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Abstract
An emerging concept in cancer biology is that a rare population of cancer stem cells exists among
the heterogeneous cell mass that constitutes a tumor. This concept is best understood in human
myeloid leukemia. Normal and malignant hematopoietic stem cell functions are defined by a common
set of critical stemness genes that regulate self-renewal and developmental pathways. Several
stemness factors, such as Notch or telomerase, show differential activation in normal hematopoietic
versus leukemia stem cells. These differences could be exploited therapeutically even with drugs
that are already in clinical use for the treatment of leukemia. The translation of novel and existing
leukemic stem cell – directed therapies into clinical practice, however, will require changes in clinical
trial design and the inclusion of stem cell biomarkers as correlative end points.

The hallmarks of hematopoietic stem cells (HSC) are their ability to self-renew and to develop
into multiple lineages through differentiation (Fig. 1A; ref. 1). HSCs can be functionally
defined as either long-term (LT-HSC) or short-term (ST-HSC) repopulating stem cells by their
capacity to provide life-long or transient hematopoiesis. Furthermore, LT-HSCs primarily
reside in bone marrow niches, whereas ST-HSC may be mobilized (Fig. 1A; ref. 2). Strict
regulation of HSCs is crucial to ensure maintenance of regenerating cells without abnormal
outgrowth of immature cells. Dysregulated expansion and growth of HSCs is likely to play a
critical role in leukemogenesis (Fig. 1A and B; refs. 3,4).

The existence of leukemic stem cells (LSC) was proposed more than three decades ago
following the development of clonogenic growth assays with the capacity for clonal growth of
leukemia in vitro. There was no definitive proof of LSCs, however, until Dick and colleagues
showed that the engraftment of nonobese diabetic/severe combined immunodeficient (NOD/
SCID) mice with primary acute myeloid leukemia (AML) samples could only be accomplished
using cells that were phenotypically similar to normal HSCs by expressing CD34 and lacking
markers of lineage commitment such as CD38 (5). Furthermore, these primitive cells produced
leukemic blasts within engrafting animals that phenotypically matched each patient’s original
AML. These results suggested that the cellular organization of AML is similar to normal
hematopoiesis with immature stem cells that have clonogenic growth potential giving rise to
differentiated cells with little long-term growth potential. Importantly, LSCs could be isolated
and transplanted into secondary recipients, showing that they had the capacity to self-renew
(5). Due to a high degree of phenotypic and functional similarity, it has been hypothesized that
most human leukemias arise from transformation of HSCs (Fig. 1A; refs. 5,6). Conversely,
recent studies have shown that transduction of the MLL-ENL or MOZ-TIF2 fusion genes into
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HSCs, common myeloid progenitors, and granulocyte-macrophage progenitors resulted in the
identical leukemia (4,7). These results indicate that committed progenitors with little long-term
replicative potential may acquire self-renewal capability and transform into LSCs (Fig. 1A and
B). It is unclear, however, what proportion of human myeloid leukemias arise from committed
progenitors or by a single oncogenic event such as MLL-ENL and MOZ-TIF2, and whether
these models can be useful in identifying key regulatory pathways that represent therapeutic
targets.

In the following sections of this review, we will therefore highlight regulatory pathways of
LSCs with validated and treatable LSC targets (Table 1).

Clinical Translational Advances
Regulatory pathways in LSCs

HSCs and LSCs share common features: self-renewal, the capacity to differentiate, resistance
to apoptosis, and limitless proliferative potential. The pathways regulating these functional
properties can be categorized into self-renewal, developmental, and miscellaneous pathways,
each of which is governed by a distinct set of critical genes that have emerged from molecular
profiling and can be associated with “stemness” (Fig. 1).

