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Abstract: We have developed a new L1-norm based generalized minimum norm estimate (GMNE) and
have fully characterized the concept of sparseness regularization inherited in the proposed algorithm,
which is termed as sparse source imaging (SSI). The new SSI algorithm corrects inaccurate source field
modeling in previously reported L1-norm GMNEs and proposes that sparseness a priori should only
be applied to the regularization term, not to the data term in the formulation of the regularized inverse
problem. A new solver to the newly developed SSI has been adopted and known as the second-order
cone programming. The new SSI is assessed by a series of simulations and then evaluated using soma-
tosensory evoked potential (SEP) data with both scalp and subdural recordings in a human subject.
The performance of SSI is compared with other L1-norm GMNEs and L2-norm GMNEs using three
evaluation metrics, i.e., localization error, orientation error, and strength percentage. The present simu-
lation results indicate that the new SSI has significantly improved performance in all evaluation met-
rics, especially in the metric of orientation error. L2-norm GMNEs show large orientation errors
because of the smooth regularization. The previously reported L1-norm GMNEs show large orientation
errors due to the inaccurate source field modeling. The SEP source imaging results indicate that SSI
has the best accuracy in the prediction of subdural potential field as validated by direct subdural
recordings. The new SSI algorithm is also applicable to MEG source imaging. Hum Brain Mapp
29:1053–1067, 2008. VVC 2007 Wiley-Liss, Inc.
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INTRODUCTION

Electroencephalography (EEG) has excellent temporal re-
solution in the study of human brain activity, and the EEG

data are frequently interpreted using source models
because of the nonuniqueness of the so-called inverse
problem [Nunez and Srinivasan, 2005]. The most basic
source model is the equivalent current dipole (ECD) [He
et al., 1987; Henderson et al., 1975; Sidman et al., 1978],
which assumes that the EEG potentials are generated by
one or a few focal currents. Each focal source can be mod-
eled by an ECD with six parameters: three location param-
eters, two orientation parameters, and one moment (or
strength) parameter [He et al., 1987]. The ECDs can be fur-
ther classified as fixed dipoles, rotating dipoles, or moving
dipoles with different freedoms in the parameter space,
depending on how much prior knowledge is available for
the investigated system. The parameter of importance for
ECD is the number of current dipoles which is usu-
ally determined according to ad hoc assumptions. Given a

Contract grant sponsor: NIH; Contract grant number: RO1EB00178;
Contract grant sponsor: NSF; Contract grant numbers: BES-0411898,
BES-0602957.

*Correspondence to: Bin He, PhD, Department of Biomedical Engi-
neering, University of Minnesota, 7-105 NHH, 312 Church Street
SE, Minneapolis, MN 55455. E-mail: binhe@umn.edu

Received for publication 5 February 2007; Revised 6 June 2007;
Accepted 11 June 2007

DOI: 10.1002/hbm.20448
Published online 25 September 2007 in Wiley InterScience (www.
interscience.wiley.com).

VVC 2007 Wiley-Liss, Inc.

r Human Brain Mapping 29:1053–1067 (2008) r



specific ECD model, the dipole source localization can
then be solved using least-squares methods by minimizing
the difference between the model-predicted and the meas-
ured potentials.
Although the focal currents can be modeled using the

