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ABSTRACT

Motivation: A challenging problem after a genome-wide association
study (GWAS) is to balance the statistical evidence of genotype–
phenotype correlation with a priori evidence of biological relevance.
Results: We introduce a method for systematically prioritizing single
nucleotide polymorphisms (SNPs) for further study after a GWAS.
The method combines evidence across multiple domains including
statistical evidence of genotype–phenotype correlation, known
pathways in the pathologic development of disease, SNP/gene
functional properties, comparative genomics, prior evidence of
genetic linkage, and linkage disequilibrium. We apply this method
to a GWAS of nicotine dependence, and use simulated data to test
it on several commercial SNP microarrays.
Availability: A comprehensive database of biological prioritization
scores for all known SNPs is available at http://zork.wustl.edu/gin.
This can be used to prioritize nicotine dependence association
studies through a straightforward mathematical formula—no special
software is necessary.
Contact: ssaccone@wustl.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Genome-wide association studies (GWAS) are hypothesis-free and
are aimed at the discovery of novel variants that influence human
disease. However, these often ignore the wealth of biological
information available, such as disease-specific biochemical
pathways, known functional properties of single nucleotide
polymorphisms (SNPs), comparative genomics, prior evidence of
genetic linkage, and linkage disequilibrium (LD). We introduce
a systematic method for combining information across multiple
domains when selecting SNPs for further study after a GWAS.
We then implement this method using a combined GWAS (Bierut
et al., 2007) and candidate gene (Saccone et al., 2007) study of
nicotine dependence, and use simulations to test the method on
several commercial microarrays.
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A challenging problem after a GWAS is determining how to
pursue the many identified and potentially real SNP associations. If
there are insufficient resources to test all potential associations, such
as all SNPs with P ≤ 0.05, then the SNPs must be prioritized. Even if
there are unlimited genotyping resources, or a second full GWAS of
all SNPs is possible in the replication sample, the final result will be
a number of replications, which must then be prioritized for costly
functional studies. This problem is compounded by the fact that
each replicated SNP may be in LD with many other potential causal
variants. Because these LD proxies will have similar association
results, the prioritization scheme cannot rely on statistical evidence
of association alone.

Studies will often use biological data to guide the prioritization
process. For example, genes in biochemical pathways related to the
disease can be given greater weight. Failure to do this systematically,
however, can have adverse effects. The biological importance of a
gene may be artificially inflated if post hoc rationalization is used
instead of establishing a priori biological relevance (Chanock et al.,
2007).

We introduce a method of selecting SNPs for further study after a
GWAS that gives greater weight to biologically relevant SNPs via an
a priori, systematically defined algorithm. We combine the statistical
evidence of association with measures of biological relevance to
rank SNPs for further study. We do this in such a way that is it
clear how each component influences the prioritization process. Our
method is designed for maximum interpretability in order to viably
incorporate a broad array of genomic annotation and biological
information.

2 METHODS
We are interested in the following question: given a SNP, a phenotype, and a
biological database, what can we say about the connection between the SNP
and the phenotype? We introduce a novel method of assigning each SNP a
numeric prioritization score representing the extent of biological relevance.

2.1 Prioritizing SNPs using genomic information
networks

A genomic information network (GIN) is a directed graph, where the
nodes correspond to features from a biological database (Fig. 1). The GIN
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Fig. 1. The model for a genomic information network. The symbols beneath
the names of the nodes represent the prioritization score Si and the link
index Li.

represents a process: it begins with a SNP and ends in the terminal node
with the determination of its overall prioritization score S. The overall score
is a cumulative measure of biological relevance obtained by combining
information across multiple domains. For example, if a SNP is in a gene
then it will link to the gene node, which will increase the overall score. If
that gene is part of a biological system related to the disease, this will further
increase the score. The GIN in Figure 1 has a node labeled ND Systems,
which represents gene systems related to nicotine dependence.

With the overall score S determined, we rank SNPs from a GWAS for
further study by P/10S where S is the overall score and P is the associated
P-value. The P-value should strictly be a measure of genotype–phenotype
correlation, and should not incorporate biology. We call the term 10S the
weight, and P/10S the weighted P-value (Roeder et al., 2006). The scores
represent orders of magnitude; a change of 1 in the score corresponds to an
order of magnitude change in the weighted P-value. The weighted P-values
are not an assessment of genotype-phenotype correlation; their only purpose
is to rank SNPs for further study.

