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Abstract
Purpose—To assess the association and combined effect on the risk of age-related macular
degeneration (AMD) by the HtrA1 and complement factor H (CFH) polymorphisms, smoking and
serum cholesterol.

Design—Clinic-based and population-based case-control.

Participants—Eight hundred and five AMD cases and 921 controls from The Eye Clinic of
National Eye Institute, Age-Related Eye Diseases Study (AREDS), Blue Mountain Eye Study
Cohort, and Minnesota Lions Eye Bank.

Methods—DNA Samples were genotyped for polymorphisms of rs11200638 in HtrA1 promotor
and rs380390 in CFH. HtrA1 protein in ocular tissue was measured. Interactions of the HtrA1 risk
allele with the CFH risk variant, smoking status and cholesterol were assessed.

Main Outcome Measures—AMD was evaluated by retinal specialists and AMD subtypes
(geographic atrophy and neovascularization) were determined.

Results—Strong associations of the HtrA1 risk allele (A) with AMD were present in all sample
sets. A similar magnitude of association was observed for central geographic atrophy and neovascular
AMD. The combination of the HtrA1 and CFH risk alleles increased AMD susceptibility, as did the
combination of the HtrA1 risk allele with smoking. No combined effect of HtrA1 risk allele and
cholesterol level was found. Enhanced expression of HtrA1 protein was detected in retina with AMD.
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Précis:
The genetic variant of HtrA1 confers increased risk for developing age-related macular degeneration (AMD). AMD risk increases further
when the risk alleles from HtrA1 are combined with either CFH risk alleles or history of smoking.
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Conclusions—Findings from multiple samples support an AMD genetic variant harbored within
HtrA1. The risk of advanced AMD increased when the presence of risk alleles from HtrA1 was
combined with either CFH risk alleles or history of smoking.

Age-related macular degeneration (AMD) is the leading cause of blindness in older Western
populations.1 Both environmental and genetic factors contribute to AMD susceptibility.2-5
Cigarette smoking is an established factor for AMD, while the association of advanced AMD
with cardiovascular disease has been less consistent.6 Recent studies have identified strong
genetic associations with advanced AMD,2 and associations of AMD with certain single
nucleotide polymorphisms (SNPs) have been documented. 5,7-22

Chromosome 10q26 is a locus implicated in several AMD linkage studies.23-27 These studies
found significant association signals for the pleckstrin homology domain–containing, family
A, member 1 (PLEKHA1) and LOC387715 (ARMS2) within 10q26. 28-30 Recently, another
gene in 10q26 has been reportedly associated with AMD.31,32 This new candidate is the
HtrA1 (high temperature requirement factor A-1) gene. The HtrA1 gene is associated with the
expression of a protein that can act as a serine protease and is involved in protein quality control
and cell fate.33 The identified polymorphism (SNP), rs11200638, located in the promoter
region of HtrA1, is believed to be a responsible genetic variant for AMD risk.32,34 In another
study, the HtrA1 SNP was particularly associated with neovascular AMD.31 Individuals with
the HtrA1 risk allele showed an increased expression of HtrA1 protein in the retinal pigment
epithelium (RPE) and in drusen of eyes with AMD.32 Recently a retrospective matched-pair
case-control study confirmed that alleles in HtrA1 gene alter the risk of neovascular AMD and
that the association is independent of complement factor H (CFH) polymorphism and smoking
history.35 However, the causal effect of SNPs in 10q26 region is currently disputed.36

In this study, we aimed to refine the association between the HtrA1 SNP and AMD in four
different AMD sample sets from Caucasian populations: two clinic-based case-control studies
from the U.S. National Eye Institute (NEI)7,14 and Age-related Eye Diseases Study (AREDS),
37 one case-control sample nested in a population-based study of the Australian Blue
Mountains Eye Study (BMES),38 and autopsied ocular tissue samples from Minnesota Lions
Eye Bank (MLEB).39 We also aimed to assess the magnitude of association, the attributable
risk for bearing disease susceptibility alleles at the HtrA1 promotor, and possible combined
effects of the HtrA1 SNP with the risk alleles for CFH SNP, and other non-genetic AMD risk
factors, including cigarette smoking and serum cholesterol level.

Materials and Methods
Patient Population

Each participant provided written informed consent according to protocols approved by the
Institutional Review/Ethics Boards of NEI Institutional Review Board, AREDS clinical site,
University of Minnesota, or University of Sydney, respectively. This research followed the
tenets of the Helsinki Declaration.