ECDs, the distributed current sources are more popularly
characterized by a distributed current density source
model [Dale and Sereno, 1993; Hämäläinen and Ilmoniemi,
1984], which reconstructs current sources by finding the
most probable current distribution that adequately ex-
plains the measured data [He and Lian, 2005]. The source
space is usually represented by distributed voxels, with
small intervoxel distance, each of which stands for a local
current source. The voxels normally cover the entire
human brain within which the EEG signals are generated.
Its inverse problem is fundamentally nonunique, in that
there are an infinite number of source configurations that
could explain a given measurement [He, 1999]. An ana-
tomical constraint has been introduced to constrain the
possible source configuration on the cortical gray matter
because empirical and theoretical evidence suggests that
the majority of the observed scalp EEG signals arise from
the cortical gray matter [Dale and Sereno, 1993]. However,
the highly convoluted human cortex (i.e., sulci and gyri)
requires a high-density voxel representation, and its in-
verse problem is, therefore, underdetermined and requires
either explicit or implicit prior constraints on the allowed
source fields to obtain a unique solution. This fact has
led to the development of the minimum norm estimate
(MNE) that selects the current distribution which explains
the measured data with the smallest Euclidean norm (L2-
norm) [Hämäläinen and Ilmoniemi, 1984], and its variants
[Gorodnitsky et al., 1995; He et al., 2002a; Jeffs et al., 1987;
Liu et al., 1998; Pascual-Marqui et al., 1994]. The MNE
algorithms produce low-resolution solutions of cortical
sources spreading over multiple cortical sulci and gyri,
which do not reflect the generally sparse and compact na-
ture of most cortical activations evidenced by functional
magnetic resonance imaging (fMRI) data. In an attempt to
produce more physiologically plausible images that can be
obtained using the MNE, the generalized minimum norm
estimate (GMNE) algorithms using the L1-norm instead of the
L2-norm have been explored [Matsuura and Okabe, 1995;
Uutela et al., 1999; Wagner et al., 1998]. The attractiveness of
these approaches is that they can be solved by a linear pro-
gramming (LP) method, and the properties of LP guarantee
that there exists an optimal solution for which the number of
nonzero sources does not exceed the number ofmeasurements
and the solutions are therefore guaranteed to be sparse and
compact. The advantage of these approaches has been investi-
gated in both simulation studies [Silva et al., 2004; Yao and
Dewald, 2005] and experimental studies [Hann et al., 2000;
Pulvermüller et al., 2003].
One problem arising in the currently available L1-norm

GMNEs is that their solutions have an orientation discrep-
ancy which tends to align the dipole source at each voxel
with the coordinate axes. Its mathematic explanation will

be given later in the Method section. In the first attempt of
L1-norm GMNE [Matsuura and Okabe, 1995], such dis-
crepancy was simply ignored due to the fact that LP could
not handle it. Wagner et al. [1998] proposed a new decom-
position for a vector source in a coordinate system with 12
or even 20 axes to minimize the orientation discrepancy.
The number of axes could theoretically be infinite. How-
ever, it is still an approximation and, only with an infinite
number of axes, the orientation discrepancy will be dimin-
ished, which is computationally unrealistic. Uutela et al.
[1999] developed a two-step procedure, i.e., minimum cur-
rent estimate (MCE). They implemented the L2-norm
GMNE in the first step to estimate source orientations,
which were subsequently used to constrain the vector
source field into a scalar field in the second step of the L1-
norm GMNE. The accuracy of the L1-norm GMNE
depends on the orientation accuracy estimated by the L2-
norm GMNE.
The aim of the present study is to develop a new sparse

source imaging (SSI) technique by solving the orientation
discrepancy problem. This task was achieved by second-
order cone programming (SOCP) instead of LP. In the
noiseless case, we compared it with the previously
reported L1-norm GMNEs and the imaging error caused
by the orientation discrepancy was demonstrated. In the
noisy cases, Monte Carlo simulations were used in the
comparison studies performed among the proposed SSI
algorithm and other L1-norm and L2-norm GMNEs. After
completing the simulation studies, we further evaluated
their performance using scalp and subdural recorded
somatosensory evoked potentials (SEPs) in a human sub-
ject. The independent measurements of the subdural SEPs
provided a way for us to determine whether the solutions
obtained with the various source imaging methods were
reasonable or not.

METHODS

Sparse Source Imaging

For the distributed current density model, the linear
relationship between the EEG recordings and the current
sources at any voxel can be expressed as

/ ¼ Asþ n ð1Þ

where / is the vector of instantaneous EEG recordings, A
is the lead field, s is the current source vector, and n is the
noise vector. Since the number of sources is larger than the
number of measurements, the regularized formulation of
the inverse problem can be derived from the Bayesian
theory and stated as

CðsÞ ¼k /� As k2 þk f ðsÞ ð2Þ

where C(s) is the cost function, k /� As k2 is the data
term, f(s) is the source field model term, and k is the regu-
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larization parameter. The source field model is known as
regularization term which gives prior knowledge about the
source field. In GMNEs, the norm of solution vector is used
to describe the global strength of source field. The Euclidean
norm, f ðsÞ ¼k s k22, is adopted in the L2-norm GMNE, while
f ðsÞ ¼k s k1 is used in the L1-norm GMNE. The priors in
GMNEs with either the L2- or L1-norm could be inter-
preted, from the Bayesian theory, as a probabilistic model
that describes the expectations concerning the statistical
properties of current source field [Baillet and Garnero, 1997;
Liu et al., 2002]. L2-norm GMNEs use a Gaussian a priori
current field as its probabilistic model which produces the
smooth source imaging and, meanwhile, L1-norm GMNEs
adopt an exponential current field (Fig. 1c) that introduces
the sparseness a priori into the problem and leads to the SSI.