Equivalently, if we let m be the mean weight among the SNPs being
prioritized, and define the normalized weight to be w = 10S /m, then using the
normalized weights instead of 10S does not change the rankings. Normalized
weights are more interpretable because they give a sense of scale relative to
a particular SNP set.

The initial node in the GIN corresponds to a SNP, and connects to the
primary nodes. To minimize redundancy, we do not permit links between
the primary nodes. For example, the gene node is not allowed to link to
the linkage region node. This prevents linkage evidence from being counted
twice when a gene resides in a linkage region.

We assign each node that is strictly between the initial and terminal nodes a
score Si representing a priori biological relevance. The evidence may depend
on the phenotype, such as a known biochemical pathway, or be independent
of the phenotype, such as known functional properties of the SNP. Table 1
shows a summary of the scores used for our nicotine dependence GIN. We
considered genic SNPs to be an order of magnitude more relevant than non-
genic SNPs, and therefore assigned the gene node a score of 1. In general,
we use the dbSNP criteria for a SNP to be in a gene, which means within
2 Kb of the 5′ end or 500 bp of the 3′ end of the transcript.

If the gene is known to be relevant to nicotine dependence, the gene
node links to the ND Systems node. We defined biologically relevant gene
systems and categories for nicotine dependence through an expert committee
within the NIDA Genetics Consortium (http://zork.wustl.edu/nida). These
categories were divided into three tiers (Table S1), with Tier one genes
receiving the highest priority for further study. We considered Tier 2 genes,
the basic neurotransmitter systems, to be an order of magnitude more relevant
than arbitrary genes. Tiers 1 and 3 were then scored a half order higher and
lower, respectively, than Tier 2. The primary sources for gene data were
KEGG GENES and KEGG BRITE (Kanehisa et al., 2004).

In the node labeled ECR, we prioritized human/mouse standard
evolutionary conserved regions (ECRs) from ECRbase (Loots and

Table 1. A summary of the scores used to assess the biological relevance of
various objects in the genomic information network

Node Score

Gene 1.0
ND Systemsa

Tier 1 Genes 1.5
Tier 2 Genes 1.0
Tier 3 Genes 0.5

ECRb P2/2
Linkagec 0.5

aGene systems related to nicotine dependence.
bEvolutionary conserved region, P = human/mouse conservation percentage.
cGenomic regions with prior evidence of genetic linkage.

Table 2. A summary of the link indices used in the genomic information
network. A link index will scale the score of a node depending on the strength
of the link to that node. For example, a SNP linking to a gene through LD
rather than actually being in the gene is considered a weaker connection, and
the score is therefore scaled down proportionally to r2

Node Nature of Link Link Index

Gene Coding – nonsynonymous 2.00
Gene Coding – synonymous 1.50
Gene 3′/5′ promoter 1.25
Gene Intron 1.00
Gene Locus 0.75
All LD S →S ·r2/ 2

Ovcharenko, 2007) with a conservative scoring of P2/2, so that the maximum
score for the conservation node is a half order of magnitude and drops off
rapidly as P decreases. In addition to a priori biological evidence, we also
included prior evidence of genetic linkage. In the node labeled Linkage, we
prioritized SNPs in a previously identified linkage region for heavy smoking
(Saccone et al., 2007) using a conservative half order of magnitude. Future
iterations of the method may use a variable prioritization as a function of
the LOD score, but this will require a more precise adjustment for multiple
testing and corrections for errors between the genetic and physical maps.

We assign each node a link index Li—a non-negative number indicating
the strength of the link to the node. The default value of the link index is 1.
For example, in the gene node, if the link is weak, such as a SNP being in
LD with a gene rather than actually in the gene, then the link index is less
than 1. If the link is strong, such as a SNP being a non-synonymous coding
change in a gene, then the link index is greater than 1. The link indices scale
the scores of the corresponding nodes, so that overall prioritization score has
the formula S =∑

LiSi.