Self-renewal pathways
BMI—BMI-1 is a polycomb group (PcG) RING-finger protein that has an essential function
in the maintenance of HSCs and LSCs. The BMI-1 gene was originally identified as an
oncogene inducing B-cell or T-cell leukemia. Recent experiments with Bmi-1−/− mice showed
that leukemic (AML) stem/progenitor cells lacking Bmi-1 were unable to engraft and
proliferate and displayed signs of differentiation and apoptosis. Conversely, the reconstitution
of the Bmi-1 gene was found to completely abrogate these proliferative defects (8).
Functionally, BMI-1 forms a heterodimeric complex with another PcG protein, Ring1b. PcG
complexes bind to chromatin and initiate and maintain gene repression, which is thought to be
mediated by methylation, deacetylation, and ubiquitination of core histones. BMI-1 and Ring1b
reconstitute an ubiquitin E3 ligase activity with histone H2A as their ubiquitination substrate
(9). Thus, inhibitors of methylation, histone deacetylase inhibitors, or inhibitors of the
ubiquitin-proteasome system could be exploited as anti–BMI-1 strategies in LSCs.
Interestingly, a recent study showed that BMI-1 localization to PcG bodies can be interdicted
by the DNA methylation inhibitor 5-azacytidine (Table 1; ref. 10). Further studies are required
to assess the capacity of 5-azacytidine to modulate BMI-1 as well as the role of BMI-1 (and
epigenetics) in LSCs.

Telomerase—Telomerase is a ribonucleoprotein enzyme composed of the human telomerase
reverse transcriptase (hTERT) and the human telomerase RNA component (hTERC), which
synthesizes telomeric repeats onto chromosomal ends and thereby prevents replicative
senescence (11). Although stem cells in general possess limitless proliferative capacity and
long telomeres, LT-HSCs are unable to prevent telomere shortening on serial transplantation
because of low levels of telomerase expression. However, telomerase expression is up-
regulated with cell cycle activation, and as a consequence, expression levels are higher in ST-
HSCs or more committed progenitors (reviewed in refs. 12,13;Fig. 2). These data are consistent
with recent findings in genetically engineered mouse models, which have shown that
overexpression of TERT promotes mobilization of epidermal stem cells out of their niches,
leading to stem cell proliferation in vitro and excessive hair growth in vivo (14,15), whereas
short telomeres cause stem cell failure and limit tissue renewal capacity (16). In human chronic
myeloid leukemia, LSCs and HSCs were comparatively analyzed for telomere length, and it
was found that telomeres in LSCs were significantly shorter than in HSCs and that telomerase
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activity in LSCs was high (Fig. 2; ref. 12,13). This differential in telomere length and
telomerase activity between HSCs and LSCs (Fig. 2) opens avenues for exploiting telomerase-
directed treatments as stem cell therapeutics. Drugs with telomerase-modulating properties that
are already in clinical trials in leukemia include arsenic trioxide, the hTERC antisense
oligonucleotide GRN163L, and hTERT vacccines (Table 1.; refs. 17–21).

Developmental pathways
Notch signaling pathway—The Notch signaling pathway regulates the specification of
cell fate and differentiation (22). Four Notch transmembrane heterodimeric receptors (Notch
1-Notch 4) and five ligands are known. The ligands Jagged 1, Jagged 2, and Δ1 to Δ3 can
initiate Notch signaling by releasing the intracellular domain of the receptor (Notch-IC)
through proteolytic cleavage involving α-secretase and γ-secretase (Fig. 3). Notch-IC then
enters the nucleus and induces the transcription of Notch-responsive genes (22,23).
Overexpression of constitutively active Notch 1 in HSCs results in a complete inhibition of B-
cell development. In T-cell acute lymphoblastic leukemia, Notch 1 is found to be constitutively
activated in patients with the t(7:9) chromosomal translocation. This involves high expression
of a constitutively activated form of Notch 1 by the promoter and enhancer elements regulating
the β-chain of the T-cell receptor (Fig. 1B). Although this distinctive chromosomal
translocation is found in <1% of T-cell acute lymphoblastic leukemia cases, >50% of T-cell
acute lymphoblastic leukemia patients carry somatic activating point mutations of Notch 1
(24,25). Several Notch inhibitors are in clinical development for the treatment of cancer,
including MK-0752, a γ-secretase inhibitor in phase I trials in patients with T-cell acute
lymphoblastic leukemia and other leukemias (Table 1; ref. 26).