A New SSI

A dipole source at each voxel can be decomposed into three
components (Fig. 1b) and the solution vector can be expressed,
via stacking up dipole components at all voxels, as
s ¼ ½sT1 ; sT2 ; . . . ; sTN�T where si ¼ ½si;x; si;y; si;z�T; i ¼ 1; 2; . . ., N
indicates the three dipole components at the ith voxel
and N is the total number of voxels. Its L2-norm can be
defined by treating dipole components as its basic elements,
k s k22¼

PN
i¼1ðs2i;x þ s2i;y þ s2i;zÞ. It also can be calculated by

treating dipoles as its basic element. In such a condition, the
L2-norm of the dipole at each voxel is first calculated and
then the L2-norm of the solution vector s is obtained by
summing them up, k s k22¼

PN
i¼1 k si k22. Both calculation

methods are equivalent for the L2-norm, while they are
different for the L1-norm. The L1-norm of s is
k s k1¼

PN
i¼1ðjsi;xj þ jsi;yj þ jsi;zjÞ with dipole components as

the basic elements of s. When dipoles are the basic elements
of s, its L1-norm is the sum of dipole strengths at each voxel,

which is defined as its L2-norm, k s k1¼
PN

i¼1 k si k2.
From the consideration of source field modeling, the prior

constraints are supposed to apply only to dipoles, not to
dipole components (see Fig. 1), which induces the orienta-
tion discrepancy and implicitly constrains solution vector to
be aligned with the coordinate axes. To achieve accurate
source-field modeling for both L2- and L1-norm GMNEs,
the norm of a solution vector should be estimated by treat-
ing dipoles at each voxel as its basic elements. The previous
L1-norm GMNEs solved by LP can only handle linear equal-
ities and inequalities. In this study, we adopt SOCP (see Ap-
pendix) to handle nonlinear equalities or inequalities in the
resulting cost function. Instead of solving Eq. (2) directly, LP
and SOCP are more efficient in solving the same regulariza-
tion problem with another equivalent formulation

min k ws k1¼ min
XN
i¼1

k wisi k2

subject to k /� As k2< b ð3Þ

where b is the regularization parameter similar to k in Eq.
(2) and w is the lead field column normalized weight to
compensate the depth bias [Uutela et al., 1999].
To discuss the imaging errors caused by inaccurate

sparse source field modeling in L1-norm GMNEs, simula-
tions without noise were conducted solving the following
problem

min k ws k1¼ min
XN
i¼1

k wisi k2 subject to / ¼ As ð4Þ

As inspired by the two-step procedure adopted in the
MCE approach, we find that such a procedure can also
improve the performance of different L1-norm GMNEs,
especially in the presence of noise. The underlying reason
is that the size of solution space in the second step is
reduced by three times after the determination of source
orientations in the first step. The two-step procedure is
thus adopted here using Eq. (3) twice, which estimates ori-
entations in the first step and then estimates locations in
the second step using the known orientations.

Regularization Parameter Selection

The purpose of using the problem formulation in Eq. (3)
instead of Eq. (2) is to avoid the need to search for the
optimal regularization parameter, k, which is quite diffi-
cult in the framework of the L1-norm. In Eq. (3), it is
straightforward to apply the discrepancy principle
[Morozov, 1966] to choose the regularization parameter, b.
We choose b high enough so that the probability that
k n k2� b, where n 5 / 2 As, is small. If assuming
Gaussian white noise with variance r2, we have
ð1=r2Þ k n k22� v2m, where vm is the distribution with m
degrees of freedom, i.e., number of electrodes. From this
distribution, the upper bound for k n k2 can be computed
easily. In practice, we select b such that the confidence
interval [0, b] integrates to a 0.99 probability. The variance,
r2, is known in simulations and can be estimated from ex-
perimental data using, for example, prestimulus data of
evoked potentials. Although the Gaussian white noise is
only an approximation of real noise, other noise models
can be incorporated into the earlier method if the distribu-
tion of noise is known or can be estimated.

