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The amniotes generally lay eggs on land and
are thereby differentiated from lissamphibians
(salamanders, frogs and caecilians) by their
developmental pattern. Although a number of
330–300-Myr old fossils are regarded as early
tetrapods placed close to amniotes on the basis of
anatomical data, we still do not know whether
their developmental pattern was more similar to
those of lissamphibians or amniotes. Here
we report palaeohistological and skeletochrono-
logical evidence supporting a salamander-like
development in the seymouriamorph Discosaur-
iscus. Its long-bone growth pattern, slow diaphy-
seal growth rate and delayed sexual maturity (at
more than 10 years old) are more comparable
with growth features of extant salamanders rather
than extant amniotes, even though they are
mostly hypothesized to be phylogenetically closer
to living amniotes than salamanders.
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The appearance of amniotes is a major evolution-
ary event in vertebrate history (Ahlberg & Milner
1994) allowing tetrapods to become largely indepen-
dent of external water for reproduction and develop-
ment (Sumida & Martin 1997). Knowledge of the
ontogeny of early tetrapods has hitherto been based
exclusively on the continuous evolution of anatomical
features during the ossification, thereby not allowing
one to mark precisely the timing of transition from
one ontogenetical stage to another (e.g. Steyer 2000;
Schoch 2001). Skeletochronology, inferred from
hard-tissue analyses, provides detailed information
about growth, somatic age and sexual maturity in
extant as well as extinct vertebrates (Castanet et al.
1993), especially in dinosaurs (e.g. Padian et al. 2001).
However, there are still no such analyses for Palaeozoic
vertebrates, even though the bone histology of several
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Palaeozoic tetrapods is partly known (e.g. de Ricqlès

1981). Here we demonstrate how fossil bone histology

can illuminate evolutionary problems, such as those

that surround the origin of amniotes.
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In order to understand the evolution of growth

strategies in Palaeozoic tetrapods, this study focus
on the seymouriamorph Discosauriscus austriacus
(Makowsky 1876), generally more closely related to

extant amniotes than salamanders (e.g. Anderson

2007; Ruta & Coates 2007). Long bones of 19 well-

preserved specimens (Klembara 1997; Klembara &

Bartı́k 2000), from the Lower Permian (Czech

Republic), are studied (c.f. electronic supplementary

material). Developmental stages of this growth series

have been determined according to anatomical

features, and exemplars from all stages were selected

(Klembara 1995). Histological and growth patterns

in Discosauriscus are compared with that of extant
morphotypes of the same size and general develop-

mental stage among amniotes and urodeles. Frogs

and caecilians are not considered in this comparison

owing to their distinct morphology and locomotion,

which could bias the measurements of bone growth.
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[-not formatted-]-Limb-bone histology
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This is the first skeletochronological study of a large

fossil growth series of such an ancient early tetrapod.

The mid-shaft bone tissue organization of Discosauriscus
is very similar to that of extant tetrapods of small

body size: saurians (e.g. Lacerta viridis; Castanet 1985)
and urodeles (e.g. Euproctus asper; Montori 1990;

Desmognathus monticola, Castanet et al. 1996). Primary

bone tissue is mostly sub-lamellar (even if locally

lamellar or parallel fibred; figure 1-[-anchor not

formatted-]-a), indicating a relatively slow, well-orga-

nized bone deposition (de Ricqlès et al. 1991). Numer-

ous radial Sharpey’s fibres (S.f.), showing muscle

attachments, are revealed under polarized light (PL) in

many long-bone diaphyses (figure 1b). At the periphery

of the medullary cavity, bone remodelling (erosion/

reconstruction process) leaves a distinct endosteal

margin visible under PL (figure 1a). This endosteal
tissue, made of parallel-fibred bone, shows that remo-

delling, mainly linked to morphogenesis and mechanical

constraints (Francillon-Vieillot et al. 1990), had already

occurred in late larval specimens. The periosteal cortex

is split into numerous growth layers bordered by lines of

arrested growth (LAGs; figure 1). The K-index of the

cortical thinness (Currey & Alexander 1985) indicates

that bone compacta is thinner in the humeri, femora and

radii (0.33!K!0.73) than in the ulnae, fibulae and

tibiae (0.24!K!0.55). Bone trabeculae (b.t.) are

visible in the marrow cavity of the femora and humeri. A

sparse vascularization, composed of primary radial and

longitudinal vascular canals in young specimens, intensi-
fies in the femur, humerus and tibia towards a mainly

radial arrangement among the largest specimens

(figure 1d ). The bone cortex (b.c.) in older specimens is

relatively compact (up to 93%) and characteristic of

mostly terrestrial extant tetrapods (Germain & Laurin

2005).
q
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The long-bone epiphyseal organization of Disco-
sauriscus resembles that of urodeles (e.g. Pleurodeles
waltl; de Ricqlès 1965; figure 1e–g), but the numerous