The clinic-based NEI case-control study included diagnosed advanced AMD cases and controls
from the greater Washington, D.C. area, who had been evaluated by AREDS ophthalmologists
at the NEI. Venous whole blood (10 mL) was collected from NEI study subjects. Genomic
DNA was extracted and isolated using a QIAamp DNA Blood Maxi kit (Qiagen, Valencia,
CA).7,14 In addition, DNA samples from the AREDS Genetic Repository were obtained and
included as a second clinic-based sample in the study.40 NEI and AREDS patients and controls
were self-identified as Caucasians of non-Hispanic descent and were 55 years or older. AMD
status was assessed according to AREDS study guidelines after retinal photographic grading.
Patients with advanced AMD had either geographic atrophy at least 175 microns in diameter
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involving the macular center and/or macular choroidal neovascularization (CNV) defined as
nondrusenoid retinal pigment epithelial (RPE) detachment, serous or hemorrhagic retinal
detachment, subretinal or sub-RPE hemorrhage, or subretinal fibrosis with drusen in at least
one eye or evidence of history of photocoagulation for CNV.41 The normal controls were
clinically and by fundus photography evaluated and found to have either no drusen or less than
5 small drusen (<63μm), no evidence of significant extra-macular drusen, and an absence of
all other retinal diseases affecting the photoreceptors and/or outer retinal layers. Subjects with
high myopia, retinal dystrophies, central serous retinopathy, retinal vein occlusion, diabetic
retinopathy, uveitis, and other retinal diseases, were excluded. Retinal photographs were taken
of all patients and the AREDS controls. Smoking history was obtained using interviewer-
administered questionnaires.42

The collection and clinical evaluation of BMES subjects has previously been described.43,
44 Briefly, the BMES is a population-based cohort study of common eye diseases and health-
related parameters among suburban residents aged 49 years or older in the Blue Mountains
region of Australia, near Sydney. The area has a stable and ethnically homogenous population.
In this study, retinal photographs of study participants were taken of one (99%), or both eyes
(98%) during 1992−1994. During the second BMES survey (1997−2000), 2,334 of 3,654
baseline participants (75% of survivors), as well as an additional 1,174 participants (85% of
eligible) who had newly moved to the study area or were then in the eligible age group, were
examined and photographed at that time (n=3508). AMD was evaluated from fundus
photographs while graders were masked to participant identity. All advanced AMD cases were
adjudicated and confirmed by a retinal specialist (PM). Early AMD was defined in either eye
by: (1) presence of large (125 μm or larger diameter), soft indistinct or reticular drusen within
the macular area or (2) presence of both large, soft distinct drusen within the macula and retinal
pigmentary abnormalities in the absence of late AMD. This closely resembled the definition
of early AMD used in the Beaver Dam, Wisconsin population study.40 Advanced, or late-
stage, AMD was defined as the presence of neovascular or atrophic AMD.44,45 Smoking
history was obtained using an interviewer-administered questionnaire.46 DNA samples of 852
subjects consisting of 284 cases (54 advanced and 230 early AMD) and 568 age-, sex- and
smoking status-matched controls were included in this study.

Donor eyes obtained from the MLEB were maintained at 4° C in a moist chamber until
dissection photography. All tissue was acquired with consent of the donor or family members
for use in medical research.7,14 Sclera and some surrounding muscle were snap frozen and
used as the source for DNA extraction. DNA from ocular tissue was extracted after proteinase
K digestion. Criteria established by the Minnesota Grading System (MGS) correspond to
definitions used in the AREDS classification system with high-resolution, stereoscopic
macular images to determine AMD stages.37,39

SNP typing
SNP typing of HtrA1 promotor (G/A), rs11200638, was performed using the PCR- Restriction
Fragment Length Polymorphism (RFLP) method.31 The amplified DNA fragment (685 bp)
containing the polymorphic site was flanked by the primers of 5’-ATG CCA CCC ACA ACA
ACT TT-3’ and 5’-CGC GTC CTT CAA ACT AAT GG-3’, respectively. The PCR mixture
included 1XJumpStart ReadyMix REDTaq (Sigma), 20 ng DNA, and 70 pmole of primer. The
program was run for 2 min at 94°C, followed by 39 cycles of 30 seconds’ denaturation at 94°
C, 40 seconds’ annealing at 52°C and 55 seconds’ extension at 72°C. RFLP analysis was
conducted by incubating 15 μL of PCR product with 0.5 μL of Eag1 restriction enzyme which
cuts the G allele at position 140bp. Fragments were separated on 15% TBE polyacrylamide
gels and visualized after ethidium bromide staining. Among the 1,726 samples, 1,702 were
successfully genotyped. The call rate was 98.6%. The typing of CFH intron (rs# 380390) typing
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was performed by Taqman SNP Genotyping Assay (Assay ID# C___2530286_20, Applied
Biosystems, Foster City, CA).