Simulation Protocol

In the present study, simulations were conducted in a
three-shell boundary element (BE) model that simulates
the three major tissues (the scalp, skull, and brain) with
different conductivity values (0.33, 0.0165, and 0.33 X21

m21, respectively) [Zhang et al., 2006]. The source space
was confined by the surface of the cortex model (Fig. 1a)
and defined on a discrete cubic grid with intergrid dis-
tance of 5 mm. The forward problem was solved by the
BE method [Hämäläinen and Sarvas, 1989].
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The present SSI was compared with previously reported
L1-norm GMNEs, which include MCE [Uutela et al., 1999],
the method from Matsuura and Okabe [1995] (termed L1-3
since it decomposes each dipole into three components),
and the method reported by Wagner et al. [1998] (termed
L1-12 since it decomposes each dipole into 12 compo-
nents). The first step in MCE could be L2-norm MNE
[Hämäläinen and Ilmoniemi, 1984] or LORETA [Pascual-
Marqui et al., 1994]. The L2-norm GMNEs, i.e., LORETA
and sLORETA [Pascual-Marqui, 2002] were also imple-
mented and compared with the L1-norm GMNEs. We
used the same regularization method for all L1- and L2-
norm estimates, which has been discussed in the Regulari-
zation Parameter Selection section. We use three metrics to
evaluate their accuracies. The first is the Euclidean dis-
tance between the locations of imaged sources and simu-
lated sources. The second is the angle between the
moments of imaged sources and simulated sources which
reflects another important aspect regarding the vector
source imaging. The last one is the ratio between the
strength of imaged sources and the square root of energy
in the entire reconstructed source space. In the L2-norm
GMNEs, this is an index to measure the smoothness of
inverse solution. In the L1-norm GMNEs, it is an index to
evaluate possible false peaks since the inverse solution
using L1-norm is sparse and compact. In simulations with-
out the presence of noise, we selected a slice along the
axial orientation as the possible source plane in order to
visualize the results and illustrate some influential factors
on the source imaging. The single-dipole source was simu-
lated at each voxel on the selected plane at each time with
randomly generated orientations. In the noisy cases, Gaus-
sian white noise was used to simulate noise-contaminated
electrical signal recordings. Our simulations used a large
random sampling, i.e. 500, of single or multiple current
dipole source(s) (i.e., 2, 3, and 5) with randomly generated
locations, orientations, and noises. The only constraint for
multiple sources is that the distance between each pair of
sources is larger than 20 mm, since L2-norm GMNEs have
relatively poor spatial resolution which may not be able to
distinguish closely-spaced sources and thus, bias the com-
parison study. We used statistical analysis methods, i.e.,
analysis of variance (ANOVA) and t-test to investigate the
influential factors on the source imaging, which include
method (METHOD), signal-to-noise-ratio (SNR), source
depth (DEPTH), size of solution space (SSS), and number
of sources (NUMBER), etc.

Somatosensory Evoked Potential

The advantage of using SEP is that the location of sen-
sory-motor cortical activity is well described in the litera-
ture [Valeriani et al., 2000] and the source orientation has
been accurately studied by subdural recordings [He et al.,
2002b; Towle et al., 2003]. The different L1- and L2-norm
GMNEs were evaluated as compared with direct subdural
SEP recordings in a neurosurgical patient. The patient was

being evaluated for cortical resection due to medically re-
fractory epilepsy. Informed written consent was obtained
according to a protocol approved by the Institutional
Review Board. Median nerve SEPs were elicited by 0.2-ms-
duration electrical pulses delivered to the wrist at 5.7 Hz
at motor threshold. Five replications of 500 stimuli were
averaged. Using a commercial signal acquisition system
(Neuroscan Labs, TX), 32-channel scalp EEG referenced to
Cz was amplified with a gain of 5,000 and band-pass fil-
tered (1 Hz–1 kHz). The cortical SEPs were recorded from
a 4 3 8 rectangular electrode grid with 1 cm interelectrode
distance, placed directly on the cortical surface as part of
the presurgical diagnostic evaluation. The 32-channel elec-
trocorticogram (ECoG) referenced to the contralateral mas-
toid was amplified with a gain of 1,000 and band-pass
filtered (1 Hz–1 kHz) [He et al., 2002b].
The MR images were obtained from the subject with a

Siemens 1.5 T scanner using T1-weighted images com-
posed of 60 continuous sagittal slices with 2.8-mm slice
thickness. The coregistration between the MR images
and the scalp electrodes was achieved by fiducial points
(nasion, left, and right preauricular points). The subdural
recording electrodes were registered to MR images with
the help of skull films [Metz and Fencil, 1989]. The relative
position of subdural electrode array was determined by ra-
dio-opaque markers placed on the contralateral scalp
which were identified from a 3D reconstruction of skull
films. They were then located on a hybrid skin/brain seg-
mented surface using the surface-fitting algorithm [Towle
et al., 2003].