Table 2 shows a summary of the link indices. For example, we considered a
non-synonymous SNP to be twice as relevant as an intronic SNP. Therefore,
when a non-synonymous SNP links to a gene, the link index is 2. Other
coding variants have a link index of 1.5. Since we did not have detailed
information on 3′/5′ promoter regions, we used a conservative link index of
1.25. The locus designation is used by dbSNP to mean that the SNP is within
2.5 Kb of the 5′ or 500 bp of 3′ end of the transcript, but is not actually
in the transcript. All SNP annotation was derived from dbSNP build 126
(http://www.ncbi.nlm.nih.gov/projects/SNP).

2.2 Incorporating LD proxies
A SNP will link to the gene node if it is in the gene, or is in LD with another
SNP in the gene. In the latter case we call the second SNP an LD proxy.
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Table 3. The top 10 prioritized SNPs from the NicSNP GWAS and candidate gene study ranked by weighted P-value (P/w)

SNP Chr Pos (bp) Gene Tier Function Mouse
Conserva

(%)

P-value
(P)

N. Weightb

(w)
W. P-
valuec

(P/w)

Rank
by P

Rank by
P/w

rs16969968 15 76 669,980 CHRNA5 1 Nonsynonymous 86 6.4E−04 2.8E+02 2.3E−06 199 1
rs1051730 15 76 681 394 CHRNA3 1 Synonymous 91 9.9E−04 9.9E+01 1.0E−05 267 2
rs6474413 8 42 670 221 CHRNB3 1 Locus – 9.4E−05 6.8E+00 1.4E−05 33 3
rs578776 15 76 675 455 CHRNA3 1 3′/5′ promoter – 3.1E−04 2.1E+01 1.4E−05 123 4
rs4142041 10 68 310 957 CTNNA3 – Intron – 5.6E−06 3.8E−01 1.5E−05 2 5
rs999 6 32 261 864 PBX2 – 3′/5′ promoter – 1.4E−05 6.8E−01 2.1E−05 3 6
rs12623467 2 51 078 593 NRXN1 – Intron – 1.5E−05 3.8E−01 3.9E−05 4 7
rs2836823 21 39 286 525 – – – – 1.5E−06 3.8E−02 4.0E−05 1 8
rs12380218 9 79 125 480 VPS13A – Intron – 2.1E−05 3.8E−01 5.5E−05 6 9
rs2673931 5 135 717 335 TRPC7 – Intron 72 3.9E−05 6.9E−01 5.6E−05 8 10

aHuman/Mouse evolutionary conserved region – the percentage of conservation.
bNormalized Weight.
cWeighted P-value.

An LD proxy need not be in the original set of genotyped SNPs. This feature
is useful, because if a low-scoring genotyped SNP is in strong LD with a
high-scoring non-genotyped SNP, the genotyped SNP will receive a higher
score. This prevents us from missing an association signal that is potentially
due to a highly biologically relevant but non-genotyped SNP.

We measured LD by estimating r2 in the European American sample from
public release 21 of the HapMap Project (http://www.hapmap.org). This was
done using the program HaploView (Barrett et al., 2005) for all markers with
a minor allele frequency (MAF) greater than or equal to 10% which were
within 500 Kb. We considered LD to be a valid link to a node if r2 ≥ 0.5.
If the link from a SNP to a node was through an LD proxy, then we scored
the node based on the properties of the proxy. However, we reduced the link
index by a factor of r2/2 (bottom row of Table 2), because we prefer to have
SNPs in a gene rather than in LD with a gene.

We used the following algorithm to determine whether to use a proxy, and
to select a particular proxy when there is more than one. We required that
if an LD proxy is used, the same proxy SNP must be used for each node.
Because the goal is to identify the most biologically relevant representative,
we selected from among the original SNP and all potential proxies, the SNP
with the maximum overall score. Table S2 shows the details of this process
for rs16969968 (see Figure S1 for a graphical view),which was recently
reported to be associated with nicotine dependence (Saccone et al., 2007).
While many other LD proxies were considered for this SNP, rs16969968
itself was the most biologically relevant.

2.3 Availability
To make our method available for other association studies of nicotine
dependence, we computed prioritization scores for all SNPs in dbSNP
build 126. The resulting set of ∼11.4 million SNPs is available at
http://zork.wustl.edu/gin. Other studies can utilize these data by ranking
SNPs by P/10S , where P is the P-value from their study and S is the score
from the database.