Serum cholesterol assessment
Fasting serum cholesterol was evaluated in the NEI study, AREDS and BMES using the normal
range defined as 100 to 200 mg/dL.6,47

Immunohistochemistry
The avidin-biotin-complex immunoperoxidase technique was utilized on the unstained, de-
paraffinized slides of AMD and normal human eyes in which macular sections were available
as described previously.12 The primary antibody was rabbit anti-human HtrA1 polyclonal
antibody (R&D System, Minneapolis, MN) or control rabbit IgG. The secondary antibody was
biotin-conjugated goat anti-rabbit IgG (Vector Laboratories, Burlingame, CA). The substrate
was avidin-biotin-peroxidase complex (Vector Laboratories, Burlingame, CA), and the
chromogen was diaminobenzidine and nickel sulfate. Positive reaction resulted in the
production of a blue-blackish color.

Statistical analysis
Logistic regression was performed using SAS (Release 9.1; SAS Institute, Cary, NC) to
compare genotype and allele frequencies in cases and controls, as well as to estimate odds
ratios (OR), adjusted for age and sex. Smoking history was coded into two groups, ever and
never smoked. Interactions were tested using product terms in logistic regression models.
Attributable risk (AR), as a percentage, and 95% confidence intervals (CI), were calculated.
48

Results
Demographic information from the four study samples is summarized in Table 1.

The distribution of the HtrA1 promotor SNP in the control groups showed no significant
deviation from Hardy-Weinberg equilibrium (p > 0.05). Strong associations, after adjusting
for age and sex, between the A allele of the SNP and AMD were present in all sample sets with
the exception of MLEB, due to its smaller sample size and lower proportion of subjects
diagnosed with advanced AMD (Table 2). An allele dosage-dependent effect was also evident
in the three subject sample sets. The likelihood of having AMD was greater for individuals
with two risk alleles than for those with one risk allele (Table 2). In both the NEI and the
AREDS samples, homozygozity in alleles A was associated with a two- to three-fold higher
OR for AMD than heterozygosity. Moreover, the OR magnitude correlated with the proportion
of advanced AMD cases in each sample set. ORs of 2.12 and 2.19 were found for the risk allele
in the NEI and AREDS samples, where advanced cases accounted for 75% and 90% of the
total cases, respectively. However, an OR of 1.52 was found for the risk allele in the BMES
sample, where advanced AMD accounted for only 19% of all cases. A low OR of 1.02 was
calculated in the MLEB samples, which most likely resulted from the small sample size and
lack of advanced AMD cases.

Analysis of allele frequency quantitatively showed a dosage-dependent association of the
HtrA1 risk allele with disease severity. The risk allele A was associated with 2.85 higher odds
of advanced AMD while the risk for early AMD was 1.57-fold higher (Table 3) (p=0.0001).
Even though the ORs of atrophic and neovascular AMD were 2.17 and 2.97 respectively in
the magnitude of the HtrA1 association, the difference did not reach the level of significance
(Table 3)(p>0.05).
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The CFH intron G/C SNP (rs380390) and CFHY402H are in complete linkage disequilibrium,
and both SNPs have been shown to be significantly associated with AMD.14,49 Logistic
analysis of the combined contribution of the HtrA1 and the CFH intron G/C SNP unveiled a
strong synergic effect between the A allele of the HtrA1 SNP and the C allele of the CFH SNP
for AMD susceptibility (Table 4). Carrying 3 out of these 4 HrtA1 and CFH risk alleles
conferred a 2.5-fold higher OR for AMD than carrying two risk alleles (OR 5.36 with respect
to 1.22 and 1.74 combined, p=0.0001; OR 5.07 with respect to 2.03 and 1.74 combined,
p=0.0008). No participant carried all 4 HtrA1 and CFH risk alleles in the 4 sample sets.

