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Introduction
The lives of an estimated 10 million people in the United States are impacted by debilitating
cochlear noise injury acquired in leisure or occupational settings (Kopke et al., 2007). Although
noise injury has been intensively studied for decades, the only clinically successful preventive
measure against noise-induced hearing loss (NIHL) remains a hearing protective device (HPD),
and the only treatment is a hearing aid. We cannot yet identify people who are most at risk in
noisy environments. Even if we could, there is still no practical pharmacological approach to
minimizing hearing loss. HPD use is often uneven and impractical in many settings, and HPD
effectiveness is simply not up to the task in some work environments. A continued broad and
well-funded assault on gaps in our understanding of NIHL remains vital. Significant
discoveries can emerge from studies aimed at seemingly remote facets of noise injury, and
narrowly defining which facets merit study will always be a mistake. Here we briefly review
recent progress in several areas. Particularly exciting recent developments include new
evidence for a phagocytic function of supporting cells in removing damaged outer hair cells
(OHCs), demonstration of large scale inflammatory cell invasion of the lateral wall after noise,
support for strong genetic modulation of injury to the lateral wall, and the discovery of
remarkable interactions between noise and age of exposure. We also update the potential role
in NIHL of the cochlear lateral wall in light of newly discovered functions of gap junctions.
Other recent reviews (Darrat et al., 2007; Hawkins et al., 2005; Henderson et al., 2006; Hibino
et al., 2006; Kopke et al., 2007; Le Prell et al., 2007b; Ohlemiller, 2006; Talaska et al., 2007;
Wangemann, 2006) offer more comprehensive accounts of findings touched upon here.

Most recent studies of noise injury have utilized mouse models. Mice are the best model for
questions that are overtly genetic, and have distinct advantages for aging studies, yet they may
pose limitations for physiologic and biochemical studies. Many strains exhibit pronounced
vulnerability to NIHL (e.g., Ohlemiller et al., 2000a), but still may show less hair cell loss in
the exposure band than guinea pigs or chinchillas (Ou et al., 2000; Wang et al., 2002b). Mice
also remain subject to concerns about the comparability of mechanisms for hearing in the
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audiologic and ultrasonic range. Two increasingly recognized phenomena add caveats to the
touted high degree of genetic control of mouse models. First is environmentally-modulated
epigenetic control of transcription and translation, which can effectively alter genotype by
permanently silencing genes (see below). Second is variation in the number of copies of genes,
which occurs even within inbred strains such as C57BL/6 (B6) (Watkins-Chow et al., 2008).
Copy number variation is thought to arise from faulty DNA repair, and can alter phenotype via
gene-dose effects. Depending on how early it occurs in development, it may render most
individuals chimeric for many genes. Copy number variation may require presently non-
standard tests to account for some differences among nominally genetically identical mice.

No Single Archetype for Noise Injury
Two broad classes of noise exposures and their sequelae may be distinguished (Lim, 1986;
Spoendlin et al., 1973). For every model well-studied from a dose-response perspective, there
exists an inflection point on the noise intensity continuum, above which the extent of hearing
loss abruptly accelerates. The defining anatomic change above this inflection is rupture of the
reticular lamina and wholesale disruption of endolymphatic compartment. For most models,
this is found for intensities above 125–130 dB SPL, although it may fall lower for temporally-
skewed impact and impulse noise (Qiu et al., 2007), and for mice (Wang et al., 2002b). Above
the inflection point, hair cell loss clearly increases; however, we know of only one quantitative
study of changes in non-sensory and supporting cells (Wang et al., 2002b). That study in mice
indicated significant redistribution in the cellular and spatial pattern of injury when scala media
is breached versus when it remains intact. The assumption that scala media remains intact, and
that cellular injury was principally biochemical and less overtly traumatic, attends most of the
findings summarized here.

For severe exposures below the inflection point, injury to the organ of Corti, afferent neurons,
stria vascularis, and spiral ligament is found, and has seemed part of a distinctly mammalian
‘template’ for noise damage. A dramatic ability of genetics to alter the cellular targets of noise
was recently demonstrated in mice (Ohlemiller et al., 2007). B6 mice are notoriously more
vulnerable to NIHL than are CBA/J and CBA/CaJ mice (Erway et al., 1996; Ohlemiller et al.,
2000a), yet they were shown to be resistant to noise-induced reversible endocochlear potential
(EP) reduction and associated cell pathology found in the lateral wall and limbus of CBAs after
noise (Fig. 1). Anatomical correlates of the injury in CBAs included acute changes in Type I
and II fibrocytes, as well as strial basal cells. These same cells were reduced in number by
about 30% at 8 wks post-exposure in CBAs, while B6 mice showed no significant loss.
Examination of F1 hybrid and N2 backcross mice indicated that strain differences could be
explained assuming 1–2 large effect quantitative trait loci (QTLs), and were independent of
Cdh23ahl and strial melanin expression. Such findings point to independent genetic modulation
of noise injury to the organ of Corti versus lateral wall. Although permanent lateral wall injury
observed in CBA mice may not directly contribute to permanent threshold shifts (PTS), the
acute changes in the same cells may reflect processes that amplify NIHL at the time of exposure
(see below). It is also possible that moderate cell loss in the stria and ligament reduces the long
term ‘homeostatic capacity’ of the cochlea, and accelerates apparent aging. These new findings
emphasize the need for caution in extrapolating observations from any single model—even
beyond any single strain within a species.

