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Direct Cortical Inputs Erase Long-Term Potentiation at

Schaffer Collateral Synapses

Yukitoshi Izumi and Charles F. Zorumski
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Long-term potentiation (LTP), a synaptic mechanism thought to underlie memory formation, has been studied extensively at hippocam-
pal Schaffer collateral (SC) synapses. The SC pathway transmits information to area CA1 that originates in entorhinal cortex and is
processed by the dentate gyrus and area CA3. CAl also receives direct excitatory input from entorhinal cortex via the perforant path (PP),
but the role of this cortical input is less certain. Here, we report that low-frequency stimulation of PP inputs to CA1 has no lasting effect
on basal SC transmission, but effectively depotentiates SC synapses that have undergone LTP in a manner that can be reversed by
subsequent high-frequency stimulation of SC inputs. This depotentiation does not require NMDA receptors, group I metabotropic
glutamate receptors, or L-type calcium channels, but involves adenosine acting at A, receptors. Given the limited storage capacity of the
hippocampus, these observations provide a mechanism by which input from cortex can help to reset synaptic transmission in the

hippocampus and facilitate additional information processing.
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Introduction

The hippocampus plays a key role in memory and is involved in
several neuropsychiatric disorders (Martin et al., 2000). Hip-
pocampal processing is required for formation of new declarative
memories including the ability to place events in context and
sequence (Eichenbaum, 2000). The hippocampus accomplishes
these tasks using information from multiple brain regions with
input from neocortex arriving via entorhinal cortex (EC) and the
perforant pathway (PP) (Witter et al., 2000; van Groen et al.,
2003). The hippocampus processes cortical input via a trisynaptic
pathway that links layer IT of entorhinal cortex to dentate gyrus,
allowing coding of different components of a memory (Eichen-
baum, 2000). The dentate gyrus transmits this information to
area CA3 via the mossy fibers where heteroassociative memories
are likely formed. CA3 subsequently sends processed informa-
tion to stratum radiatum in area CA1 via the Schaffer collateral
(SC) pathway. CAl is thought to help decode memories into a
form that is sent back to entorhinal cortex via the subiculum for
subsequent longer-term storage in other brain regions (Lisman,
1999; Eichenbaum, 2000; Witter et al., 2000).

How memories are actually formed remains uncertain with
current theories suggesting the importance of activity-dependent
synaptic plasticity including long-term potentiation (LTP) and
long-term depression (LTD) (Martin et al., 2000). The role of the
hippocampus in memory processing is critical for initial stages of
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learning but less important for longer-term storage. The hip-
pocampus is a region with limited storage capacity and there is
interest in how the hippocampus resets it synapses once memo-
ries have been transmitted to cortex. Two processes are likely to
be important in synaptic resetting, homosynaptic depotentiation
and longer-term homeostatic changes (Kemp and Manahan-
Vaughan, 2007; Turrigiano, 2007). Both mechanisms help hip-
pocampal circuits adjust to synaptic changes, but do not take into
account the potential dynamics of cortical-hippocampal inter-
actions in regulating hippocampal function.

In addition to SC input, CA1 has direct excitatory connections
with layer III of entorhinal cortex via the PP (temperoammonic
path) (Colbert and Levy, 1992; Jones, 1993). These direct inputs
synapse on distal pyramidal neuron dendrites in stratum lacunosum
moleculare (SLM). The function of the direct PP inputs is not well
understood (Buzsaki et al., 1995; Soltesz, 1995; Fernandez and Ten-
dolkar, 2006), although increasing evidence indicates that these syn-
apses have important modulatory effects on CA1 pyramidal neurons
(Levy et al.,, 1998; Remondes and Schuman, 2002, 2004). PP inputs
also appear to play a key role in incremental learning in a familiar
environment (Nakashiba et al., 2008). In the present study, we used
hippocampal slices to examine interactions between PP and SC in-
puts in CAL. Our results indicate that repeated low-frequency acti-
vation of the PP causes only a transient depression of SC inputs in
naive slices, but results in depotentiation of SC synapses that have
previously undergone LTP. This depotentiation differs mechanisti-
cally from homosynaptic SC depotentiation and provides a mecha-
nism by which direct cortical input can direct the hippocampus to
reset its function for additional processing.