3 APPLICATION TO GWAS DATA

3.1 Nicotine dependence
We implemented our prioritization method using data from the
NicSNP nicotine dependence study. This study used both GWAS
(Bierut et al., 2007) and candidate gene (Saccone et al., 2007)
strategies with a sample of 1050 nicotine dependent cases and 879
non-dependent smokers, all of European descent. In the GWAS, 2.4
million SNPs were tested for association using pooled genotyping

in roughly half of the sample, and the top 40 000 signals were
then individually genotyped in the full sample. In the candidate
gene study, approximately 4000 SNPs covering 348 genes were
individually genotyped.

We computed prioritization scores for the 33 918 SNPs that passed
quality control measures from the combined GWAS and candidate
gene studies. Table 3 shows the top 10 SNPs ranked by the weighted
P-value P/w. No LD proxies were needed for the top 10 signals; each
was found to be the most biologically relevant among all potential
proxies. Also, no SNPs in the top 10 were in the linkage region used
for the GIN.

The top ranked SNP from our prioritization methods was the non-
synonymous coding SNP rs16969968 in the nicotinic receptor gene
CHRNA5. This was the fifth strongest signal reported in the NicSNP
candidate gene study (Saccone et al., 2007), where it was highlighted
as the most promising SNP for further study. By original P-value,
it ranked 199 out of all 33 918 SNPs from the combined GWAS
and candidate gene studies. Table S3 shows the details of how the
rankings were determined for the top 10 prioritized SNPs.

To obtain a broader view of our prioritization scheme and its
application to the NicSNP study, we plot the original (non-weighted)
P-values against genomic position (Fig. 2, top), and against the
overall prioritization score S (Fig. 2, bottom). The latter plot, which
we call the P∗S plot, introduces a useful way to visualize the GWAS
results together with the SNP prioritization scores. The biologically
relevant signals are in the upper right-hand region of the P∗S plot.
The most extreme member of this region is rs16969968, our most
highly prioritized SNP. At the other end of the plot, the cluster over
S = 0 corresponds to SNPs which are not in or near genes, nor in
linkage or conserved regions, and are not in LD with r2 ≥ 0.5 for
any such region within 500 Kb.

To select SNPs for replication, we chose the top 1536 (4.5%) SNPs
by weighted P-value where P ≤ 0.05 (the number 1536 is used for
technical reasons because this reflects the optimal number of SNPs
on an Illumina chip in order to reduce genotyping costs). Here, P
is the original P-value, and is not corrected for multiple testing. We
imposed the condition P ≤ 0.05 to prevent SNPs with little evidence
of association from being selected for replication.

The top 1536 SNPs by weighted P-value where (uncorrected)
P ≤ 0.05 correspond to signals above the red dashed line in the
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Fig. 2. The results of the combined NicSNP GWAS and candidate gene
studies. (Top) The original P-values plotted against genomic position.
(Bottom) The original P-values plotted against the prioritization score.
Signals above the dashed red line correspond to the top 1536 SNPs
by weighted P-value with (uncorrected) P ≤ 0.05 (the GIN prioritization
method). Signals above the horizontal blue dashed correspond to the top
1536 SNPs by non-weighted P-value (the straight P-value method). The red-
shaded knife-shaped and blue-shaded triangular regions show the difference
between these two methods.

bottom graph of Figure 2. This dashed line is divided into sloped and
horizontal segments intersecting at S =1.4. Because the horizontal
segment corresponds to P = 0.05, and extends from S = 1.4, it follows
all SNPs in gene systems relevant to nicotine dependence with
P ≤ 0.05 would be selected for further study; the GIN assigns an
overall score of at least 1.5 to these SNPs. In the sloped segment,
a gradient threshold is used for lower priority genomic regions;
the P-value threshold for selection becomes smaller, and therefore
stricter, with decreasing biological relevance.