Risk Factors for NIHL
Prenatal and epigenetic factors

Environmental stress on the mother during pregnancy is known to negatively impact the
development and stress responses of her offspring (Barker, 1995, 1998). Stress-related chronic
elevation of glucocorticoids in utero may favor the growth of some organs and systems at the
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expense of others. ‘Losers’ in such a scenario may include inner ear tissues, which could end
up with fewer blood vessels and progenitor cells (Barrenäs et al., 2003; 2005). Barrenas and
colleagues suggest that prenatal stress in humans leads to a combination of depressed birth
weight and adult stature, plus elevated hearing thresholds that may reflect sensitivity to noise.
Support for this principle has come from recent work in pregnant rats subjected to different
types of stressors (Kadner et al., 2006). Elevated maternal glucocorticoids may permanently
impair innate protective mechanisms such as antioxidant defenses. Canlon and colleagues
(Canlon et al., 2003) have presented evidence that such a process can promote noise
vulnerability later in life (See Hougaard et al., 2007 for contrary result.).

The prenatal environment may exert its effects partially through epigenetic modifications to
DNA. In utero and early life events can modify gene expression via methylation of DNA and
resulting histone repression of transcription, and also post-transcriptionally through de-
methylation and activation of microRNAs (Feil, 2006; Gallou-Kabani et al., 2007). This
process governs tissue differentiation during development, but only recently has its influence
beyond developmentally regulated genes been recognized. Based on a mix of environment
(uterine and postnatal) and stochastic processes, anyone may effectively become hemizygous
or genetically null for many genes. Cell epigenotypes are passed on in somatic cell mitosis
and can be passed to offspring. Even more surprisingly, epigenotype can be inherited according
to rules that seem to violate Mendel’s laws (e.g., imprinting and trans-generational inheritance).
Since hearing-related genes are not immune to this process, epigenetic principles seem likely
to complicate human and animal studies of genetic influences on acquired hearing loss.

Environmental factors in adulthood
Oxidative stress and hypoxia/ischemia are implicated in NIHL. Environmental factors that
amplify cochlear oxidative stress and impair blood flow might therefore be anticipated to
exacerbate noise injury. New evidence supports such an effect by volatile industrial compounds
such as toluene and ethylbenzene (Fechter et al., 2007), smoking (Uchida et al., 2005; Wild et
al., 2005), and hyperlipidemia (Chang et al., 2007). These factors may interact synergistically.
Their impact will further depend on genetic alleles that influence cochlear blood flow, cochlear
protective systems, and the robustness of preconditioning effects (see below).

Genes known to impact NIHL
Certain alleles of several known genes promote permanent NIHL in mice. The best-studied
among these is Cdh23ahl, which promotes noise injury in B6 mice, and presumably many other
strains (Johnson et al., 2000; Johnson et al., 1997). Yet even when the influence of Cdh23ahl

is removed from B6, it has been noted that these mice remain more noise susceptible than CBA/
J or CBA/CaJ (Ohlemiller et al., 2007; Ortmann et al., 2004). Recently, another pro-NIHL
locus has been isolated, Ahl3 on chromosome 17 of B6, that may help explain this residual
difference (Morita et al., 2007). New discoveries of alleles that promote noise-induced
temporary threshold shifts (TTS) derive from knockout (KO) mice for NFκB activation (Lang
et al., 2006a), KOs for estrogen receptor β (ERβ) and aromatase (Meltser et al., 2008), and
KOs for orphan glutamate receptor δ1 subunit (GluRδ1) (Gao et al., 2007). The exact
mechanism by which GluRδ1 deficiency promotes TTS is unclear, although the proximate
cause appears to be reversible EP reduction. NFκB deficiency may magnify excitotoxic injury
to afferent dendrites (Tahera et al., 2006b), and appears to promote a degenerative process that
resembles neural presbycusis (Lang et al., 2006a). ERβ and aromatase deficiency may similarly
magnify excitotoxic injury, perhaps by reducing levels of brain-derived neurotrophic factor
(BDNF) (Meltser et al., 2008). Mutations affecting hair cell ion channels could also impact
noise vulnerability, and in fact, increased PTS has been now found for mice deficient in the
BK calcium-activated K+ channel expressed by basal OHCs (Engel et al., 2006).

Ohlemiller Page 3

Hear Res. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Genetically-based variation in noise sensitivity is established in humans (e.g., Heinonen-
Guzejev et al., 2005), and recent work has revealed some genes that may be involved. Based
on work in mice, genes mediating cochlear protection offer candidates for pro-NIHL alleles in
humans (Fairfield et al., 2005; Ohlemiller et al., 1999; 2000b; Sugahara et al., 2003). This
notion has found support in recent human genetic studies. Certain alleles of genes encoding
heat shock protein HSP70 isoforms (Yang et al., 2006), and antioxidants paraoxonase and
manganese superoxide dismutase (SOD2) (Fortunato et al., 2004) may promote NIHL. Some
alleles of KCNE1, which encodes a potassium channel regulatory subunit, may also worsen
NIHL (Van Laer et al., 2006). The major cochlear function of this protein is to impart control
of K+ flow from strial marginal cells into scala media. As we will consider further, modulation
of KCNE1/KCNQ1 channel complexes by ATP and Ca++ (Housley et al., 2002; Lee et al.,
2008) may constitute a protective mechanism against NIHL.