Materials and Methods

Hippocampal slice preparation. Hippocampal slices were prepared from
postnatal day 30 (P30) to P32 albino rats using standard methods (Zo-
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by separate stimulating electrodes (S-Stim) placed on either side of recording electrodes in the CA1 region. The PP (P-Stim) was activated by a stimulating electrode placed near the EC where the PP
enters the hippocampus. B, The panel depicts interactions between PP and SCinputs to CA1 using a paired-pulse protocol and a 20 ms interpulse interval. Traces show examples of raw data, whereas
the graph shows the time course of change in EPSPs recorded in stratum radiatum after conditioning stimulation of the PP (black squares) or SC (white circles). Calibration: 1 mV, 5 ms. Error bars

indicate SEM.

rumski et al., 1996). Rats were anesthetized with isoflurane and decapi-
tated. Dissected hippocampi were placed in ice-cold artificial CSF
(ACSF) containing the following (in mwm): 124 NaCl, 5 KCl, 2 MgSO,, 2
CaCl,, 1.25 NaH,PO,, 22 NaHCO;, 10 glucose, bubbled with 95%
0,-5% CO, at 4—6°C, and cut into 450 um slices using a vibrotome. The
slices were cut in a manner that included a significant portion of ento-
rhinal cortex to maximize maintaining PP inputs to SLM in the CAl
region (see Fig. 1 A). Acutely prepared slices were placed in an incubation
chamber containing gassed ACSF for 1 h at 30°C before additional
experimentation.

Hippocampal slice physiology. At the time of study, slices were trans-
ferred individually to a submersion-recording chamber. Experiments
were done at 30°C with continuous ACSF perfusion at 2 ml/min. Extra-
cellular recordings were obtained from the apical dendritic layer (stra-
tum radiatum) of the CAI region for analysis of EPSPs using electrodes
filled with 2 M NaCl (5-10 M() resistance).

EPSPs were evoked with 0.1 ms constant current pulses through a
bipolar stimulating electrode in the SC pathway. A second stimulating
electrode was placed in the PP to activate distal dendrites of CA1 in SLM.
A control input—output curve was obtained to determine stimulus inten-
sities for subsequent studies. Responses were monitored by applying
single stimuli to the SC pathway every 60 s at half-maximal intensity.
After establishing a stable baseline for atleast 10 min, LTP was induced by
asingle 100 Hz by 1 s tetanus using the same intensity stimulus. In some
studies, a 200 Hz by 1 s tetanus was administered in the presence of the
NMDA receptor (NMDAR) antagonist, 2-amino-5-phosphonovalerate
(APV), to induce a form of LTP not dependent on NMDARs. Input—
output curves were repeated 20 and 60 min after tetanic stimulation and
appear as gaps in the time course graphs shown in Figures 2—6. In some
experiments, a second independent SC input to CA1 was activated using
a stimulating electrode placed at a different level in stratum radiatum
than the primary SC stimulating electrode and positioned on the distal
(subiculum) side of the dendritic recording electrode. Again, a stimulus
that evoked a half-maximal response in stratum radiatum was used for
these studies.

Chemicals were obtained from Sigma-Aldrich except the adenosine
and metabotropic glutamate receptor (mGluR) ligands, which were from
Tocris. Drugs were dissolved in ACSF at the time of experiment and
administered by bath perfusion at the concentrations noted in the text.
The concentrations selected for study and the durations of drug admin-
istration were based on previous studies indicating that the agents are
effective at altering synaptic transmission or synaptic plasticity when
administered in this manner.

Statistical analysis. Data were collected and analyzed using PClamp

software (Molecular Devices). Data in the text are expressed as mean =
SEM. A two-tailed Student t test was used for comparisons between
groups. Statistical comparisons were based on input—output curves at
baseline and 60 min after tetanic or 1 Hz stimulation with p < 0.05
considered significant and were done using commercial software (Sig-
maStat; Systat Software). Statistical analyses of data shown in Figures 2, 4,
and 6 are included in supplemental Table 1 (available at www.
jneurosci.org as supplemental material).