RESULTS

SSI in Noiseless Case

Figure 2 shows the simulation results for the noiseless
case using five different L1-norm GMNEs. The lower quar-
tile, median, and upper quartile of the localization error
for SSI is zero and only four voxels show some errors (the
Whisker plots in Fig. 2b). Its orientation error is also �08.
For the other algorithms, all show the larger localization
and orientation errors. The MCE algorithm shows the simi-
lar performance using either LORETA or MNE in the first
step. The localization errors of L1-3 and L1-12 are at the
similar level as MCE with the slightly better accuracy of
L1-12 compared with L1-3. On the other hand, the
improvement of orientation estimation by L1-12 is quite
obvious. However, their orientation errors are larger than
those from MCE. The errors from different L1-norm
GMNEs seem to exhibit different patterns, with MCE
showing obvious depth-dependence, L1-3 and L1-12 show-
ing slight depth-dependence, and no observed depth-de-
pendence for SSI. The depth-dependencies for localization
and orientation errors seem to be reversed, especially for
MCE. Such observations are further quantitatively ana-
lyzed with ANOVA and discussed in the simulation stud-
ies with noise below. The strength percentages show that
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SSI has a much more focused energy distribution as com-
pared with the other four algorithms. Because there is no
noise simulated in this condition, the increased errors of
source locations and orientations and the decreased energy

concentrations in L1-3 and L1-12 as compared with SSI
must be caused by the inaccurate sparse source field mod-
eling. In MCE, errors are believed to be caused by nonzero
systematic bias from L2-norm GMNEs, even without
noise.

SSI in Noisy Case

Figure 3 shows the localization errors, orientation errors,
and strength percentages of four algorithms (SSI, MCE, L1-
3, and L1-12) in the presence of noise with SNR of 20 dB
using Whisker plots. MCE represents for MCE-LORETA
here. Similar to the noiseless case, SSI still exhibits the low-
est localization error (Fig. 3a), the lowest orientation error
(Fig. 3c), and the highest energy concentration (Fig. 3d). It
is obvious that the localization accuracies are improved in
the 2nd step by using the orientations obtained in the 1st
step for all four algorithms. A three-way ANOVA analysis
(independent variables are METHOD, SNR, and DEPTH)
with more data from different SNRs (shown in Fig. 5)
shows statistical significance on the factor METHOD (F 5
282.69, n 5 3, P < 0.0000). The confidence intervals of

Figure 1.

Illustration of the concept of source field modeling. (a) Cortical

surface which confines source space. (b) A priori distributions

applied to the dipole at each voxel, not to the dipole compo-

nents at each voxel. (c) A priori distribution of current sources

with L1- and L2-norm. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

Figure 2.

(a) Three evaluation metrics, i.e., localiza-

tion error (1st row), orientation error

(2nd row), and strength percentage (3rd

row), of five L1-norm GMNEs in noiseless

case. The simulated sources were at vox-

els on a selected slice along z-axis. (b)

Whisker plots for three metrics obtained

from the simulation results shown in (a)

with total 372 samples. [Color figure can

be viewed in the online issue, which is

available at www.interscience.wiley.com.]

r Sparse Source Imaging in EEG r

r 1057 r



localization errors for different methods at a significant
level of 0.01 (Duncan correction) revealed by the post hoc
test show that the localization error of SSI is significantly
lower than the other algorithms (Fig. 3b). While L1-3
shows the largest localization error, MCE and L1-12 do not
show a significant difference.

Effect of the Size of Solution Space

Although the performance improvements of all L1-norm

GMNEs from the 1st step to the 2nd step have been

observed in Figure 3, Figure 4 shows the confidence inter-

vals of localization errors for different sizes of solution

spaces in two consecutive steps (Duncan at 0.01), which

might explain why the improvements occur. While there

are 17,814 unknowns in the optimization problem of the

1st step, the number of unknowns is reduced by three

times (5,938, the number of voxels) in the 2nd step using

the estimated orientations in the 1st step. In noiseless cases

(Fig. 4a), only L1-3 shows the significant dependence on

the factor SSS and, in noisy cases (Fig. 4b), all three algo-

rithms (SSI, L1-12, L1-3) show the great dependence on the

factor SSS.

