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Abstract

Background: The specific skipping of an exon, induced by antisense oligonucleotides (AON)
during splicing, has shown to be a promising therapeutic approach for Duchenne muscular
dystrophy (DMD) patients. As different mutations require skipping of different exons, this approach
is mutation dependent. The skipping of an entire stretch of exons (e.g. exons 45 to 55) has recently
been suggested as an approach applicable to larger groups of patients. However, this multiexon
skipping approach is technically challenging. The levels of intended multiexon skips are typically low
and highly variable, and may be dependent on the order of intron removal. We hypothesized that
the splicing order might favor the induction of multiexon 45-55 skipping.

Methods: We here tested the feasibility of inducing multiexon 45-55 in control and patient muscle
cell cultures using various AON cocktails.

Results: In all experiments, the exon 45-55 skip frequencies were minimal and comparable to
those observed in untreated cells.

Conclusion: We conclude that current state of the art does not sufficiently support clinical
development of multiexon skipping for DMD.

during pre-mRNA splicing, resulting in the skipping of
said exons [2]. Proof of concept of this strategy has been
obtained in numerous patient-derived cell cultures with

Background
Antisense-mediated exon skipping is emerging as a very
promising therapeutic approach for Duchenne muscular

dystrophy (DMD) [1]. The aim of this approach is to
restore the disrupted reading frame of DMD transcripts,
and allow synthesis of partly functional, internally deleted
Becker-like dystrophins, rather than prematurely trun-
cated non-functional Duchenne dystrophins. This can be
achieved by antisense oligonucleotides (AONs) that target
specific exons and hide them from the splicing machinery

different types of mutations, the mdx mouse model and
recently in a first clinical trial where AONs were injected
locally in the tibialis anterior muscle of 4 Duchenne
patients [1,3-9]. One of the disadvantages of this therapy
is its mutation specificity: different exons have to be
skipped to restore the reading frame for different muta-
tions [10]. Fortunately, most mutations involve deletions
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of one or more exons between exon 45 and 53 or between
exon 2-20 (50% and 15% of all mutations, respectively)
[11]. Therefore, restoration of the reading frame for over
50% of all patients (75% of deletion patients) is theoreti-
cally feasible using a strategically selected set of only 10
exons [12]. Skipping of exon 51 is beneficial for the largest
group of patients (19% of all deletions, or 13% of all
Duchenne patients, (Aartsma-Rus et al. accepted manu-
script).

Nevertheless, it would be more straightforward if a single
formulation of AONs would be applicable to an even
larger group of patients. To achieve this, we and others
suggested skipping of a stretch of consecutive exons
simultaneously (multiexon skipping) [4,13]. An added
advantage of multiexon skipping is that it allows artificial
induction of deletions known to be associated with mild
phenotypes. We previously reported the feasibility of skip-
ping a stretch of exons 45 through 51 (applicable to 13%
of Duchenne patients) after targeting only the two outer
exons with a mix of two AONSs [4]. Multiexon skipping
levels could be increased by combining the two individual
AON:Ss in one molecule [4,14]. Alternatively, a cocktail of
AONs targeting all individual exons present in the stretch
to be skipped can be employed. This has been successfully
applied to induce exon 20-26 skipping in the mdx mouse
model [15]. However, using cocktails to induce the simul-
taneous skipping of an increasing number of exons is
more challenging, due to the increasing occurrence of
intermediate splicing products (personal observation and
Steve Wilton, personal communication). These out-of-
frame splice intermediates in fact dilute the levels of
intended multiexon skipping.