Results

Studies were conducted in the CAl region of rat hippocampal
slices. The slices included a section of EC to preserve PP (temper-
oammonic) inputs to SLM in distal CA1 dendrites (Fig. 1 A). SC
and PP inputs were activated by separate electrodes using stimuli
that produced 50% maximal responses in stratum radiatum dur-
ing baseline recordings. We initially examined interactions be-
tween PP and SC pathways using a paired-pulse protocol and a 20
ms interpulse interval. We found that a single conditioning PP
stimulation transiently depressed SC EPSPs recorded in stratum
radiatum (Fig. 1B). Similarly, previous SC stimulation tran-
siently depressed PP evoked EPSPs. In experiments designed to
examine recovery from the depression evoked by PP or SC con-
ditioning stimuli, we lengthened the interpulse stimulation inter-
val. We found that depression of SC responses induced by PP
stimulation was longer-lived than the effects of SC stimulation on
PP inputs, and took ~1 s to decay completely. In contrast, the
effects of SC stimulation on PP inputs decayed completely in
~180 ms. The depression of SC responses produced by a single
PP conditioning stimulation was not altered significantly by ei-
ther the adenosine A, receptor antagonist, 8-cyclopentyl-1,3-
dipropylxanthine (DPCPX), or the GABA, receptor antagonist,
picrotoxin (supplemental Fig. 1, available at www.jneurosci.org
as supplemental material).

Based on the ability of PP stimulation to alter SC transmission
and the potential importance of direct cortical inputs in modu-
lating CA1 processing (Levy et al., 1998; Remondes and Schu-
man, 2002, 2004), we examined the effects of repeated PP stimu-
lation on SC LTP. In naive slices, we found that repeated low-
frequency PP stimulation (LFS) using 900 pulses at 1 Hz caused a
transient depression of SC responses that recovered to baseline in
<5 min and remained stable (Fig. 2A). A subsequent 100 Hz by
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Figure2.  Effects of PP stimulation on synaptic plasticity in the SC pathway. A, LFS of the PP

(PLFS) causes a transient depression of SC transmission that rapidly recovers after PLFS. A
subsequent 100 Hz by 15 HFS of the SCinputs (SHFS) results in LTP. B, Afterinduction of SCLTP,
PLFS results in rapid depotentiation of SC inputs. A subsequent tetanus delivered to the SC
results in a return of LTP. Traces above the graph show EPSPs obtained at the times denoted,
with the initial baseline response shown as a dashed trace in the last three panels. C, Depoten-
tiation of SCLTP by PP stimulation is frequency dependent. After establishing SCLTP, 10 Hz by
900 pulse stimulation of the PP causes only a transient depression of LTP. In contrast, subse-
quent THz PLFS results in depotentiation. Error bars indicate SEM. Traces above the graph show
representative EPSPs. Calibration: 1mV, 5 ms.

1 s high-frequency stimulation (HES) of the SC pathway readily
induced LTP, indicating no lasting effect of PP stimulation on the
generation of SC long-term plasticity (supplemental Table 1,
available at www.jneurosci.org as supplemental material).

In contrast to the transient effects in naive slices, we found that
PP LFS rapidly depotentiated SC responses in slices in which LTP
had been induced initially in the SC pathway (Fig. 2 B). After
PP-induced depotentiation, a subsequent SC HFS again induced
LTP, indicating that PP stimulation does not have a lasting dis-
ruptive effect on the mechanisms required for SC LTP induction.
The effects of 1 Hz PP LFS on SC LTP were not mimicked by 900
pulses administered at 10 Hz (Fig. 2C), indicating that PP-
induced depotentiation is frequency dependent. We also exam-
ined a shorter period of PP stimulation, but found that 1 Hz by
300 pulse LFS failed to produce lasting depotentiation.