Effect of SNR

A three-way ANOVA analysis on localization errors (in-
dependent variables are METHOD, SNR, and DEPTH)
shows the significant effects of factor METHOD (F 5
495.67, n 5 5, P < 0.0000) and factor SNR (F 5 371.08, n 5
2, P < 0.0000) among different L1- and L2-norm GMNEs
(see Fig. 5). The post hoc test (Duncan at 0.01) indicates

Figure 3.

(a) Localization errors for four different L1-norm GMNEs in two consecutive steps with noise.

(b) Plot for factor METHOD produced by post hoc test (Duncan at 0.01) in a three-way

ANOVA analysis. (c) Orientation errors (degree). (d) Strength percentage (%). [Color figure can

be viewed in the online issue, which is available at www.interscience.wiley.com.]
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that the localization error of SSI is significantly lower than
the localization errors of the other five algorithms at every
SNR level. Although there is no systematic bias of sLOR-
ETA in the noiseless case, its localization error increases
much faster than SSI when SNR decreases. The increases of
the localization errors in L1-3 and L1-12 are not as obvious
as SSI when SNR decreases. It may be due to the fact that
the errors caused by noises and the orientation discrepancy
are not additive. In the conditions of high SNR values, the
error due to orientation discrepancy dominates the per-
formance of these two algorithms. A similar phenomenon
is observed in MCE which may be caused by the relative
poor source imaging accuracy of the L2-norm GMNE (i.e.,

LORETA here) in the 1st step, even in the noiseless condi-
tion or in the conditions of high SNRs (e.g., 20 dB).
The ANOVA analysis on orientation errors shows signifi-

cantly the effects of factors METHOD (F 5 302.95, n 5 5, P <
0.0000) and SNR (F5 14.9, n5 2, P< 0.0000). Among all algo-
rithms, SSI exhibits the significantly lowest orientation error at
every noise level. The post hoc test (Duncan at 0.01) indicates
that the orientation errors of L1-norm GMNEs (SSI, MCE, L1-
3, and L1-12) are significantly smaller than those of L2-norm
GMNEs (LORETA and sLORETA) in noisy conditions. It is
interesting that the orientation errors of MCE, L1-3, and L1-12
in the noiseless case are significantly (Duncan at 0.01) larger
than the cases with noise, whichmust be caused by the over fit
to scalp EEG data in the noiseless case without proper regula-
rization to accommodate the model noise caused by the orien-
tation discrepancy. Comparing the orientation errors of L1-3
and L1-12, the latter shows relatively smaller values because it
allows more possible orientations (12 versus 6). The large ori-
entation error ofMCEmay originate from the poor orientation
estimation accuracy of LORETA in its first step.
SSI shows significantly (F 5 125.46, n 5 3, P < 0.0000)

concentrated energy in these four L1-norm GMNEs. The
energy distributions for the L2-norm GMNEs are always
smoothed (Fig. 5c).

Dependence Between Source Localization and

Orientation Estimates

Figure 6 shows the dependence between the localization
error and orientation error for the noiseless case (Fig. 6a)
and for the noisy case with a SNR of 20 dB (Fig. 6b). The
sources at simulated voxels are each represented by a small
dot with different colors for different L1-norm GMNEs. The
dots belonging to the same algorithm are modeled by linear
regression and the results are plotted with colored lines.
These lines are defined by two parameters: intercept (b1)
and slope (b2). The null hypothesis of whether b1 and b2

were equal to zero was tested by t-test [DeGroot and
Schervish, 2002]. b1 not equal to zero means that orientation
error is present, even if there is no localization error. b2 not
equal to zero indicates that there is significant dependence
between the localization error and orientation error. The
null hypothesis was rejected (P < 0.0000) against both b1

and b2 in all cases. But comparing the actual b1 values, SSI
has the lowest intercept, which confirms that SSI has the
best orientation estimation accuracy as discussed in the pre-
vious section. Similar slope values for all algorithms, espe-
cially in the noisy case, indicate the errors for location and
orientation estimates are correlated. The larger localization
errors normally occur with larger orientation biases.