We found an interaction between smoking and the HtrA1 SNP by analyzing all NEI, AREDS
and BMES cases for which a smoking history was available (Table 5). In each genotype
category, ever smokers had a higher OR for AMD than never smokers (p=8.73×10−4 in
heterozygotes and p=1.17×10−3 in homozygotes). Individual heterozygotes for the risk allele
who also had ever smoked had an OR for AMD of 3.54, slightly higher than the product of
smoking OR (1.70) and G/A genotype (OR 1.80) alone. However, subjects who had ever
smoked and were also homozygous for the risk allele had an AMD OR of 17.71, substantially
higher than the product of smoking alone OR (1.70) and A/A genotype alone (OR=3.54). In
contrast, subjects homozygous for the risk allele had similar OR for AMD risk at different
serum cholesterol levels (Table 5). The impacts of HtrA1 promotor A allele, CFH intron SNP
C allele and smoking in this study on the attributable risk of AMD were 22.3% (95% CI: 18.9%,
25.5%), 31.5% (95% CI: 27.2%, 35.6%) and 18.2% (95% CI: 12.6%, 23.4%), respectively.

Immunoreactivity against HtrA1 was weakly detected in the retinal vascular endothelia,
internal limiting membrane and RPE of age-matched eyes with normal retina. However, strong
immunoreactivity against HtrA1 was observed in the macula of the AMD eyes, with either
neovascular or geographic atrophic lesions (Figure 1). Intense staining highlighted choroidal
neovascular structure as well as the abnormal RPE and some drusen. No visible changes in
intensity, number, or staining pattern were found in the peripheral retina in AMD eyes
compared with normal eyes. A trend for higher HtrA1 expression was noted in the eyes with
HtrA1 variant genotypes as reported in our recent study of 57 AMD cases and 16 age-matched
controls with normal retinas.50

Discussion
These findings confirm the contribution of the HtrA1 promotor SNP to AMD prevalence in
Caucasian populations and support the previous Utah Caucasian report.32,51 The current study
included multiple Caucasian AMD samples from distinct geographic areas, including two well-
known AMD studies, the AREDS and BMES. Moreover, we demonstrated the existence of a
risk allele dosage effect on AMD risk, and showed that the magnitude of association with the
HtrA1 SNP was similar for the two advanced AMD subtypes. Multivariate modeling found
interaction between smoking and the HtrA1 hazard allele(s), especially those homozygous for
the risk allele. A recent study from Hong Kong has also found HtrA1SNP-smoking additive
effect. 34 Attributable risk based on our estimates, suggest that AMD cases could be attributed
more to the proportion of HtrA1 and CFH variants, than to cigarette smoking. Our results also
indicated a lower significance in the p value of the HtrA1 SNP than the LOC387715 SNP from
the same cohorts as we reported before.29 However, we cannot conclude the causal
contribution of those two SNPs by simply comparing the p values.29,36 Although it is possible
that only one locus in 10q26 is truly attributed to AMD,36 and the locus is composed of a
linkage disequilibrium block that spans both the HtrA1 gene as well as the LOC387715
(ARMS2), our data demonstrated enhanced HtrA1 protein expression in AMD lesions. In
contrast, no ARMS2 protein has been found in human eyes with or without AMD. Furthermore,
multiple loci, rather than a single locus in a particular chromosome can contribute to either an
increased or decreased risk of AMD. For example, the CFH gene resides within the region of
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the complement activation gene cluster, which also includes 5 ‘CFH-related’ genes. Deletion
of CFHR1 and CFHR3 is associated with a lower risk of AMD.52,53

CFHY402H, another strong AMD-susceptibility genetic variant, has been confirmed in
multiple Caucasian AMD samples, but not in most Japanese or Chinese samples.54-57 Unlike
CFHY402H, the HtrA1 promoter SNP appears to confer a significant AMD association in all
of these three ethnic groups.31,58,59 This suggests that HtrA1 might represent an older
ancestral genetic variant, and may thus be distributed more globally.

Most AMD genetic association studies have been conducted as clinic-based case-control
studies. This design has inherent limitations. Frequency of the genetic variant distribution in
the population may not be estimated precisely, and thus reported attributable risk may be either
over- or under-estimated. Information and selection bias may lead to a deviated estimation of
the effect of a risk factor. Our samples included a nested case-control from a population-based
study, the BMES,60,61 which has the advantage of minimizing sample selection bias.
However, due to the relatively small number of advanced AMD cases in this sample of
generally healthy, older persons, the BMES OR can be probably be interpreted as representing
early or intermediate-stage AMD, as the majority of BMES AMD cases were at this AMD
stage. On the other hand, similar findings from multiple sample sources in this study support
a strong association between HtrA1 variant and AMD.