The role of strial pigmentation has long been of interest because of anticipated protective effects
of melanin against noise and ototoxins (Meyer zum Gottesberge, 1988). Although animal
studies of this issue can be based upon direct characterization of strial melanin, human studies
have had to rely on proxy measures of skin and eye color. Except in the case of albinism, skin
color seems a poor indicator of the amount of strial pigment (Bonaccorsi, 1965; Tota et al.,
1967 (cited in Cunningham et al., 1982)). Eye color may represent a better index of the amount
of strial melanin, but not necessarily of type (Barrenäs, 1997; Bartels et al., 2001). Melanin
comes in multiple forms, depending in part on what alleles are present at the agouti (A) locus.
Not all melanins appear equally beneficial: Eumelanin (black melanin) may be protective,
while pheomelanin (red melanin) may actually promote injury by pro-oxidant activity. The
dominant A allele generally switches melanin production from eumelanin to other forms.
Agouti has been assumed to be expressed in the cochlear stria, but this is has not been tested.
Retrospective human studies of noise-exposed workers stratified by eye color have produced
quite mixed results (Attias et al., 1985; Cunningham et al., 1982). However, a recent study of
a large sample of metal workers (Da Costa et al., 2008) obtained a ~9 dB sensitivity difference
between ‘dark-eyed’ and ‘fair-eyed’ subjects having a history of moderate work-related noise
exposure. Animal data bearing on this issue are inconclusive, and often have relied on sub-
optimal genetic controls. Commercial pigmented and albino rabbit and guinea pig models used
for some studies (Borg et al., 1995; Conlee et al., 1986) differ genetically. Any apparent
differences between these may therefore be unrelated to pigmentation. Albino and pigmented
inbred mouse strains are subject to the same confound unless they exist as single-mutation
variants within the same strain. One well-controlled study (Bartels et al., 2001) compared co-
isogenic pigmentation variants within B6, both in terms of the actual amount of strial eumelanin
present and susceptibility to noise. Notably, the dominant Ay agouti allele did not promote
significant pheomelanin production in the stria. Moreover, the absence of melanin in C57BL/
6-Tyrc-2J mice, which are albino, had no influence on the extent of PTS. Our own recent
comparisons of the effects of broadband noise (110 dB SPL, 2 hr) and aging (>24 mos) on the
EP in B6 and C57BL/6-Tyrc-2J albino mice (Ohlemiller et al., 2007; 2008) revealed modest
but statistically significant (~10 mV) reductions for both conditions only in the albinos. While
the EP probably recovers from noise, the common thread linking these findings to the recent
positive results in humans may be reduced resilience of the non-pigmented stria. If this is
correct, repeated moderate noise exposures may reveal differences in PTS between albino and
pigmented B6. The larger principal of interest here is not whether albinism can promote NIHL.
Rather, it is whether any of the >25 genes that impact the amount, type, or distribution of strial
melanin can, for some allele combinations, render some individuals more vulnerable to noise.
No single experiment or strain can provide a universal answer to this issue, since multiple genes
will influence the outcome.

Ohlemiller Page 4

Hear Res. Author manuscript; available in PMC 2009 November 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Death Comes to the Organ of Corti
Repair and partial restoration of function to the organ of Corti after noise injury requires re-
establishment of boundaries and removal of dead and moribund cells. Involvement of
macrophages in this process has long been recognized (Fredelius et al., 1990), although the
existence of resident macrophages has been questioned. Recent experiments (Abrashkin et al.,
2006) reveal a macrophage function for supporting cells—especially Deiters’ cells—in
removing debris from dying OHCs. This makes sense, in that it falls to Deiters’ cells to restore
the junctional integrity of the reticular lamina after OHC loss. Dying hair cells have generally
been considered to follow either apoptosis or necrosis (oncosis), depending on the severity of
their injury. Careful examination, however, has revealed an apparent mode of OHC death that
adheres to neither of these (Bohne et al., 2007). The existence of a novel ‘third pathway’ (the
authors’ term) in the organ of Corti may reflect the need to maintain ionic boundaries in the
damaged organ.

Other recent discoveries pertain to the nature of apoptosis as a mechanism for sensory cell
degeneration. Two major apoptotic pathways are recognized: extrinsic and intrinsic
(mitochondrial) (Van De Water et al., 2004), both involving caspases. Some evidence,
however, points to an additional caspase-independent mitochondrial pathway, and it has
remained unclear whether, and how, this pathway may operate in the cochlea. According to
recent findings (Han et al., 2006; Yamashita et al., 2004), in addition to cytochrome C release
(which engages caspases) distressed mitochondria release Apoptosis-Inducing Factor (AIF)
and endonuclease G (endoG) into the cytoplasm. One or both of these then migrate into the
cell nucleus and initiate DNA fragmentation. The mechanism linking cell stress to the
mitochondrial response may depend on dysregulation of cytosolic calcium and subsequent
activation of Bcl-2-associated death promoter (BAD) (Vicente-Torres et al., 2006). BAD is
thought to migrate into mitochondria and sequester anti-apoptotic proteins, leading to
permeabilization of the mitochondrial membrane, followed by release of cytochrome C, AIF,
and endoG. Nitric oxide (NO), produced either in the cytosol of OHCs or within mitochondria,
has also recently been advocated as a key initiator of the caspase-independent mitochondrial
pathway (Shi et al., 2007b).