Dependence of Imaging Accuracy in

2nd Step on Accuracy in 1st Step

In Figure 7, we present the data that examine the de-
pendence of imaging accuracy in the 2nd step based upon
the accuracy in the 1st step using the same t-test as

Figure 4.

Effects of the size of solution space. (a) Noiseless case; plots are

produced by post hoc test (Duncan at 0.01) in a two-way

ANOVA analysis. (b) Noisy case; plots are produced by post

hoc test (Duncan at 0.01) in a three-way ANOVA analysis.

[Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]
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described in the previous section. We used the orientation
error at the reconstructed source voxel as the index to
measure the imaging accuracy of the 1st step and investi-
gated the dependence of both localization and orientation

errors of the 2nd step on this index. The b2 values for all
curves in Figure 7 are significantly larger than zero (P <
0.001) which confirms that the imaging accuracy of the
2nd step is dependent upon the orientation estimation ac-
curacy of the 1st step. The t-test shows that only SSI has
zero b1 for the localization error and the lowest b1 value
for the orientation error. However, the small orientation
errors in the 1st step for the other three algorithms can
lead to the large localization error in the 2nd step due to
the relative large b1 value.

Figure 5.

Effects of noise at different SNRs for L1- and L2-norm GMNEs.

(a) Mean localization error. (b) Mean orientation error. (c)

Mean strength percentage. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Figure 6.

Interdependence of the localization error and orientation error

for SSI, MCE, L1-3, and L1-12 in (a) noiseless case; and (b) noisy

case at SNR 5 20 dB. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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Effect of Depth

According to the three-way ANOVA analysis discussed
earlier, in which the simulated sources were categorized
into three groups (i.e., superficial, middle, and deep) based
on their distances to the cortical surface, the significant
effects were observed by the factor DEPTH on the localiza-
tion errors (F 5 57.41, n 5 2, P < 0.0000) and orientation
errors (F 5 273.46, n 5 2, P < 0.0000). For different algo-
rithms, the depth-dependence patterns seemed to be quite
different. For most algorithms (see Fig. 8), the localization
error increases as the simulated source deepens, while the

orientation error increases when the simulated source
becomes superficial. The slight depth-dependence of local-
ization error of SSI is not as significant as the depth-
dependencies of L1-3 and L1-12. The depth-dependence of
localization error of MCE is more complicated, which may
be caused by the contrary depth-dependencies of the local-
ization error and orientation error. In the 1st step of MCE,
LORETA shows the most significant depth-dependence of
orientation error (Duncan at 0.01) (Fig. 8c) as compared

Figure 7.

Dependence of the imaging accuracies, i.e., (a) localization accu-

racy, and (b) orientation accuracy, of the 2nd step on the accu-

racy of the 1st step for SSI, MCE, L1-3, and L1-12. [Color figure

can be viewed in the online issue, which is available at www.

interscience.wiley.com.]

Figure 8.

Effects of source depth for four L1-norm GMNEs. Plots are pro-

duced by post hoc test (Duncan at 0.01) in a three-way ANOVA

analysis. (a) Localization error. (b) Orientation error. (c) Orien-

tation error of LORETA as the 1st step of MCE. [Color figure

can be viewed in the online issue, which is available at www.

interscience.wiley.com.]
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with the other L1-norm GMNEs. Thus, this represents a
significant influence on the localization error in the 2nd
step of MCE.

Effect of Multiple Current Sources

Figure 9 shows the performance of the six GMNE algo-
rithms with multiple current sources (2, 3, and 5). A two-
way ANOVA analysis on localization errors (independent
variables are METHOD and NUMBER) shows the signifi-
cant effects of the factor METHOD (F 5 90.02, n 5 5, P <
0.0000) and by factor NUMBER (F 5 195.84, n 5 2, P <
0.0000). The post hoc test (Duncan at 0.01) (Fig. 9d) indi-
cates that the localization errors of SSI, MCE, and L1-12
are significantly lower than these of the other algorithms.
Although there is no significant difference among SSI,
MCE, and L1-12, SSI is still the one with the smallest
localization error (Fig. 9d). It may be due to the fact that
the error caused by number of sources dominates over
the error due to orientation discrepancy which makes the
error differences, among different algorithms, smaller.
The ANOVA analysis shows the significant effects of the
factors METHOD (F 5 514.13, n 5 5, P < 0.0000) and
NUMBER (F 5 545.55, n 5 2, P < 0.0000) on the orienta-
tion error. Furthermore, the post hoc test (Duncan at 0.01)
suggests that SSI has the significantly lower orientation
error in all algorithms (Fig. 9e). It also indicates that the
orientation errors of L1-norm GMNEs are significantly
smaller than those of L2-norm GMNEs. The ANOVA
analysis further shows that SSI and MCE have similar

energy concentrations, which are higher than those of L1-
3 and L1-12.

