditions
Phil. Trans. R. Soc. B (2008)
that lead to the evolution of specialist (single host
range) or generalist (multiple host range) pathogen
populations (Gudelj et al. 2004). Since some pathogen
species can undergo 20–30 generations in a growing
season, the consequences of this form of evolution may
become apparent within decades.
4. OPTIMIZATION OF DISEASE CONTROL USING
AN EPIDEMIOLOGICAL FRAMEWORK
The control of disease epidemics often requires expensive
resources. These include investment costs for breeding
programmes, the development, testing and registration
of new chemicals or biological control agents. There are
also variable costs for the application of control methods.
There may be economic, environmental or ecological
restrictions on the use of different methods associated
with the accumulation of toxic chemicals in the
environment, or the risk of failure through premature
build-up of virulence to resistance genes or insensitivity
to pesticides in pathogen populations that could render
the control and investment ineffective. This creates two
problems for the implementation of control. The first is a
strategic issue about the long-term effectiveness and the
corresponding risks of failure associated with different
control strategies. We discuss briefly how the risks can be
ameliorated by buffered implementation of novel control.
The second is how to optimize the deployment of control
when resources are limited or there are other restrictions
on use (such as the risk of failure through over-use).

(a) Buffered implementation of genetic and

chemical control

Following some spectacular failures, increasing atten-
tion is being given to the buffered implementation of
genetical and chemical control methods through time
and space. This is variously done by the cultivation of
refugia of non-resistant or untreated crops, by alter-
nating pesticides through time and space to impose
different selection pressures, and by diversifying the
genetic bases for control. Each demands an under-
standing of the ‘dynamical landscape’ in order to match
the scale of control with the scale of the epidemic. This
is most well advanced for a pest problem involving the
deployment of Bt-resistance for insect pests on maize
and cotton in the US and elsewhere, where there are
mandatory requirements for refugia (Rausher 2001;
Cerda & Wright 2004). By permitting multiplication
and persistence of the sensitive form of the pest
population on susceptible crops within refugia, the
build-up of mutant pests that can feed and reproduce
on the Bt-resistant crops is delayed. Arguably though,
with this and other schemes most attention has focused
on relatively local scales, yet there may be broader
issues for larger scales. For example, should a new
pesticide or resistant variety be released at a continental
scale? Would heterogeneity at a local scale be sufficient
to prevent problems of invasion of pesticide-resistant or
virulent strains at a much larger scale? We do not yet
know. Recent examples for the apparent widescale
occurrence and spread throughout Western Europe of
fungicide resistance forms in the eyespot and mildew
pathogens of wheat suggests that large-scale dynamics
must be considered. These pathogens differ in dispersal
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mode, with eyespot predominantly spread by short-
distance rainsplash whereas mildew can spread over
longer distances by wind. A combination of the
analyses of Aylor (2003) for continental spread
with those of network (Dybiec et al. 2004) and
landscape (Keymer et al. 2000) models may help to
answer these questions.

(b) Economic considerations in the optimization

of disease control

All too often, optimization of epidemiological models
occurs without any formal consideration of economic
or social constraints. Meanwhile, economists and social
scientists frequently address problems that influence
policy for the implementation and deployment of
disease control strategies, but many of the under-
pinning models are biologically naive, lacking, in
particular, insights into stochastic and spatial dynamics
of disease propagation. The two need to be integrated.
Two promising approaches can be adapted from
economic theory. The first concerns decisions about
the implementation or release of new methods for
control under uncertainty. The method is based on
options approaches, originally derived for financial
markets (Dixit & Pindyck 1994) and has been applied
by Morel et al. (2003) and Wesseler (2003) to the
release of Bt resistant maize. Essentially, the problem
suggests that a government or other organization
obtains the right to deploy a genetically resistant crop
within a given time frame. Conventional analysis would
look at a simple cost–benefit analysis, so that a new
variety is released immediately if the net benefits
(calculated as the difference between variable benefits
(e.g. increased yield and revenues) and variable costs
(e.g. decreased pesticide costs)) are greater than for the
conventional crop. Otherwise the variety is shelved. But
this ignores uncertainty in year-to-year variation in pest
damage and yield due to epidemiological and environ-
mental factors, as well as variability in price and other
variables such as input costs. Conventional cost–
benefit analysis also ignores irreversible benefits and
irreversible costs that may accompany the release of a
new variety. Foremost among the irreversible costs is
the risk of the pest overcoming resistance. Reduction in
pesticide residues in groundwater or a decreased risk of
pesticide resistance occurring in the pathogen popu-
lation are examples of irreversible benefits. It follows
that there are now three decisions: to release immedi-
ately; to release at some time in the future when there is
more information to assess whether the benefits exceed
the costs; or not to release at all (Morel et al. 2003;
Wesseler 2003). The time (if at all) for release is
obtained by optimization of a function that incorpor-
ates benefits and costs under uncertainty with a
discount rate on the investment (Morel et al. 2003;
Wesseler 2003). These exploratory analyses show that
the critical value that must accrue for release of a
transgenic crop is amplified in the presence of
uncertainty. Some counter-intuitive results emerge for
analysis of Bt maize, whereby mandatory refuge areas
and tax incentives that might be expected to delay
release actually promote earlier release (Wesseler
2003). Conversely, in illustrating the application
of real options analysis to the release of Bt maize,
Phil. Trans. R. Soc. B (2008)
Morel et al. (2003) argue that while a simple cost–
benefit analysis would favour release, preliminary
allowance for uncertainty did not. The analyses are
based upon assumptions that breakdown of resistance
is inevitable, instantaneous and ubiquitous when it
occurs, and hence that mean field models capture a
spatially heterogeneous system adequately. The con-
sequences of these assumptions for the release of
transgenic crops and pest resistance are discussed from
an epidemiological perspective by Gilligan (2003). It
will be increasingly important in devising strategies for
sustainable disease control to enhance the cross-
disciplinarity between economists and epidemiologists.