trabeculae made of parallel-fibred bone and the

absence of calcified cartilage in juvenile individuals

suggest a relatively faster endochondral ossification

and epiphyseal growth. As in living salamanders, the

epiphyses of Discosauriscus were probably covered by

a cartilaginous structure that extended to the meta-

physis (figure 1g). Discosauriscus’ epiphyses have no

secondary centre of ossification, which so far has only

been observed in amniotes (figure 1h).
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[-not formatted-]-Bone growth of the seymouria-

morph Discosauriscus and evolutionary implications[-

not formatted-]-

Long-bone diaphyses of Discosauriscus show a

simple classic LAG pattern as in extant tetrapods

(Castanet et al. 1993). LAGs, separating two tissue
Biol. Lett. (2008)
types of differential bone densities, punctuate quiescent

osteogeneses followed by sudden resumptions,

expressed in living poikilotherms during annual aesti-

vations or hibernations (Castanet et al. 1993). The

LAGs of similar structure in Discosauriscus thus imply

a probable annual periodicity. The skeletochronologi-

cal analysis indicates that Discosauriscus, which lived

under a tropical climate (Ziegler 1990), shows a

seasonal annual life cycle similar to that of extant

tropical Caudata (Castanet et al. 2003). The youngest

sampled specimen was at least 4 years old when it died

(four LAGs; figure 1a), whereas the oldest one was at

least 10 years old (10 LAGs; figure 1d ). A decrease in

the growth-mark width towards the cortical periphery

is obvious in the oldest specimens (figure 1d ),

suggesting that the diaphyseal growth strongly and

definitively slows in thickness from the seventh or

eighth year on. In extant tetrapods, such a transition in

LAG spacing is linked with the acquisition of sexual
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maturity (Castanet et al. 2003). By comparison, it can

be assumed that sexual maturity was reached late in

development and probably not before 9 or 10 years

old, allowing extended larval (until 6 years old) and

juvenile stages (figure 2-[-anchor not formatted-]-a).

Palaeohistology therefore elaborates upon anatomical

data (Klembara 1997) by showing that specimens up

to 10 years old were subadults. Owing to their long-

evity, at least twice the age of acquisition of sexual

maturity in extant urodeles (e.g. E. asper; Castanet

et al. 2003), it can be reasonably estimated that the

overall longevity of Discosauriscus may also be at least

twice the immature period, i.e. at least 20 years.

Finally, the life-history traits revealed by palaeohistol-

ogy support the idea that young individuals lived for a

long time until they reached the subadult stage

(figure 2a) and then left the lacustrine environment for

a more terrestrial life, as already suggested by ana-

tomical data (Klembara et al. 2001). These obser-
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vations confirm previous assertions concerning

changes in environmental habitat co-occurring with

metamorphosis (e.g. Schoch 2002). Discosauriscus
probably became adult during its terrestrial style of

life.

The similarities in bone growth pattern between this

seymouriamorph and urodeles are also confirmed by a

similar average diaphyseal growth rate (26–82 mm yrK1

on average in juvenile femora of Discosauriscus;

48–97 mm yrK1 in lissamphibians of the same size;

de Ricqlès et al. (1991); and 73–120 mm yrK1 in saurians

of the same size; Castanet 1985; figure 2a).

In conclusion, this new palaeohistological analysis

clearly shows that seymouriamorphs retained a sala-

mander-like developmental pattern, although their

limbs were certainly already largely adapted to terres-

trial locomotion. Although the phylogeny of early

tetrapods is still debated (e.g. Vallin & Laurin 2004;

Anderson 2007; Ruta & Coates 2007), this study
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concludes that the salamander-like ossification (epi-
physeal structure, figure 2b–d; diaphyseal deposition)
is a shared primitive trait through the evolution of
tetrapods until closer to the amniote crown. Next it
will be interesting to complete these results by
applying skeletochronology on a growth series of
lepospondyls (remaining up to now impossible given
the scarcity of material) to further test the different
phylogenetic hypotheses.

All animals were anaesthetized and killed by deep freezing
before dissection and did not belong to the CITES list of
protected animals. All procedures were carried out under
the ethics guidelines of France.
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inthodonten “Archegosaurus austriacus nov. spec.”-
Sitzungsber. Akad. Wiss.731876155166

-[-not formatted-]-A.MontoriSkeletochronological results in
the pyrenean newt Euproctus asper (Dugès, 1852) from
one prepyrenean populationAnn. Sci. Nat.
Zool.111990209211

-[-not formatted-]-K.PadianA.de RicqlèsJ.R.HornerDino-
saurian growth rates and bird originsNa-
ture4122001405408doi:10.1038/35086500

-[-not formatted-]-M.RutaM.I.CoatesDates, nodes and
character conflict: adressing the Lissamphibian origin
problemJ. Syst. Palaeontol.5200769122doi:10.10
17/S1477201906002008

-[-not formatted-]-S.SanchezJ.-S.SteyerA.de Ricq-
lèsR.R.SchochLife history-traits of Apateon (Lower Per-
mian of Europe), a key-genus among dissorophoids,
revealed by bone histologyJ. Vert. Paleontol.27Suppl.
32007139A

-[-not formatted-]-R.R.SchochCan metamorphosis be
recognised in Palaeozoic amphibians?Neues Jb Geol.
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