We have repeatedly observed that the feasibility of skip-
ping larger stretches of exons is also limited when using
AON:Ss targeting the outer exons: anticipated multiexon
skipping patterns were not or not reproducibly induced.
This is probably due to the fact that DMD introns are
extremely large and DMD pre-mRNA is cotranscription-
ally spliced [14]. E.g. inducing exon 17-48 multiexon
skipping is (nearly) impossible, as exon 17 is joined to
exon 16 long before exon 48 is even transcribed (an esti-
mated 4.5 h later) [2,16]. However, as DMD intron sizes
vary between 107 bp and 360 kb it is not inconceivable
that some smaller downstream introns are spliced out
prior to larger upstream exons. The most obvious exam-
ples would be intron 44, which is 240 kb. Subsequent
introns are shorter, until intron 55, which is 120 kb. If the
smaller introns (45 through 54) are indeed spliced out
prior to intron 44 and intron 55, this would result in an
"exon 45-55 block" (see Figure 1) [14]. This hypothesis is
underlined by our earlier finding of spontaneous exon
45-55 skipping in untreated control and patient myotube
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cultures, indicating that the acceptor splice sites of intron
44 and 55 can compete [14]. The existence of an exon 45—
55 block implies that exon 45-55 multiexon skipping
may be more easily achieved than other and previously
studied multiexon skips [12,14]. Notably, exon 45-55
multiexon skipping would be beneficial for ~30% of
Duchenne patients present in the Leiden DMD mutation
database [14] and almost 65% of the French UMD data-
base [13]. In addition exon 45-55 deletions are associated
with very mild Becker phenotypes and have even been
found in asymptomatic individuals [13]. In this report we
therefore focus on the feasibility of enhancing exon 45-55
multiexon skipping in patient and control myotube cul-
tures using different approaches. However, we were una-
ble to increase the levels over those observed due to
alternative splicing.

Methods

AONs

AONSs used for this study (Table 1, 2, 3) were h45A0NS5L,
h46AON26L, h47AON2, h47AON5 (exon 47 skipping
requires double targeting), h48AONG6, h49AONI,
h50AON1, h51AON1, h52A0N4, h53A0N1, h54A0N1
and h55A0NS5. All AONs have been described previously
([17,18] (Heemskerk, accepted manuscript), except for
h52A0N4 (uuccaacuggggacgccucuguucc) and the linked
AON, which consists of previously described AONs
h45AONS5L and h55A0NS5 linked by 10 uracil nucle-
otides. All AONs consist of 2'-O-methyl RNA and contain
a full-length phosphorothioate backbone (Eurogentec,
Belgium).

Myogenic cell cultures and AON transfections

Primary myoblasts from an anonymous human control
and two anonymous Duchenne patients, with deletions
of exon 48-50 and exon 46-50 respectively [3,4] were cul-
tured and differentiated into myotubes in 6 wells plates,
as described [3]. Cultures were transfected with mixtures
of 200 nM of each AON, or 100 nM of each AON in the
cocktail experiment, and 2.5 pl polyethyleneimine (PEI,
Exgen 500, MBI Fermentas) per ug AON for three hours.
Each combination was tested in six-plo and for each
experiment six untreated wells were used as reference.

RNA isolation and RT-PCR analysis

RNA was isolated ~28 hours after transfection using RNA-
Bee (Campro Scientific) as described elsewhere [3]. RT-
PCR analysis, sequence analysis and DNA lab chip analy-
sis (Agilent Technologies) were performed as described
[3,4]. Primers used for RT-PCR analysis were designed in
exons upstream and downstream of exon 45 and 55,
respectively. Additional primers flanking exon 45 and
exon 55 were used to confirm successful transfection of
individual AONs (sequence on request).
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Antisense-mediated multiexon 45-55 skipping. A. The introns flanking the intended multiexon skip are extremely large
(248 kb and 120 kb for intron 44 and intron 55, respectively), whereas the internal introns are shorter (2.3 — 54 kb). B. It is
possible that internal exons are joined before intron 44 is spliced out, resulting in an "exon block" of exons 45-55. Here, the
splice acceptors of exons 45 and 56 are competing for the splice donor of exon 44, and the splice donors of exons 44 and 55
are competing for the splice acceptor of exon 56. While the donor sites of exons 44 and 55 are of similar strength (I and 0.99,
respectively, calculated with the Berkely Drosophila Genome Project for human splice site prediction software; http://

www fruitfly.org/seq tools/splice.html), the acceptor splice site of exon 45 (0.76) is weaker than that of exon 56 (0.97), thus
explaining why occasionally exon 44 is joined to exon 56 rather than exon 45. C. Exon 45-55 skipping levels and frequency
might be enhanced by AONs targeting exon 45 and exon 55, which should increase the chance that exon 44 and exon 56 are
joined. D. Regardless of whether the exon block hypothesis is correct, exon 45-55 skipping can be induced using a cocktail of
AON:s targeting each of the individual AONs. However, it is more likely that some but not all exons are skipped and that this
cocktail gives rise to many intermediate products where one or more (but not all) intended exons are skipped.