The HtrA1 promotor SNP coincides with previous fine-mapping findings in a region strongly
linked to AMD, 10q26.25 Both in vitro and in vivo data indicate that this promoter SNP
upregulates HtrA1 mRNA and protein expression.31 HtrA1 SNP is highly associated with
classic chroidal neovascularization AMD in a French study.62 Therefore, our finding of higher
expression of HtrA1 protein in both neovascular and atrophic AMD lesions is expected. It
remains unclear as how increased HtrA1expression would contribute to AMD risk, or how the
HtrA1 risk allele enhances its protein expression, leading to an increased risk of AMD. HtrA1
is a member of the heat shock serine protease group of proteins which control many
physiological and pathological processes, such as vascular permeability and extracellular
matrix remodeling.63 HtrA1 is also highly expressed in normal vascular endothelia but has
low expression rates in neuronal tissue.64 Active HtrA1 induces cell death in a serine protease-
dependent manner. This proapoptotic property could explain the enhanced expression of HtrA1
in AMD lesions. The over-expression of HtrA1 could indicate active neovascular AMD or
large drusen deposits and RPE abnormalities in atrophic AMD.65 Further studies should aim
to identify conditions that activate HtrA1 in ocular tissue, either at the genetic or epigenetic
level, and investigate the effect of its activation on RPE, photoreceptor, choroidal neovascular
components, Bruch's membrane and drusen in animal models of AMD.

Cholesterol data were available from NEI, BMES, and part of AREDS sample sets. The
relationship between the HtrA1 SNP and serum cholesterol level is not clear. In all subgroups
in terms of the HtrA1 SNP genotype, ORs for AMD seemed slightly lower with higher serum
cholesterol levels than with normal levels, though not significantly.

In summary, our findings from multiple independent samples of AMD cases in the U.S. and
Australia confirmed that the HtrA1 promotor SNP is a global genetic marker for AMD in
Caucasian populations. This HtrA1 SNP has a combined effect with a CFH intron rs380390
SNP that is in strong linkage disequilibrium with the CFHY402H SNP. The HtrA1 SNP
contributed indiscriminately to the two principal disease subtypes. A combined effect of the
SNP and smoking on AMD was detected. In addition, AMD eyes with the HtrA1 promotor
SNP showed higher HtrA1 expression in macular lesions.
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Figure 1.
HtrA1 protein expression (immunohistochemistry). (A) Lack of HtrA1 expression in the
normal macula of a human eye; (B) Increased HtrA1 expression (black color) is noted in drusen
(open arrow) and abnormal retinal pigment epithelium cells (arrows) of an eye with atrophic
age-related macular degeneration; (C) choroidal neovascular vessel structure (arrows) of an
eye with neovascular age-related macular degeneration. (R, retina; C, choroid; avidin-biotin
complex immunoperoxidase)
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Table 3
Odds Ratios (95% Confidence Intervals) of the HtrA1 Promotor SNP in Age-related Macular Degeneration (AMD)
Cases Stratified by Disease Stages and Subtypes after Pooling All Samples Sets

SNP Stages Subtypes

Early
N =333

Advanced
N=472

Geographic
N=255

Neovascular
N=249

A with respect to
G

1.57 (1.14, 2.16) 2.85 (2.38, 3.40)* 2.17 (1.75, 2.68) 2.97(2.38, 3.40)**

P=0.005 P=1.90×10−30 P=8.12×10−13 P=1.66×10−24

Non-AMD controls (n=899) as the references

*
Advanced stage with respect to Early stage, P=0.0001

**
Neovascular AMD with respect to geographic AMD, p>0.05
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Table 5
Combined Effect, (Odds Ratios, 95% Confidence Intervals) of HtrA1 Promotor SNP and Smoking Status on the Risk
of Age-related Macular Degeneration

HtrA1 Genotype
GG GA AA

Smoking Status Never Smoked 1.00 1.80 (1.40, 2.32) 3.54 (2.25, 5.56)
Ever Smoked 1.70 (1.25, 2.30) 3.55 (2.61, 4.85)* 17.71(7.49, 41.88)**

Cholesterol Normal 1.00 2.17 (1.41, 3.34) 6.89 (3.03, 15.66)
High 1.23 (0.85, 1.76) 2.41 (1.65, 3.50) 4.86 (2.70, 8.74)

*
p=8.73×10−4 in comparison with Never Smoked with SNP type GA

**
p=1.17×10−3 in comparison with Never Smoked with SNP type AA

Ophthalmology. Author manuscript; available in PMC 2009 November 1.