To determine whether PP-mediated depotentiation depends
on the calcium source that drives LTP induction, we also exam-
ined the effects of PP stimulation on a form of LTP induced by
very high-frequency stimulation (200 Hz by 1 s) in the presence
of 100 um APV, an NMDAR antagonist. Previous studies have
shown that this form of LTP requires activation of L-type voltage-
gated calcium channels (Grover and Teyler, 1990; Nagashima et
al.,, 2005). Consistent with results observed with NMDAR-
dependent LTP, we found that 1 Hz PP stimulation effectively
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Figure 3.  Inthe presence of 100 wm APV (black bar), an NMDAR antagonist, 200 Hz by 15
high frequency stimulation of the Schaffer collateral pathway (SHFS) (arrow) induces a form of
LTP that requires L-type calcium channels. After induction of this form of LTP, 1 Hz by 900 pulse
stimulation of the perforant path (PLFS) depotentiates this LTP ina manner that can be reversed
by a subsequent tetanus. Error bars indicate SEM.
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Figure4. Activation of a heterosynaptic Schaffer collateral input does not produce depoten-
tiation. The graph shows LTP after HFS (100 Hz by 1's tetanus; arrow) of the Schaffer collateral
pathway. Subsequently, a second independent Schaffer collateral input was stimulated at 1 Hz
for 15 min (downward connected arrows). In contrast to PP stimulation, heterosynaptic Schaf-
fer collateral stimulation failed to reverse LTP. Error bars indicate SEM.

depotentiated NMDAR-independent SC LTP (Fig. 3). Thus, the
ability of PP stimulation to reverse SC LTP appears to be inde-
pendent of the calcium source driving LTP.

To determine whether other heterosynaptic inputs also depo-
tentiate SC LTP, we examined the effects of activating an inde-
pendent SC input. For these studies, a second stimulating elec-
trode was placed in the SC pathway at a different level in stratum
radiatum than the primary SC stimulating electrode. In contrast
to PP stimulation, we found that 1 Hz by 900 pulse LFS of the
heterosynaptic SC input failed to persistently alter either baseline
SC transmission or previously established LTP (Fig. 4).

In the SC pathway, 1 Hz by 900 pulse LFS induces either
homosynaptic LTD or homosynaptic depotentiation depending
on whether LFS is administered to naive slices or slices that have
previously experienced LTP (Fujii et al., 1991; Izumi and Zorum-
ski, 1993; Malenka and Bear, 2004). These forms of SC plasticity
are blocked by APV, a broad-spectrum NMDAR antagonist
(Malenka and Bear, 2004). In contrast, PP-induced SC depoten-
tiation was insensitive to 100 um APV (Fig. 5A). PP-mediated
depotentiation was also insensitive to 500 uM a-methyl-4-
carboxyphenylglycine (MCPG), an inhibitor of group I mGluRs
that contribute to SC LTD (Bortolotto et al., 1999) (Fig. 5B), and
was not altered by the L-type calcium channel blocker, nifedipine
(Fig. 5C). These results indicate that PP-mediated depotentiation
differs mechanistically from homosynaptic SC depotentiation or
LTD.

The lack of effect of APV, MCPG, and nifedipine on PP-
mediated SC depotentiation, led us to consider the role of other
neuromodulators. We focused on adenosine, an agent that has
been previously associated with LTD and depotentiation in the
hippocampus (Abraham and Huggett, 1997; Fujii et al., 1997,
1999; Huang et al., 1999). We found that PP-mediated SC depo-
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Discussion

Learning theories emphasize the importance of bidirectional
plasticity as a mechanism by which synapses determine their op-
erating range (Abraham and Tate, 1997; Martin et al., 2000; Gov-
indarajan et al., 2006). In the hippocampus, repeated stimulation
of a single SC input can potentiate, depress, or depotentiate its
function depending on how and when the SC pathway is acti-
vated (Abraham and Tate, 1997; Malenka and Bear, 2004). Under
other circumstances, SC activation itself can have no lasting effect
on baseline transmission but can modulate the ability of SC syn-
apses to undergo LTP or LTD, a form of synaptic change referred
to as “metaplasticity” (Abraham and Tate, 1997). These forms of
synaptic modulation are important for information processing
but are limited to a single set of synaptic inputs. In the present
study, we found that activation of a direct heterosynaptic input to
area CA1 from entorhinal cortex depotentiates SC LTP in a man-
ner that allows these synapses to be readily repotentiated by sub-
sequent homosynaptic high-frequency stimulation. Entorhinal

30 45 60 75 90 105 120 135 150 165

Time (min)

PP-induced depotentiation does not require NMDARs, mGluRs, or L-type calcium channels. 4, After induction of SC
LTP with a 100 Hz by 15 HFS (SHFS), 1 Hz LFS delivered to the PP (PLFS) (open bar) depotentiates SC responses in the presence of
100 pem APV (solid bar). B, PLFS also results in depotentiation when administered in the presence of 500 um MCPG, a broad-
spectrum mGluR antagonist. C, The L-type calcium channel blocker, nifedipine (10 wum), also fails to block depotentiation. Error
bars indicate SEM. Traces depict representative EPSPs. Calibration: 1mV, 5 ms.

inputs to CA1 thus provide a means by which CA1 function can
be directly influenced by information from cortex. This PP-
mediated SC depotentiation was not mimicked by similar stim-
ulation of a heterosynaptic SC input, suggesting unique effects of
the PP input.