Noise-induced Phagocyte Invasion of the Lateral Wall
Hematopoietically-derived cells are observed within the perilymphatic scala after cochlear
inoculation with antigens (Ma et al., 2000; Ryan et al., 2002; Satoh et al., 2002). Only recently
has the scope of noise-related invasion also been recognized. Experiments in mice by Hirose
and colleagues (Hirose et al., 2005) and other groups (Tornabene et al., 2006) have revealed
large scale influxes of mononuclear phagocytes, peaking about 7 days after a single damaging
exposure (Fig. 2). In the Hirose et al. study, the invading cells appeared to emerge from the
Type IV fibrocyte region of the spiral ligament to take up positions in superior ligament, stria
vascularis, and spiral limbus. Phagocytes may be drawn to the ligament by cytokines such as
CCL2 (MCP-1), IL-6, IL-1β, and TNFα (Fujioka et al., 2006; Ichimiya et al., 2000; Yoshida
et al., 1999a), all known to be expressed by fibrocytes and fibroblasts upon sensing stress-
related changes in their surroundings (Gallit et al., 1994; Schonherr et al., 2000). Within the
cochlea, conditions to which these cells react may include hypoxia/ischemia, osmotic stress,
and changes in tensile stress exerted by the collagen scaffold to which they attach (Grinnell,
2000). Capillary endothelial cells within the ligament may also secrete chemotactic factors
(Shi et al., 2007a). Once released, cytokines appear to act in both autocrine and paracrine
fashion to promote further cytokine release (Ichimiya et al., 2000; Yoshida et al., 1999a).

What are the invading phagocytes doing? Most likely, one function is removal of debris, given
that the largest mobilization of phagocytes is seen in regions of the ligament where noise-
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related cell loss is most evident (Hirose et al., 2005; Ohlemiller et al., 2007; Wang et al.,
2002b). Consistent with this interpretation is the fact that phagocytes appear in the spiral limbus
of CBA-related mice, in which noise-related fibrocyte loss is pronounced (Hirose et al.,
2005), but not in spiral limbus of B6 mice, in which little permanent limbus damage may occur
(Ohlemiller et al., 2007; Sautter et al., 2006). Another process that may operate in parallel is
for migratory hematopoietically-derived cells to serve as progenitors to replace lost fibrocytes
(Lang et al., 2006b). Ohlemiller and Gagnon (2007) noted that the modest amount of cell loss
in the ligament of CBA/J mice seen 8 wks after exposure seemed inconsistent with the number
of pyknotic nuclei found 24 hrs after noise, and suggested that these cells are probably replaced.
By contrast, little cell replacement seems to occur in the limbus despite an invasion of
hematopoietically-derived cells rivaling that in the ligament. Perhaps in the limbus,
phagocytosing and replacement functions do not coincide.

Even extensive fibrocyte loss in the spiral ligament is not necessarily associated with permanent
EP reduction (Ohlemiller et al., 2006; Wu et al., 2003). One might therefore anticipate that
manipulation of chemotactic factors that draw phagocytes to cochlear connective tissue would
have little effect on eventual recovery of thresholds from noise. In fact, neither a knockout of
chemokine CCL2 nor its receptor CCR2 affected threshold recovery (Sautter et al., 2006). The
surprise, however, was that absence of CCR2 greatly increased hair cell loss, even though the
phagocytes from which CCR2 had been eliminated were still recruited to the cochlea. Just how
elimination of a receptor from phagocytes that apparently remain in the lateral wall and never
enter the organ of Corti can impact hair cell survival seems difficult to explain. The authors
provide two hypotheses. First and simplest, as-yet-undetected CCR2 receptors on hair cells or
supporting cells may mediate a protective effect that employs a ligand other than CCL2. The
second hypothesis is that the essential CCR2 receptors normally reside on one or more
populations of invading macrophages, and that elimination of CCR2 removes safeguards from
some harmful action of these cells. This hypothesis appears to require that macrophages migrate
into the organ of Corti. As an alternative, we propose that the critical CCR2 receptors reside
on spiral ligament fibrocytes where they participate in control of gap junctions. As we consider
in the next section, gap junctions may serve complex functions that extend far beyond K+

regulation.

The findings of Hirose and colleagues raise the intriguing possibility that inflammation can
confer protection of sensory organs. This would run counter to many earlier studies of cochlear
inflammation, although most of these involved viral infection or instillation of an antigen
directly into the cochlea (Ryan et al., 2002; Woolf, 1996). Reported protection against NIHL
by glucocorticoids and other steroid anti-inflammatories (Sendowski et al., 2006; Tabuchi et
al., 2005; Takemura et al., 2004) also argues against a beneficial role of inflammation, although
steroids may also act through antioxidant and anti-apoptotic effects (summarized in Sendowski
et al., 2006). One biochemical process by which leucocytes may invade the lateral wall after
noise exposure was recently characterized by Shi and Nuttall (Shi et al., 2007a). Noise activates
poly (ADP-ribose) polymerase-1 (PARP-1), a DNA repair enzyme, in capillary endothelial
cells of the stria and ligament. PARP-1, it was suggested, may act through transcription factor
NFκB to cause expression of leukocyte adhesion factors ICAM-1, PECAM-1, and P-selectin
by capillary endothelial cells. The resulting slowing and adherence of leucocytes to capillary
walls may serve both to impair blood flow and promote leukocyte extravasation into spiral
ligament, which was interpreted to represent a purely pathological event.