If the top 1536 SNPs were selected using an uncorrected, non-
weighted P-value ranking, the condition would be P ≤ 0.012; these
SNPs lie above the blue dashed line (Fig. 2, bottom). We refer to this
strategy as the ‘straight P-value’ method. If we use our prioritization
method over the straight P-value method, the 527 SNPs in the blue
shaded triangular region in Figure 2 are traded for the 527 SNPs in
red shaded knife-shaped region. The SNPs in the triangular region
have a mean P-value of 0.007, which ranges from 0.002 to 0.012,
and the maximum prioritization score is 0.79. Therefore none of the
SNPs in the triangular region are in genes, because genic SNPs have
a score of at least 1. In fact, more than half of them (266/527) have
a score of 0, and therefore are not even in LD with r2 ≥ 0.5 for any
gene, conserved region or linkage region within 500 Kb.

The red shaded knife-shaped region contains the 527 SNPs
we gain using the prioritization method over the straight P-value
method. They include the coding SNP rs4953 (P =0.016) in the
nicotinic receptor gene CHRNB3, and the non-synonymous SNP
rs1805065 (P =0.038) in the neurotransmitter transporter gene

SLC6A2. The mean P-value in the knife-shaped region is 0.02, and
ranges from 0.012 to 0.05.

The condition P ≤ 0.05 was used in the prioritization process
to prevent SNPs with little evidence of association from being
selected for replication. In general, we could consider the condition
P ≤ T for other thresholds T . Note that the number of SNPs being
selected for replication is chosen independently of T . The condition
P ≤ T is a filter that is applied to the top SNPs ranked by weighted
P-value. In the NicSNP study we selected the top 1536 SNPs ranked
by weighted P-value and filtered by the condition P ≤ 0.05.

The choice of threshold T is an important step in the prioritization
process. In the bottom of Figure 2, the threshold Tcorresponds to
the lower horizontal boundary of the knife-shaped region. As T
approaches the straight P-value threshold of 0.012, the triangular
and knife-shaped regions collapse to the straight line P = 0.012. In
Table S4 we show the effect of changing the threshold T in the
NicSNP study. The results are not very sensitive to changes in T ,
except when T approaches 0.012. As T approaches 0.012, however,
the number of SNPs in the triangular and knife-shaped regions
becomes small, and therefore has a reduced impact on the set of
replication SNPs overall.

The goal of our prioritization method is to ensure that potentially
true associations in biologically relevant regions are selected for
replication. The use of the threshold T = 0.05 is consistent with
that goal, as this is a traditional threshold for significance prior
to correcting for multiple testing. However, smaller (or larger)
thresholds could be used so that a larger (or smaller, respectively)
proportion of SNPs with lower prioritization scores are selected (see
the fourth column of Table S4), and the exact choice of T depends
on the particular goals of a study.

In summary, the prioritization method preferentially selects SNPs
with increased biological relevance, where in this case there is on
average about a half order of magnitude difference in P-values
for these 527 SNPs compared to the straight P-value strategy. In
general, the difference between these two strategies will depend on
the number of SNPs being selected for follow up, and the distribution
of scores among the SNPs being prioritized.

3.2 A sensitivity analysis
To determine the sensitivity of the prioritization results to the
scores assigned to the nodes, we scaled the scores of each node
by a factor Fwhich varied from 0 to 5 (Fig. S2). Given that
the mean prioritization score applied to the NicSNP study was
0.7 ± 0.6 and ranged from 0 to 3.9, this is a substantial range of
factors. We limited these tests to the 4528 SNPs where P ≤ 0.05
to be consistent with our SNP selection strategy. We replaced the
scores Si of each node with FSi and recomputed the rankings by
weighted P-value (this is equivalent to fixing the score Si and
scaling the link index Li). We then measured the Pearson correlation
coefficient between the rankings before and after scaling. The
correlation coefficient is then plotted against the scaling factor F
in Figure S2.

In one case we explored the effect when all the nodes are scaled
uniformly (the ‘All Nodes’ plot in Fig. S2), so that the scaling is
the same for all SNPs. However, we also explored the case where
a different scaling factor F was used for different SNPs. The other
four plots in Figure S2 correspond to the case where one node at
a time is scaled. For example, the curve labeled ‘Linkage Node’
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represents the case where only the scores of the Linkage Node are
scaled. It is important to test this because not all diseases have been
studied with family data, and therefore linkage results may not be
available.