The ability of PP stimulation to depotentiate SC synapses cre-
ates a dynamic situation in which initial input from entorhinal
cortex can be processed via the classical trisynaptic hippocampal
pathway and fed back to cortex via CAl, the subiculum, and
entorhinal cortex for long-term storage. In turn, entorhinal in-
puts directly influence the ability of the CA1 region to process
new information not only by modulating the ease of SC plasticity
as shown in other studies (Levy et al., 1998; Dvorak-Carbone and
Schuman, 1999; Remondes and Schuman, 2002) but also by in-
structing SC synapses to reset their activity back to baseline for
future processing. In this way, feedback from cortex may help to
determine when hippocampal memory storage is no longer re-
quired. Such a function would be particularly important after
memories have been transferred from hippocampus to long-term
storage in various regions of cortex.
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lasting effect on the ability of a subsequent
high-frequency stimulus to induce LTP ei-
ther in naive slices or slices that had previ-
ously undergone LTP.

The ability of neurons to integrate syn-
aptic inputs and to convert those inputs
into meaningful output is critical for in-
formation processing. Much of our de-
tailed knowledge about synaptic function
is based on the properties of single syn-
apses or single sets of inputs. Recent stud-
ies examining the interactions between SC
and PP excitatory synapses have begun to
provide important insights into how the
CA1 region integrates and uses different
sets of information (Levy et al., 1998; Re-
mondes and Schuman, 2002, 2004; Na-
kashiba et al., 2008). Depending on the
timing and pattern of activation, PP inputs
onto distal CAl dendrites can modulate
proximal SC synapses and influence the
ability of SC synapses to generate LTP and
LTD (Levy et al, 1998; Remondes and
Schuman, 2002, 2004; Dudman et al,
2007). These direct PP inputs can also gen-
erate their own homosynaptic versions of
LTP and LTD, influencing the ease with
which they can alter SC function (Re-
mondes and Schuman, 2002). These in-
puts are also important for modulating be-
havior and appear to be critical for
incremental learning in a familiar environ-
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mondes and Schuman, 2004). Direct PP
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Figure 6.  Adenosine participates in PP-induced depotentiation of SCLTP. A, When PLFS is delivered in the presence of 200 nm
DPCPX, a competitive adenosine A, receptor antagonist, depotentiation is eliminated. B, Administration of 10 nm CCPA, an

adenosine A, receptoragonist (solid bar), causes depotentiation of SCLTP (ST pathway) and aform

SCinput (S2). , After induction of SCLTD by 10 nm CCPA, HFS of the SCinput results in robust LTP. This LTP can be reversed by a

second application of CCPA. Error bars indicate SEM. Traces in all panels show representative EPSPs
with control responses shown as dashed lines. Calibration: 1mV, 5 ms.

Previous studies indicate that direct PP inputs to distal den-
drites in CA1 from layer III of entorhinal cortex are preferentially
driven at low frequencies of layer III neuronal firing, whereas
higher frequency firing of layer II entorhinal neurons is biased
toward the dentate gyrus and the trisynaptic pathway (Jones,
1993; Gloveli et al., 1997; Ang et al., 2005). This frequency bias
appears to result from the preferential activation of layer Il and I1I
neurons in entorhinal cortex by different frequencies of synaptic
stimulation (Gloveli et al., 1997; Heinemann et al., 2000). These
observations are consistent with our finding that PP-mediated SC
depotentiation is clearly evident at 1 Hz, but there is little change
in SC LTP with 10 Hz PP stimulation. Our results also indicate
that depotentiation by low-frequency stimulation requires a sig-
nificant number of synaptic activations because briefer periods of
1 Hz stimulation (3—5 min) failed to produce sustained depoten-
tiation (data not shown). Importantly, low-frequency PP stimu-
lation had no lasting effect on basal SC transmission and had no