Noise Injury to the Organ of Corti versus Cochlear Lateral Wall
Among the many cellular targets of noise injury, most permanent threshold shifts appear
explainable in terms of hair cell loss, non-lethal injury to hair cells, or changes in the cellular
makeup or conformation of the organ of Corti (Chen et al., 2003; Hamernik et al., 1989;
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Liberman et al., 1978; Ou et al., 2000; Wang et al., 2002b). While EP reduction may contribute
to acute threshold shifts, under most exposure conditions, the EP probably recovers (Hirose et
al., 2003; Ohlemiller et al., 2007). Since generation of the EP involves regulation of many ions
including Na+, K+, Ca++, Cl−, and H+ (Hibino et al., 2006; Wangemann, 2006), and since the
EP further requires maintenance of scala media boundaries, we submit that recovery of the EP
indicates recovery of normal cochlear fluid homeostasis. Some permanent cell loss within stria,
ligament, and limbus probably can probably be tolerated because of redundancy of cells, and
perhaps cell functions, in these structures. The point of the foregoing is this: Based on the
apparent physiological and anatomical recovery of the cochlear lateral wall, no obligate role
for the lateral wall in determining the amount of noise-related PTS is indicated. Studies that
assert such a link should make clear by what mechanism it is supposed to operate, and whether
it is based on events at the time of exposure or permanent lateral wall dysfunction. Given that
some innate protective mechanisms may decrease the EP and reduce strial K+ efflux (Housley
et al., 2002; Lee et al., 2008), it is quite possible that EP reduction by noise partially offsets
any harmful effects of lateral wall injury (Kanno et al., 1993). As a model—or target—for
future experiments, we will argue that acute lateral wall injury can increase the severity of PTS
through mechanisms dominated by ‘non-traditional’ functions of gap junctions.

Disruption of gap junctions by noise
Channels composed prominently of connexins 26 and 30 (Cx26, Cx30) link Deiters’, Hensen’s,
Claudius, and outer sulcus cells to form a continuous path for K+ ions into extracellular spaces
of the spiral ligament (Hibino et al., 2006; Wangemann, 2006). Once in the ligament, they are
actively taken up by Type II and IV fibrocytes for conveyance to the stria vascularis via another
junctional network connecting fibrocytes and strial basal cells, intermediate cells, and
pericytes. Genetic impairments of mechanisms for removing K+ from the fluid immediately
surrounding hair cells (Boettger et al., 2002; Boettger et al., 2003; Cohen-Salmon et al.,
2002), and for moving K+ though the ligament (Delprat et al., 2005; Minowa et al., 1999),
promote hair cell loss. The typically modest permanent effects of noise on the lateral wall seem
unlikely to exert such dramatic effects. The acute phase of noise injury, however, could feature
failure of ion regulatory mechanisms on a sufficient scale to impact the organ of Corti. Potential
mechanisms for this include reversible mechanical disruption, as well as osmotic or redox-
based reduction of gap junction conductance (Anand et al., 2005; Chanson et al., 2005). It could
be just such processes that are ameliorated by certain chemokines, receptors, or macrophages,
thus accounting for apparent protective effects of CCR2 (Sautter et al., 2006). Notably, gap
junction uncouplers can produce acute lateral wall pathology resembling that caused by noise
(Hirose et al., 2003; Ohlemiller et al., 2007; Spiess et al., 2002).

Functions of gap junctions beyond K+ transport may protect the organ of Corti
The effects of impaired intercellular communication in noise injury need not be limited to
K+ dysregulation. Certainly, elevated extracellular K+ can alter cell membrane potentials and
influence excitability, yet it is not clear just how cytotoxic K+ is, or how readily it promotes
cell death in the organ of Corti. Burgeoning evidence from an active and exciting area of inquiry
(Beltramello et al., 2005; Zhang et al., 2005; 2006) indicates that the role of gap junctions
extends beyond intercellular K+ trafficking to encompass bidirectional movement of ATP,
Ca++, cyclic AMP, and inositol triphosphate (IP3). This traffic may serve both communication
and nutritive functions. Ca++ ‘waves’ may expedite movement of ATP and IP3 as part of a
coordinated response to local noise injury (Gale et al., 2004; Piazza et al., 2007). Newly
revealed roles for coupled connexins, connexin hemi-channels, and even cytosolic connexins
(Krysko et al., 2005; Lin et al., 2003; Zhao et al., 2005) add yet more potential modes of
interaction between the organ of Corti and lateral wall during noise exposure. At least for
molecules less than ~1 kilodalton in size (Matsunami et al., 2006), a significant aspect of this
interaction could be flow of metabolites from capillaries in the ligament and stria to the organ
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of Corti. Most nutrients are assumed to reach the organ through perilymphatic spaces rather
than endolymph (e.g., Ito et al., 1993). Since ligament fibrocytes must be able to take up
nutrients from both strial and ligament capillaries, reduction in distance and increased
efficiency could be obtained by conveying these to the organ via gap junctions.

Contributions of the lateral wall to permanent injury of the organ of Corti and NIHL seem more
likely to reflect acute disruption of extended functions of gap junctions than K+ regulation.
K+ may be indirectly involved, insofar as acute elevation of K+ in the extracellular space may
contribute to gap junction uncoupling. Some noted changes in lateral wall function, such as
reduction in activity of Ca++- and Na+/K+-ATPases, shown to occur in the acute phase after
noise (Cheng et al., 2008; Hsu et al., 2000), are probably correlated--rather than causal--events
that coincide with reversible EP reduction. A potential limitation for two-way communication
schemes utilizing gap junctions is discontinuity of the syncytium between the outer sulcus cells
and Type II fibrocytes. Presumably only molecules actively taken up the ‘downstream’ cell
could travel much of the distance between stria and organ of Corti.