When F = 1 the rankings are unchanged and the correlation
is 1. When testing an individual node, setting F = 0 corresponds
to dropping that node from the GIN. In the ‘All Nodes’ test, setting
F = 0 corresponds to the original non-weighted P-values.

We found that the results were not very sensitive to the scores.
The rankings were more sensitive when the scores were scaled down,
although the correlation did not drop below 0.8 until F was below
0.2. Scaling up had much less of an effect. Even when we scaled
up to a very large factor of 5, the correlation stayed above 0.87.
The results were similar when, instead of correlation, we looked
specifically at how many SNPs remained in the top 1536 weighted
rankings after scaling. For example, 76% of these would still have
been selected even when F was set to 5 in and we scaled all the nodes
uniformly. The conclusion is that moderate adjustments to the scores
will not result in substantial changes in the rankings. This is relevant
because the scoring system depends on the particular preferences of
a study.

3.3 Simulated data on commercial SNP microarrays
To compare the biological prioritization and straight P-value
strategies on larger SNP sets, we used 1000 simulations of uniformly
distributed P-values on five commercial SNP microarrays: the
Affymetrix Genome-Wide Human SNP Array 5.0 and 6.0
(http://www.affymetrix.com), and the Illumina HumanHap 300-
Duo, 610-Quad and Human1M (http://www.illumina.com). Using
our nicotine dependence GIN, we simulated studies that follow up
on 0.01%, 0.1% and 1% of the original number of SNPs, for further
study (Table S5). The method of selecting SNPs is the same as that
for the NicSNP data, where the top SNPs ranked by the weighted
P-values with P ≤ 0.05 are selected.

The performance of our prioritization method is better than the
straight P-value approach when the disease variant shows evidence
of biological relevance. For example, SNPs in Tier 1 genes for
nicotine dependence will be selected at P ≤ 0.05 when following
up on at least 0.1% of the SNPs on any of these microarrays
(see Table S5). The difference between the two strategies is more
pronounced when following up on fewer SNPs. The mean P-values
for SNPs selected by biological prioritization over the straight
P-value method differed by roughly a half order of magnitude
when following up on 1% of the SNPs, and roughly 1.5 orders of
magnitude for a follow up of 0.01%.

The results are significantly influenced by the distribution of
scores on an array; we report this for the Affymetrix 6.0 and Illumina
1M arrays in Figure S3, which shows the increased genic coverage
by Illumina. Also, in Table S6, we show the effect of varying
the condition P ≤ T when following up on 0.1% of the SNPs for
the Affymetrix and Illumina 1M arrays. Similar to the NicSNP
case, the results do not appear to be very sensitive to changes in
T , except when T approaches the straight P-value threshold of
0.001, where the GIN prioritization and straight P-value methods
rapidly converge. With the condition P ≤ 0.05, the difference in
mean P-value between the two methods is about a one order of
magnitude, but drops to a half order of magnitude when the condition
P ≤ 0.005 is used. Hence, the threshold T can be varied in order

Table 4. The top ten nicotine dependence prioritization scores out of all
known common SNPs

SNP Gene Mouse
Conserv.a

(%)

MAF
(%)

Overall
Score

NicSNP
P-value

rs2266782 FMO3 90 38 3.90 5.1E−01
rs6265 BDNF 89 18 3.90 8.6E−01
rs2020862 FMO2 89 24 3.90 –
rs2307492 FMO2 89 15 3.90 4.2E−01
rs2266780 FMO3 87 17 3.88 5.3E−02
rs3756669 UGT3A1 87 10 3.88 –
rs16969968 CHRNA5 86 42 3.87 6.4E−04
rs676823 GPR109A 82 21 3.84 –
rs1798192 GPR109B 82 38 3.84 –
rs2454727 GPR109B 82 34 3.84 –

aHuman/Mouse evolutionary conserved region – the percentage of conservation

to adjust the weight given to biologically relevant SNPs, thereby
accommodating the particular goals of a study.