Table I: Overview of the results for the exon 45-55 multiexon skipping experiments in control cells

Used AONs Exon 45-55 skip NT  Other skips NT

Exon 45 & 55 (mix) 176 0/6  Exon 45-52 skip (I%) Exon 45-54 skip (%)
0/6 1/6 Exon 45-53 skip (1%)

Exon 45 & 55 (linked) 1/6 1/6  Exon 45-51 & 54-55 skip (I1%) Exon 45-51 skip (%)
5/5 5/5 Exon 48-55 skip (1x%)

Exon 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 & 55 1/6 1/6  Exon 45-47 & 49-55 skip (1%) Exon 45-51 skip (Ix)
5/5 5/5 Exon 48-55 skip (%)
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Table 2: Overview of the results for the exon 45-55 multiexon skipping experiments in deletion exon 46-50 cell cultures

Used AONs Exon 45-55 skip NT  Other skips NT

Exon 45 & 55 (mix) 4/6 4/6 Exon 45-54 skip (1 %)
3/6 1/6

Exon 45 & 55 (linked) 1/6 4/6
6/6 6/6

Exon 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 & 55 0/6 4/6  Exon 45-54 skip (1x)
6/6 6/6

Western blot analysis

Protein was isolated 48 hours after AON treatment as
described elsewhere [4]. Samples were boiled for 5 min-
utes, loaded on a 4-7% gradient polyacrylamide gel and
run overnight at 4°C. Gels were blotted to nitrocellulose
BA83 (Whatman, Schleicher & Schuell, Germany) for 6
hours at 4°C. Blots were blocked with 5% non-fat dried
milk (Campina Melkunie, the Netherlands) in TBS fol-
lowed by an overnight incubation with NCL-DYS1 (dilu-
tion 1:125, Novocastra, UK) in TBS plus 0.05% Tween20
to detect dystrophin. The fluorescent IRDye 800 CW goat-
anti-mouse IgG (dilution 1:5000, Li-Cor, NE, USA) was
used as a secondary antibody. Blots were visualized with
the Odyssey system and software (Li-Cor, NE, USA).

Results and discussion

We hypothesized that multiexon 45-55 skipping might
be induced or enhanced using different AONs and combi-
nation strategies (Figure 1). If the "exon block" hypothesis
is correct, the exon 45 and exon 56 splice acceptor sites
compete for the splice donor site of exon 44 (Figure 1B).
Even though exon 45 is closer to exon 44 than exon 56
(248 kb vs 370 kb), exon 45 has a weaker acceptor site
than exon 56 (0.76 vs 0.97, respectively). This might
explain why exon 45-55 are occasionally alternatively or
aberrantly spliced out. Targeting the two outer exons
(exon 45 and exon 55) will increase the chance that exon
44 and exon 56 are joined (Figure 1C). To enhance the
chance that both AONs hybridize to the same pre-mRNA
transcript we included an AON where AONs targeting
exon 45 and exon 55 are linked by 10 uracil nucleotides.
Finally, we tested a cocktail of AONs targeting each indi-
vidual exon from exon 45 to exon 55 (Figure 1D). This
should result in exon 45-55 skipping regardless of the
exon block hypothesis. However, this was also expected to

generate many intermediate products due to the fact that
in some transcripts not all exons will be targeted. Different
AON chemistries are available [19]. These include phos-
phorodiamidate morpholinos, which are very hard to
transfect in vitro, and locked nucleic acids, which have a
high propensity to bind to other locked nucleic acid oli-
gomers, thus making an approach using a combination
complicated [19]. We thus used 2'-O-methyl phospho-
rothioate AONs, as these can be transfected at high effi-
ciencies, and efficient AONs for the targeted exons were
available.

Myotube cultures from a healthy individual and two
Duchenne patients were treated with the different combi-
nations of AONs (Table 1, 2, 3) and RNA was isolated on
the subsequent day. Each combination was tested in at
least six individual samples. As exon 45-55 skipping was
previously observed in untreated samples [14] and its fre-
quency varied between different cell batches (Table 1, 2, 3
and data not shown), for each experiment RNA was iso-
lated from 6 untreated samples of the same cell batch as
the treated cells. The frequencies of exon 45-55 skipping,
as determined by RT-PCR analysis, were compared with
and without treatment (Example shown in Figure 2, sum-
mary in Table 1, 2, 3). Putative exon 45-55 skipping prod-
ucts were verified by sequencing analysis (data not
shown). Unfortunately, similar frequencies were
observed, both in control and patient cell cultures, regard-
less of the combination of AONs used. Efficient transfec-
tion was confirmed by RT-PCR focusing on the
individually targeted exons (data not shown). In addition
to the occasional exon 45-55 skipping we observed sev-
eral intermediate products, especially after treatment with
the AON cocktail (Figure 2 middle panel, Table 1, 2, 3).
Note that as the non skipped fragment is relatively large,