100 120 140 160 180 200 220 240
Time (min)

L inputs also help to determine the precise
spatial firing of CA1 place cells (Brun et al.,
2008). The ability of cortical inputs to in-
fluence CA1 output may also be important
for understanding defects in hippocampal
processing that accompany neuropsychi-
atric disorders like Alzheimer’s disease and
major depression. In a chronic mild stress
model of depression, recent studies have
demonstrated a mismatch between hip-
pocampal inputs and outputs, suggesting
diminished processing through dentate gyrus but enhanced out-
put from area CA1 (Airan et al., 2007). Interestingly, this input—
output mismatch was corrected by antidepressant medications
and dentate neurogenesis. In this light, the effects we have ob-
served could provide a means by which cortical inputs can regu-
late overactive CA1 output. Thus, treatments that either enhance
dentate processing or diminish CA1 output could be beneficial in
correcting some of the features of depression. Dysregulation of
the direct PP inputs also appears to contribute temporal lobe
seizures and may be a principal source of hippocampal hyperex-
citability in animal models of epilepsy (Ang et al., 2006).

Our results indicate that direct cortical inputs to CA1 via the
PP may play a key role in depotentiating SC LTP, serving as an
independent feedback mechanism for erasing previously estab-
lished SC plasticity and resetting these synapses. This heterosyn-
aptic erasure does not interfere with the subsequent ability of SC
inputs to undergo LTP. Furthermore, cortically driven depoten-

of LTDinasecond independent

obtained at the times specified
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Figure 7.  An adenosine agonist occludes the effects of PP LFS. A, Administration of 10 nm

(CPA 60 min after induction of SC LTP results in depotentiation. Sixty minutes after CCPA-
mediated depotentiation, PP LFS results in no additional depression of SC transmission. B, Ina
separate set of slices, LTP was induced by SC HFS. Sixty minutes after LTP induction, PP LFS
resulted in SC depotentiation. Administration of 10 nm CCPA after PP-mediated depotentiation
resulted in no change in SC responses during and immediately after CCPA administration, al-
though alater developing and persistent form of LTD wasinduced. The degree of SCLTD induced
by CCPA after PP-mediated depotentiation was similar to that observed in naive slices (Fig.
68, (). Error bars indicate SEM. Traces show representative EPSPs. Calibration: 1 mV, 5 ms.

tiation acts by a mechanism that is independent of NMDARSs,
mGluRs, and L-type calcium channels, but involves adenosine as
a diffusible messenger. Previous studies have shown that adeno-
sine can modulate CA1 LTP and induce a form of chemical LTD
(Fujii et al., 2000; Huang et al., 2001). Consistent with our exper-
iments, previous studies have also shown that exogenous adeno-
sine can produce a lasting depotentiation of LTP at CA1 synapses
(Fujii etal., 1997, 1999; Huang et al. 1999, 2001). How adenosine
produces these longer-lived effects on synaptic transmission is
not entirely certain, although some evidence suggests that inhi-
bition of adenylate cyclase (Santschi et al., 2006) or activation of
phosphatases (Staubli and Chun, 1996) and mitogen-activated
protein kinases (Brust et al., 2006, 2007) may be important. Our
results indicate that the direct excitatory input from entorhinal
cortex to area CAl can promote adenosine release, leading to
depotentiation. In some slices, we also observed that PP-
mediated depotentiation or administration of an exogenous
adenosine agonist resulted in not only reversal of LTP but also a
degree of SC LTD in previously potentiated pathways. This may
suggest some degree of basal synaptic enhancement at some SC
synapses. The source of the adenosine involved in depotentiation
is not certain, although recent studies indicate that release from
glia may be important (Pascual et al., 2005). These studies indi-
cate that endogenous glial-derived adenosine can modulate hip-
pocampal synaptic plasticity, although, in our studies, adenosine
derived from neurons could also contribute.

In summary, we find that direct cortical inputs to area CAl can
erase previously established LTP in the SC pathway without lasting
effects on basal transmission. This form of depotentiation provides a
mechanism by which the cortex can prepare the hippocampus for
subsequent synaptic processing and avoid synaptic overload.
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