Type IV fibrocytes in PTS
Type IV fibrocytes may be dramatically reduced in number by noise (Wang et al., 2002b), and
some investigators have attributed to these a significant role in hearing loss. This is certainly
plausible. Among all fibrocytes, these cells in particular can be decimated by noise, potentially
giving rise to mechanisms for hair cell loss described above. There is disagreement, however,
regarding whether K+ moves principally through the organ of Corti or scala tympani. Outer
sulcus cells, whose root processes interdigitate with Type II fibrocytes, seem ideal for
transporting K+ from the lateral organ of Corti. Type IV fibrocytes reside more inferiorly within
highly porous bone, and seem well-positioned to take up K+ from perilymph. The extent of
participation of Type IV cells in essential gap junction signaling functions is unknown. We
and others (Gao et al., 2007) have emphasized their possibly redundant role, and the lack of
clear evidence that their loss promotes hearing loss. Type IV fibrocytes do not appear to express
Na-K-Cl cotransporter at the same levels as do Type II fibrocytes (Kikuchi et al., 2000a;
2000b), and may not be as critical for K+ transport.

Opposite effects of the same cascades
Apparent contradictions may cloud the role in NIHL of signaling cascades that are protective
only under narrow conditions, or that operate in organ of Corti and lateral wall with opposite
effects. Transcription factor NFκB and nitric oxide offer good recent examples (Fujioka et al.,
2006; Masuda et al., 2006). Noise-related activation of NFκB can upregulate inducible nitric
oxide synthase (iNOS). The resulting NO generation may preserve cochlear blood flow in the
lateral wall, but may also promote peroxynitrite production and nitrosative stress in both the
lateral wall and organ of Corti (Shi et al., 2007b). By contrast, NFκB activation within radial
afferent dendrites may aid Ca++ regulation and reduce excitotoxic injury (Tahera et al.,
2006b). As we also considered (Shi et al., 2007a), noise-related NFκB activation in the lateral
wall would be expected to promote vasodilation, but in doing so apparently also promotes
leucocyte adhesion and inflammation. The good guy/bad guy status of NFκB and NOS may
be clarified using KO mouse models. At least on certain genetic backgrounds (Lang et al.,
2006a), the absence of NFκB appears deleterious. To our knowledge, unambiguous effects on
NIHL of eliminating one or more NOS isoforms have not yet been demonstrated.

Protective Mechanisms
Noise exposure engages a number of innate protective and repair mechanisms. These operate
at multiple levels, encompassing brain-coordinated protective systems such as middle ear
reflexes and cochlear efferents, paracrine signaling among inner ear cells, and subcellular
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biochemical cascades. Genetic polymorphisms that impact the efficacy of innate protections,
as well as their enhancement by preconditioning effects, probably account for some inter-
individual variation in noise susceptibility. Recent developments in this area include new
evidence for protection by lateral efferent neurons, new details regarding mechanisms of sound
conditioning, and a new form of preconditioning.

Cochlear efferent systems
Evidence indicates that the strength of the medial olivocochlear (MOC) efferent reflex can
account for some inter-individual differences in noise susceptibility (Maison et al., 2000) (See
Wagner et al., 2005 for contrary result.). In keeping with this, genetically-engineered
enhancement of the MOC system appears protective against both TTS and PTS in mice (Maison
et al., 2002). New evidence (Darrow et al., 2007) now implicates the lateral (inner hair cell
afferent) olivocochlear (LOC) system in resistance to TTS. It is suggested that LOC activity
reduces excitotoxic injury to afferent dendrites, thought to represent a major component of
TTS.

There remains disagreement as to whether resistance to noise injury would have presented
significant selective pressure to steer the evolution of cochlear efferent systems (Kirk et al.,
2003). Protection from noise may only be a by-product of other selective pressures, most likely
detection of signals in noise. However, the same objection applies to protective subcellular
cascades (e.g., antioxidants, heat shock proteins) that have been shown to mitigate NIHL. These
arose in response to the survival needs of eukaryotic cells long predating the cochlea, yet are
engaged in the cochlea by noise stress. Complex paracrine signaling systems, such as purinergic
mechanisms we consider next, are more difficult to divine from an evolutionary drive
perspective, since they may engage competing—even opposing—processes. Regardless of
how and why they evolved, these systems and cascades appear to have found new utility against
noise, and mutations that impair their function may have new consequences.