Table 3: Overview of the results for the exon 45-55 multiexon skipping experiments in deletion exon 48-50 cell cultures

Used AONs Exon 45-55 skip NT  Other skips NT

Exon 45 & 55 (mix) 2/6 3/6  Exon 45-52 skip (I%) Exon 45-53 skip (2%)

Exon 45 & 55 (linked) 2/6 2/6 Exon 45-53 & 55 skip (1x)
3/6 4/6

Exon 45, 46, 47, 48, 49, 50, 51, 52, 53, 54 & 55 0/6 2/6  Exon 45-53 skip (I%) Exon 45-53 & 55 skip (1)
2/6 3/6  Exon 45-53 & 55 skip (1x)
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Figure 2

Example of RT-PCR analysis of exon 45-55 skipping in myotube cultures from an exon 48-50 deletion patient.
Each AON combination was tested in 6 wells and results were compared to 6 untreated wells. Exon 45-55 skipping can be
seen in untreated cells (upper panel, lanes |, 2, 4-6, indicated by a an asterisk) as well as cells treated with the cocktail of
AONs (middle panel, lanes |, 4-6) and the linked AON (lower panel, lanes |, 3 and 5). In addition, exon 45-53 and 55 skipping
(upper panel, lane 3, middle panel, lane 2) and exon 45-53 skipping (middle panel, lane 2) were observed. Additional bands
were too faint to allow identification by sequence analysis. The band slightly higher than the 45-55 skip product (e.g. lower
panel, lane 4) is a PCR artifact arising from false annealing of somewhat similar sequences in exons 44 and 55. Exon 45-55 skip

products were verified by sequencing.
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Positive control
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Western blot analysis of the exon 48-50 deleted cells. No dystrophin could be observed in non-treated (NT) or
treated myotubes. Each treatment was performed in duplo. Myosin staining was used as a loading control and to confirm that
myogenicity was sufficient to allow dystrophin expression (data not shown). Different dilutions of protein from control cells
were used as a positive control (right panel). Levels of 1% of the normal levels were detectable.

it was not always amplified. Due to the lack of this refer-
ence value, assessment of exon 45-55 skipping levels was
difficult. For a number of samples we determined the
absolute amount of exon 45-55 skip product, or alterna-
tively, the amount of exon 45-55 skip product relative to
the amount of exon 44-45 product (which has a similar
length as the skip product, but requires a different reverse
PCR primer). In both cases, no differences were observed
between multiexon skip levels before and after AON treat-
ment. The exon 45-55 skipping observed after AON treat-
ment is thus most likely due to naturally occurring
alternative or aberrant splicing rather than through AON
induction. This alternative splicing occurs at very low lev-
els, as confirmed by Western blot analysis where no dys-
trophin was observed before or after AON treatment of
the exon 48-50 deleted cells (Figure 3). Since levels of 1%
of wild type dystrophin could be detected, this indicates
that if this naturally occurring exon skipping does result in
dystrophin production, levels are below 1%.

Conclusion

We conclude that, despite being theoretically a promising
approach, the current state of the art does not sufficiently
support clinical development of multiexon 45-55 skip-
ping for DMD. In order to explore the frontiers of multi-
exon skipping, more information on the order and timing
of DMD intron removal is required. Considering the
urgent need for therapy, straightforward clinical develop-
ment of single exon skipping, at this point being repro-
ducible and efficient, should be preferred. In fact, single
exon 51 skipping induced by 2'-O-methyl phospho-
rothioate AON PROO051 is currently in phase I/II clinical

trials [1], clinical studies based on single exon 44 skipping
trials are being prepared for, and other single exon skip-
ping AONs will follow soon. Although single exon skip-
ping may be applicable for relatively smaller groups of
patients, skipping of exons 44, 45, 51 and 53 together
would be beneficial to over 50% of all deletion patients,
or over 35% of all patients in the Leiden DMD mutation
database (Aartsma-Rus et al. accepted manuscript).

Abbreviations
AON: antisense oligonucleotides, DMD: Duchenne mus-
cular dystrophy, UMD: Universal mutation database.
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