A further area of current interest in linking epide-
miological with economic modelling arises when
resources for treatment are scarce or when there are
other constraints over the amount of control (usually
chemical or cultural, but sometimes genetical or
biological) that can be applied. Finding the optimal
control strategy subject to constraint requires estimates
for the cost of treatment and the cost of infection. It also
requires knowledge of the effectiveness of control and
the way that this affects the dynamics of disease, which,
in turn affects the way that control maps onto an
epidemiological model. A simple example for chemical
control is given in figure 2 for an eradicant. Application
of the chemical renders infected plants no longer
infectious, if the scale of interest is the field. A similar
model applies at the regional scale in which the
application of chemical stops an infected field exporting
inoculum. Finding an optimal strategy depends not only
on the instantaneous cost of treatment and cost of
infection but also on the way these change during the
course of an epidemic. Suppose that a treatment has a
long-lasting effect either from a single application or by
repeated applications. Treating too early may be costly
in unnecessary use of chemical. Leaving it till the
epidemic is advanced may be too late to prevent
significant disease losses. It might also mean that there
are more fields to treat, making treatment more
expensive. Finding an optimal solution is challenging
for systems with nonlinear dynamics, even without
allowing for uncertainty and the inherent stochasticity of
the system. Progress can be made using methods from
control theory (Pinch 1993). This requires the
definition of an objective function that incorporates
the costs of treatment and infection. The potential lies in
being able to determine whether or not to spray and if so,
when and for how long. Surprisingly, however, for many
simple epidemiological models, the optimal solution
involves a so-called ‘bang bang’ solution in which all
infecteds are treated and then treatment is stopped at a
particular level of infection or vice versa. Abrupt
changes in turning on or off a control method are
surprising and do not fit comfortably with current
agricultural practice. The introduction of nonlinearities
into the epidemiological model, however, can lead to
‘interior solutions’ in which there is variable treatment of
some but not all infected sites, depending upon the
prevalence of infection. Following early theoretical work
(Gupta & Rink 1973; Sethi 1974, 1978; Greenhalgh
1987) directed at medical applications, there has been
renewed interest in these methods, particularly for
antibiotic resistance and for susceptible–infected–
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susceptible (SIS) models (Goldman & Lightwood 2002;
Rowthorn & Brown 2003) and more recently to the
control of botanical epidemics (Forster & Gilligan
2007). Since they provide a rigorous yet parsimonious
means of analysing the effectiveness of strategies for
control under budget constraints, they are an important
future tool for the analysis of botanical systems.
5. CONCLUDING REMARKS
Although much national and international attention is
currently focused on animal and human disease,
research on the epidemiology of plant pathogens and
the development of sustainable strategies for the
management and control of plant disease has perhaps
never been so pressing. Supported by the potential of
molecular biology to identify new sources for genetical,
chemical and biological controls, the implementation
within globally and locally changing agricultural
environments demands new approaches to durable
control. This, in turn, requires fusion of population
genetics and epidemiology at a range of scales from the
field to the landscape and even to continental
deployment of control measures. It also requires an
understanding of economic and social constraints that
influence the deployment of control. This will involve a
switch in focus from within-field to regional control of
epidemics. I have argued here that this will be
supported by stochastic, spatio-temporal models that
also describe the changing crop mosaic through which
disease spreads.
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