Purinergic regulation and signaling
Noise exposure promotes the release into endolymph of adenosine and adenosine triphosphate
(ATP) (Ford et al., 1997; Munoz et al., 2001). These act in paracrine manner on cells lining
scala media, both by direct gating of ion currents, and via G-protein-coupled cascades.
Adenosine receptors are widely distributed in the organ of Corti, spiral ganglion, and lateral
wall (Vlajkovic et al., 2007), and are upregulated by noise (Ramkamur et al., 2004). Application
of adenosine analog R-phenylisopropylaenosine (R-PIA) has been shown to reduce NIHL in
chinchillas (Hu et al., 1997), and may also effect protection by activating antioxidant systems
(Ramkamur et al., 2001). The primary source of noise-elicited endolymphatic ATP release
appears to be marginal cells of stria vascularis (Munoz et al., 2001; White et al., 1995). Like
adenosine receptors, ATP receptors are widely distributed around the luminal surfaces of scala
media (Lee et al., 2001; Mockett et al., 1994; Mockett et al., 1995). Because ATP can be toxic,
endolymph also contains enzymes (ectonucleotidases) that hydrolyze ATP to ADP (Vlajkovic
et al., 2002). These are up-regulated by noise in parallel with ATP levels (Vlajkovic et al.,
2004; 2006). We have already considered that Ca++ waves transmitted through gap junctions
within the organ of Corti (and perhaps lateral wall) facilitate rapid ATP movement, potentially
as part of a response to noise injury (Gale et al., 2004; Piazza et al., 2007). ATP in the organ
may in part act directly on mechanics to reduce cochlear amplification (Bobbin et al., 2005).
Another way to reduce the responsiveness of the cochlea is to reduce the currents that drive
hair cell receptor potentials. Additional protective effects of ATP are thought to arise from its
activation of a K+ shunt conductance that lowers the input resistance of scala media and reduces
the EP (Munoz et al., 1995; 1999; Thorne et al., 2004). While the current shunt runs through
many cell types, a particularly active sink for K+ appears to be the outer sulcus cells (Lee et
al., 2001). K+ release from strial marginal cells is also subject to ATP-mediated negative
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feedback acting through a G-protein-triggered cascade (Marcus et al., 1998; 2005). In sum,
purinergic regulatory systems in the cochlea appear to constitute a protective mechanism that
is probably genetically modifiable (Van Laer et al., 2006). They may also fine-tune both
cochlear micromechanics and fluid homeostasis to maintain constancy of hearing sensitivity.

Preconditioning phenomena
Pharmacologic approaches to preventing NIHL have been, with few exceptions, only
somewhat successful. This may reflect a tendency of exogenous agents to throw complex
protective feedback loops out of balance. For this reason, any single agent may both promote
and impair innate protective mechanisms (See Endo et al., 2005 for similar complication in a
transgenic mouse.). Another approach is preconditioning. That is, engaging innate protection
using mild stress, thereby conferring protection against later, more severe stress.
Preconditioning has the potential to activate multiple endogenous mechanisms in a coordinated
manner and thus produce clearer net benefits. Preconditioning engaged by moderate heat,
ischemia, hypoxia, or hyperoxia has been found effective against injury in many tissues,
including brain, heart, and retina (Dirnagl et al., 2003; Gidday, 2006; Pasupathy et al., 2005;
Ran et al., 2005). In the cochlea, preconditioning protection accrues from mild heat (Yoshida
et al., 1999b), sound (Canlon, 1997; Niu et al., 2002; Yoshida et al., 2000), and restraint (Wang
et al., 2002a). Canlon and colleagues (Tahera et al., 2006a; Tahera et al., 2007; Tahera et al.,
2006b) have proposed that glucocorticoids mediate protection by sound and restraint, although
most data have been obtained in the context of neuronal injury during TTS. New evidence now
adds mild hypoxia (4 hr 8% O2) to the list of effective preconditioning methods in mice
(Gagnon et al., 2007). Protection from PTS by hypoxia was shown to differ between inbred
strains, such that CBA/J and CBA/CaJ mice benefited, while B6 did not. Strain effects were
suggested to be due to differences in the activation of hypoxia-inducible factor 1α (HIF-1α).
Hypoxia, heat stress, loud sound, etc., are not immediately convertible to practical therapies,
of course. However, pharmacologic mimicry of these by applying agonists for upstream events
may ultimately have advantages over some other agents.

Noise Injury as a Contributor to Presbycusis
Degeneration due to noise and aging converges on the same three principal cochlear structures,
namely organ of Corti, neurons, and stria vascularis. Unlike aging, the generally accepted
picture of noise injury has been one of a stable lesion that may interact with aging in a additive,
less than additive (Boettcher, 2002; Mills et al., 1997), or sometimes super-additive way (Miller
et al., 1998). Overall similarity of the main focus of noise injury and sensory presbycusis—the
organ of Corti—has led us and others to propose overlap of mechanisms. To our knowledge,
no one has proposed similar overlap for noise and strial presbycusis, although it cannot be ruled
out that subtle strial injury is unstable and eventually promotes EP reduction. The great recent
surprise has been that early noise exposure in CBA/CaJ mice—even exposure that does not
cause measurable NIHL—can lead later in life to accelerated loss of spiral ganglion cells
(Kujawa et al., 2006). This neuronal loss, which occurs even in the absence of hair cell loss
(Fig. 3), dominates late-life hearing loss, and effectively creates neural presbycusis. The
authors propose that early exposure in mice (<4 mos of age) may irreparably alter trophic
interactions needed for neuronal survival, or promotes acute or chronic excitotoxicity (See also
Pujol et al., 1991). These findings are certain to force a re-examination of the stability of NIHL
as a function of age and genetics. Future developments along this line of experimentation may
re-energize research in presbycusis.