3.4 The most biologically relevant known common
SNPs for nicotine dependence

In order to gauge biological relevance in a more global context, we
scored all 2.5 million common (MAF ≥ 10%) SNPs relative to the
HapMap European American sample. Table 4 shows the top 10 most
biologically relevant SNPs ranked by their prioritization scores for
nicotine dependence. There are all non-synonymous in Tier 1 genes.
Six of these 10 SNPs were genotyped in the NicSNP study. Of these
six SNPs, rs16969968 had a P-value of 6.4E−04 and was our top
SNP for follow up. The SNP rs2266780 in the nicotine metabolizing
gene FMO3 with a P-value of 0.053 may have increased interest
because of the biological prioritization.

3.5 The impact on findings with unknown biology
An important question is whether known associations in the literature
would have been missed using our method because they lack
biological relevance. One example is the confirmed type 2 diabetes
association of the SNP rs10811661 (Saxena et al., 2007). This SNP
is 125 Kb from the nearest gene on chromosome 9p, and is not in
LD with any genic SNP within 500 Kb. The prioritization score
for rs10811661 is 0.11; it is not 0 because it is in LD with a
human/mouse conserved region. The P-value for rs10811661 from
the initial GWAS by Saxena and colleagues was 3.6E−05. After
initial genotyping on the Affymetrix 500K microarray, this SNP was
among the top 107 SNPs (0.02%) ranked by straight P-value; these
107 SNPs were then genotyped in a replication study. To determine if
this SNP would have been selected by our prioritization method, still
configured for nicotine dependence, we performed 1000 simulations
on the comparable Affymetrix 5.0 array.

We found that on average the smallest P-value that would not
have been selected by our prioritization method when following up
on 0.02% of the SNPs would be 3.2E−05. While this is inconclusive
because of the different phenotypes and the fact that the numbers are
close, it is possible that rs10811661 would not have been selected
as part of the 107 SNPs. However, 0.02% is a relatively small
follow-up, and simulations show that increasing this to 0.1% would
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guarantee that SNPs with P ≤ 1.2E−04 (−log(P) = 3.9, see the
second row of Table S5) would be selected by our method.

4 DISCUSSION
In order to highlight biologically relevant associations from a
GWAS, which may otherwise be obscured by the large number of
tests, we have developed a method for incorporating a broad array
of genomic data into the prioritization of SNPs for further study.
In this instance we targeted nicotine dependence, but applications
to other phenotypes are straightforward: one need only specify a
different set of biologically relevant genes. Because investigators
are typically drawn to signals in biologically relevant genomic
regions, our method of establishing a priori hypotheses will protect
against post hoc reasoning and legitimize the prioritization process
(Chanock et al., 2007).

The SNP rs16969968 ranked number one in our prioritization of
the NicSNP results (Table 3) and was the seventh most biologically
relevant out of all common HapMap SNPs (Table 4). After initially
being reported by the NicSNP study (Saccone et al., 2007), there
is now extensive evidence from independent datasets that this SNP
is associated with nicotine dependence and closely related smoking
phenotypes (Berrettini et al., 2008; Bierut et al., 2008; Thorgeirsson
et al., 2008) and lung cancer (Amos et al., 2008; Hung et al., 2008).
With the exception of Hung and colleagues, who genotyped and
reported an association at rs16969968, this SNP was not genotyped
in these studies, but the reported associations were with LD proxies
for rs16969968. It is very interesting to see convincing, replicated
evidence of association for a SNP with such strong biological
relevance. However, it is still not clear to what extent known biology
will predict variants that influence disease. Our prioritization method
is not designed to act as a predictor, but to preferentially select
biologically relevant signals when resources are limited, either for
genotyping or for functional studies in the laboratory.

In Table 3, six of the top 10 SNPs, as ranked by the prioritization
method, are also among the top 10 SNPs as ranked by the original
non-weighted P-value. Furthermore, these 10 SNPs would have
been selected by the straight P-value method as long as the top
300 SNPs ranked by straight P-value were followed up. Therefore,
an important question is how many of these 10 SNPs are true
associations. At the time of writing, there are multiple published
replications for the NicSNP result for rs16969968 in independent
samples, either by directly genotyping this SNP itself, or through
strong LD proxies (Berrettini et al., 2008; Bierut et al., 2008;
Thorgeirsson et al., 2008). The distinct NicSNP result at rs578776
also shows evidence of published replication through an LD proxy
(Berrettini et al., 2008; Thorgeirsson et al., 2008). Also at the
time of writing, there have been two other nicotine dependence or
smoking quantity GWAS other than NicSNP (Berrettini et al., 2008;
Thorgeirsson et al., 2008), but the complete results (P-values) for
these studies are not available at this time. However, an important
future task will be to determine how true associations fare in the
GIN prioritization selection method compared with the straight
P-value method. For example, in Figure 2, do the true associations
tend to occur in (or above) the knife-shaped region, or in (or above)
the triangular region? More generally, it will be interesting to
study the distribution of prioritization scores among all known true
associations for any disease. This will require the configuration of
new GINs for other diseases for which a GWAS has been conducted.