Other pathways—Other regulators of developmental pathways that play a role in leukemia
include Wnt/β-catenin signaling (Fig. 1A and B; refs. 1, 27). The Wnt/β-catenin signaling
pathway is important in T-cell development by providing proliferative signals to most
immature thymocytes (28). Similar to Notch, Wnt is involved in the development of acute
lymphoblastic leukemia. Furthermore, it has been implicated in chronic lymphocytic leukemia
and the progression of chronic myeloid leukemia to blast crisis (Fig. 1B; refs. 29, 30). Inhibitors
of Wnt have been described; e.g, the anti-inflammatory drug R-etodolac has been shown to
diminish Wnt/β-catenin signaling at concentrations that increased apoptosis in chronic
lymphocytic leukemia cells (30).

Miscellaneous targets
Nuclear factor κB—Nuclear factor κB (NF-κB) is a transcription factor that has
antiapoptotic activity and is activated in many tumor types including lymphoid leukemia
(31–34). Unlike in HSCs that show little NF-κB activity, however, NF-κB is constitutively
activated in LSCs (Fig. 1A; ref. 34). This difference is currently exploited in clinical studies.
A novel proteosome inhibitor, salinosporamides A, which inhibits NF-κB by stabilizing its
suppressor IκB, and parthenolide, a natural product that can directly target NF-κB, are being
investigated as LSC treatments (Table 1; refs. 35,36).

FLT3—Under normal conditions, FMS-like tyrosine kinase 3 (FLT3) receptor is expressed in
CD34+ short-term reconstituting hematopoietic stem and progenitor cells (37–39). FLT3
mutations are among the most common genetic abnormalities in AML and are present in ~30%
of all cases. It is associated with poor prognosis and increased relapse rates (39–43). Recent
data showed that the FLT3 internal tandem duplication mutation is present in CD34+/CD34−
LSCs (Fig. 1A; ref. 44. Furthermore, inhibition of FLT3 signaling with CEP701 resulted in
failure of FLT3 internal tandem duplication LSCs to engraft in NOD/SCID mice. Currently,
several FLT3 inhibitors, including CEP701 and PKC412, are in phase II clinical trials in AML
(Table 1; refs. 45,46).
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Phosphatidylinositide-3-kinase/AKT/mammalian target of rapamycin—The
phosphatidylinositide-3-kinase/AKT/mammalian target of rapamycin (mTOR) pathway is
constitutively activated in most AMLs and is essential for AML blast survival (47). Unlike in
short-term repopulating leukemia cells, the activation of mTOR is required in LT-HSCs,
suggesting an essential role of this pathway in LSCs (Fig. 1A). Interestingly, coadministration
of the mTOR inhibitor rapamycin was found to potentiate the ability of etoposide to prevent
the engraftment of AML cells in NOD/SCID mice (48). Three mTOR inhibitors, rapamycin,
temsirolimus, and everolimus, are under clinical investigation in leukemia, albeit not as LSC
targeting strategies (Table 1; refs. 48,49).

Cell-surface proteins—An intriguing property of normal and LSCs is the expression of
high levels of the drug efflux pumps P-glycoprotein (ABCB1) and breast cancer resistance
protein (ABCG2; ref. 50). Whereas the ABC transporters provide a mechanism of self-
protection in HSCs, they are involved in multidrug resistance of leukemia to a wide variety of
cytotoxic agents. P-glycoprotein inhibition using cyclosporine A was found to enhance clinical
outcomes in combination with standard cytotoxic chemotherapy in poor-risk patients with
AML (51). Subsequent clinical studies with the P-glycoprotein inhibitor valspodar (PSC-833),
however, failed to show benefit (52). The P-glycoprotein inhibitor zosuquidar is currently in
clinical trials in leukemias in combination with standard cytotoxic agents. Breast cancer
resistance protein inhibitors will likely be more selective and effective, but are still in
preclinical development (Table 1; refs. 50,53).