New Pharmacologic Interventions
Recent studies have tested the protective ability of a wide variety of compounds against
permanent NIHL. Given that benefit accrues from application of many types of antioxidants,
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growth factors, calcium antagonists, and anti-apoptotics, there is hope that some combination
of these can ultimately be shown practical in humans, assuming they can be applied orally, and
in time. As can be gleaned from Table I, most of the newer studies (>2005) have focused on
antioxidants. The efficacy of any single antioxidant may be limited by several factors, including
limited access to cellular compartments, action against only few forms of ROS, interference
with redox-based signaling, or a tendency to throw innate ROS protections out of balance. In
addition, the mechanisms of noise injury encompass parallel pathways that are not limited to
oxidative stress. Thus, therapies combining multiple antioxidants, or antioxidants plus other
agents, may have advantages over single-agent approaches. At present, we know of two trials
using combination therapies that have demonstrated clear additive or multiplicative
interactions (Choi et al., 2008;Le Prell et al., 2007a).

Conclusions
Unclear assumptions regarding exactly how events in the cochlear lateral wall are supposed to
mediate PTS have rendered some recent noise exposure results difficult to interpret. Noise can
permanently affect both the organ of Corti and lateral wall, but the extent of PTS is probably
established by injury to the organ of Corti alone. Therefore, any exacerbation of PTS by events
in the lateral wall must be assumed either to occur acutely at the time of exposure, or through
ongoing effects of permanent injury to the spiral ligament and stria vascularis. Such a long
term influence has the potential to produce unstable injury, which is counter to most
conceptions of NIHL. As a framework for new experiments, we propose that the lateral wall
does indeed modulate noise injury to the organ of Corti. However, it is not the extent of
permanent injury to the lateral wall, but rather the degree of acute disruption of gap junctions
connecting the organ and spiral ligament that sets the amount of PTS. In accord with mounting
evidence, gap junctions are taken to mediate two-way passage of signaling molecules and
nutrients needed to maintain the organ of Corti, and protect it from noise injury. The role of
K+ dysregulation may primarily be to disrupt gap junction conductance.

New developments undermine some long-held assumptions about NIHL in mammals. It
appears necessary to re-examine generalizations about exactly which cochlear cell types are
killed or impaired by noise. We cannot use guinea pigs—or even other mouse strains—to infer
necessarily what genes are expressed or what pathways are activated in, say, the CBA/CaJ
mouse cochlea after noise. It is also necessary to reconsider the role inflammation triggered
by noise exposure. Exposure results in young animals challenge the presumed stability of PTS,
and the independence of noise- and age-related pathology. If we add to these the potential
confounds posed by developmental stress, inadvertent preconditioning, epigenetic effects, and
gene copy number, a ‘complete’ set of controls for any experiment becomes infeasible, and
the caveats attending all findings become too many to list. Which models are most relevant to
human NIHL? Which conditions? They all are. We simply need to recognize the
incompleteness of any one model and experiment.
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Figure 1.
A. Comparison of endocochlear potentials (EPs, recorded in the basal turn) in different strains
of mice within hours of a single noise exposure. C57BL/6J (B6) mice showed no significant
EP reduction, nor did co-isogenic white-bellied agouti (Aw) mice, or congenics lacking the
Cdh23ahl allele. Co-isogenic albino B6 mice showed a small but significant EP reduction
compared to unexposed mice of the same strain (not shown). CBA/J and CBA/CaJ mice showed
larger and highly significant EP reduction, as did B6xCBA/J F1 hybrid mice. EP reduction in
the hybrids indicates that reduction is dominant between these two strains. (Adapted with
permission from Ohlemiller 2006) B. Appearance of the lateral wall in the cochlear upper basal
turn of example B6xCBA/J F1 hybrid mouse in the acute period after noise. The hybrids
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showed pathology like that in CBA/J, including shrinkage of Type I fibrocytes (arrow) and
vacuolization of both Type II fibrocytes (inset) and strial basal cells (arrowheads). C.–D.
F1xB6 N2 backcross mice showed EPs varying from normal to <40 mV. Their lateral wall
pathology corresponded with the measured EP, so that the lateral wall in C resembled that in
B, while the lateral wall in D appeared normal. Half of 42 noise-exposed N2s showed a normal
EP (>90 mV), suggesting that a small number of dominant-acting genes are responsible for EP
reduction in CBA/J mice. (Adapted with permission from Ohlemiller and Gagnon, 2007)
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Figure 2.
Invasion of the cochlear upper basal turn of CBA/CaJ mice by macrophages (indicated by
staining for CD45) after a single noise exposure. A. Non-exposed control mouse shows low
level of staining. B. 1–3 days after exposure, macrophages can be seen invading scala tympani
(black arrows) and the spiral ligament. C. Within the ligament, the largest concentration of
macrophages appears in the Type IV region (arrowheads), although staining in the Type I and
II regions is also increased (white arrows in B,D). D. At 7 days post exposure macrophages
are concentrated in spiral limbus (black arrow). Scale bar: 100 µm in A,B,D; 25 µm in C.
(Adapted with permission from Hirose et al., 2005)
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Figure 3.
A.–D. Thick plastic sections from example cochlear upper basal turn of CBA/CaJ mice that
were noise-exposed one time, either when they were young (4 wks) or old (96–98 wks). Mouse
exposed when young and then allowed to age (D) shows greater neuronal loss than mouse
examined young (A) or exposed and examined old (B). (Compare large circled areas in A,B,D.).
C shows an old non-exposed control. Organ of Corti (small circled areas) appears normal in
all cases. E. Quantitation of trends indicated in A–D. While Type IV fibrocytes were reduced
in number after exposure at any age, spiral ganglion cells were notably reduced only in mice
that were exposed young and allowed to age, despite the survival of inner hair cells. (Adapted
with permission from Kujawa and Liberman, 2006)
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