Our GIN prioritization method offers one particular strategy for
prioritizing various forms of a priori evidence. Different studies will
have different preferences for incorporating this kind of data. Our
scoring system is flexible, and can be configured to accommodate a
variety of objectives.

Other methods have been proposed for prioritizing SNPs once
various parameters, analogous to our prioritization scores, have been
established (Chen et al., 2007; Curtis et al., 2007; Lewinger et al.,
2007). However, it is unclear how to go from one parameter system
to the other, and therefore difficult to compare methodologies. This
will be studied in future iterations of the method.

There are many other forms of genomic annotation and biological
data that could be incorporated into a GIN. For example, the change
in amino acid for the top ranked SNP rs16969968, which changes
residue 398 of the protein, from aspartic acid (encoded by the G
allele) to asparagine (encoded by A, the risk allele), results in a
change in the charge of the amino acid of the α5 subunit (Cserzo
et al., 1997). It would be straightforward to adjust the link index
of the gene node in order to incorporate this additional data into
the GIN. There are many other publicly available resources on
SNP functional properties (Jegga et al., 2007; Jiang et al., 2007;
Lee and Shatkay, 2007; Wang et al., 2006; Yuan et al., 2006), and
tools for nominating and prioritizing genes biologically relevant to
a disease (Adie et al., 2006; Gaulton et al., 2007; Masotti et al.,
2007).

No matter how many databases we incorporate, our method
will always be limited to using known biology. There may be
unknown biological mechanisms driving these associations, and
these may fail to be discovered if too much emphasis is placed
on current biological knowledge. For example, while the gene
node in the GIN prioritizes SNPs using the dbSNP criteria of
being within 2 Kb of the 5′ end and 500 bp of the 3′ end of a
gene, it has been demonstrated that some genes have regulatory
regions as far as 8 kb upstream (Blackwood and Kadonaga, 1998).
However, the basic premise of this method is to lead with
the strongest biological information available while allowing the
more significant signals to be included for further study, even
if they reside in regions of apparently low biological relevance.
We believe this is a practical procedure for resource-limited
situations.

Our method does not incorporate information regarding the
number of potential associations detected in or near a gene. For
example, it is known that even for the single-gene disorder of cystic
fibrosis, there are over 500 different mutant alleles (Zielenski and
Tsui, 1995). It would be useful to integrate an additional mechanism
into the prioritization process that somehow gives additional weight
to genes with multiple SNP associations (the number of associations
would have to be corrected for LD). This will be studied in future
iterations of the GIN prioritization method.

A GWAS cannot viably detect complex interactions between
genes due to low statistical power after adjustment for a staggering
number of tests. There are now many public databases that
provide data on biochemical pathways and metabolic networks
(Altman, 2007; Arakawa et al., 2005; Harris et al., 2004; Karp et al.,
2005; Mi et al., 2007; Vastrik et al., 2007; von Mering et al., 2007).
In future iterations of the method the GIN model will be generalized
to prioritize tests of gene–gene interaction, and will incorporate
these databases to elucidate the intricate genetic structure of complex
disease (Thomas, 2005, 2006a, 2006b).
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5 CONCLUSION
We developed a novel method for incorporating a broad array of
biological data across multiple domains into the prioritization of
SNPs after a GWAS. In this instance we targeted nicotine depen-
dence, but applications to other diseases are straightforward—one
need only specify a different, appropriate set of biologically relevant
genes. Because investigators are typically drawn to signals in
biologically relevant genomic regions, our method of establishing
a priori hypotheses will protect against post hoc reasoning. This
method will continue to evolve with the growth and expansion of
biological databases.
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