Another cell-surface molecule that could be exploited as a LSC target is CD33. Bonnet et al.
have shown that leukemia-initiating cells in NOD/SCID mice express CD33 and proposed that
anti-CD33 antibodies might be useful to direct cytotoxic drugs to LSCs. Mylotarg is such a
preparation that is Food and Drug Administration approved for clinical use in AML (Table 1;
refs. 54,55).

Clinical Implications of LSC-Directed Therapies
Initial evidence for the existence of LSCs suggested that these highly clonogenic cells must be
eradicated to achieve durable remission or cure (6). However, the molecular understanding to
identify relevant pathways and produce novel targeted therapeutics was lacking. In current
clinical practice, standard anticancer agents are still used with the intent to kill the bulk tumor
mass. However, most of these fail to eradicate cancer stem cells, resulting in disease relapse.
Because cancer stem cells are rare, it is likely that novel clinical trial designs must be used that
consider LSC biology and the potential of delayed responses. These strategies may also require
combining different classes of agents to target both mature cells and LSCs (Fig. 1B; Table 1).
For example, differentiated leukemic cells that make up the bulk of the disease could be treated
with conventional chemotherapy to alleviate patients’ symptoms. Subsequently, when tumor
burden is low, LSC-directed treatments should be initiated (Fig. 1B). To ultimately prove the
validity and efficacy of LSC tailored chemotherapy regimens, stem cell markers must be used
to investigate the effects of LSC-targeting agents on this rare cell population.
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Fig. 1.
A, the hierarchy of the hematopoietic system. LT-HSCs reside in a niche and asymmetrically
divide into ST-HSCs and/or self-renew (green arrow). ST-HSCs exiting the niche actively
undergo expansion and give rise to multipotent progenitors (MPP) that lack self-renewal
potential. Common lymphoid progenitors (CLP) and common myeloid progenitors (CMP)
arise from multipotent progenitors. Common lymphoid progenitors give rise to T cells and B
cells. CMPs give rise to granulocyte/macrophage progenitors (GMP), megakaryocyte/
erythroid progenitors (MEP), and mast cell and basophil progenitors, as well as macrophage
and dendritic cell progenitors (MDP). B, leukemia stem cell hierarchy. LT-HSCs and ST-HSCs,
as well as multipotent progenitors, CMPs, and GMPs, can potentially become LSCs with
preserved self-renewal capacity. LSCs up-regulate telomerase activity and express stemness
factors that are associated with self-renewal, developmental, and growth signaling pathways
(see box). LSCs can differentiate into multiple types of leukemia via distinct gene activation.
Conventional cytotoxic chemotherapy can only achieve tumor debulking by killing mature
leukemia cells. LSCs are resistant to conventional treatment strategies and will often
repopulate, resulting in recurrence of the disease. LSC-directed therapies (see Table 1), when
given together with debulking agents, are hoped to yield durable remissions and ultimately
cures. *, LSC targets that can be treated with drugs.
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Fig. 2.
Telomere and telomerase status in normal and malignant hematopoietic cells. LSCs are distinct
from LT-HSCs and ST-HSCs. LT-HSCs have relatively long telomeres, but low telomerase
activity, which cannot maintain telomere length, and thus LT-HSC telomeres shorten when the
cells replicate. ST-HSCs have long telomeres and up-regulate telomerase, enabling them to
actively amplify. LSCs have high telomerase activity but short telomeres that essentially
require maintenance by telomerase, thereby providing a target for therapeutic intervention.
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Fig. 3.
Notch signaling pathway. Notch ligands such as Jagged 1/2 bind to the extracellular domain
of Notch receptors. Cleavage of the Notch receptors by α-secretase and γ-secretase releases
the Notch intracellular domain, which translocates into the nucleus, resulting in transcription
activation. γ-Secretase has been validated as a therapeutic target (see Table 1).
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