Algorithm Evaluation in Human Experimentation

Six algorithms (SSI, MCE, L1-3, L1-12, sLORETA, LOR-
ETA) were applied to the SEP data at its N/P30 compo-
nent, 30 ms after the stimulus. All of the algorithms
showed strong activity in the contralateral sensory-motor
cortex as indicated by the subdural SEP recording (Fig.
10a). We identified the voxel with maximal current source
strength in the sensory-motor cortex as the location of cur-
rent dipole generating the bipolar potential pattern of N/
P30 component in the subdural SEP. These current dipoles
from all algorithms are clustered at the posterior edge of
subdural ECoG grid, which is close to the central sulcus
(CS) (Fig. 10a). It can be observed that there are small dis-
crepancies between the different algorithms for both the
estimated locations and orientations. Structurally, the cur-
rent dipole from SSI is located on the CS. The dipole from
MCE appears to be more posterior and the dipoles from
L1-3, L1-12, sLORETA, and LORETA appear to be more
anterior and mesial. To make a quantitative comparison,
we calculated the potential fields defined on the subdural
ECoG electrodes by two methods. In the first method, we
only used the current dipole of maximal activity, as identi-
fied earlier to calculate the subdural potentials by solving
the forward problem (Fig. 10, left column); and in the sec-
ond method, the current dipoles at all voxels in the solu-
tion space, i.e., the current density distribution, were used

Figure 9.

Effects of number of sources for L1- and L2-norm GMNEs. (a) Mean localization error. (b) Mean

orientation error. (c) Mean strength percentage. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]
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to calculate the subdural potentials (Fig. 10, right column).
The subdural potential field generated by the dipole from
SSI has the most similar pattern to the ECoG recordings
suggested by the highest coefficient correlation (CC), i.e.,
above 0.8. For the other algorithms, in the potentials recon-
structed from the dipole with the maximal activity, the
maximal potential positivity and negativity are shifted pos-
sibly due to the inaccurate location estimations (Fig.
10d,f,g). The obvious rotation and asymmetric strengths of
the associated pattern between positivity and negativity
should be caused by the inaccurate orientation estimations
(Fig. 10c,e,f). The CC values from the other algorithms
range between 0.5 and 0.6 which is significantly lower
than the CC value from SSI. In the potentials reconstructed
from the current density distribution, the improvements in
MCE, LORETA, and sLORETA are very obvious. It indi-
cates that the inherited smooth nature of L2-norm GMNEs,
and that the accurate potential field predictions from them
need more distributed current density, even though the
real source is not distributed (as in this case where the
neural generators are considered to be focal instead of dis-
tributed [Towle et al., 2003]). Furthermore, the separation
between the maximal positivity and maximal negativity in
the results from L2-norm GMNEs seems bigger than the
subdural recording (Fig. 10a) and the result from SSI (Fig.
10b), which also reflects their smoothness. The improve-
ment in MCE is possibly due to the same reason, which is
caused by the L2-norm estimation in its first step.

DISCUSSION

Sparseness Regularization

The L1-norm GMNE introduces an exponential a priori
source field into the inverse problem based upon the dis-
tributed current density model. Such regularization, i.e. the
sparseness regularization, leads to SSI as opposed to the
smooth source imaging achieved by L2-norm GMNEs. The
L2-norm GMNEs usually give an inverse solution with a
highly dispersed energy distribution (less than 0.01%
energy concentration at the imaged source voxel) as shown
in Figures 3d and 5c. In other simulation studies, its
smooth characteristics have been illustrated, e.g. LORETA

Figure 10.

Source imaging results using human SEP data obtained in six algo-

rithms. (a) Subdural SEP recordings and the imaged sources at the

voxels within the sensory-motor cortex with maximal activity from

six algorithms (spheres: locations of these voxels; bars: orientations

of sources at these voxels; different colors for different algorithms).

The predicted subdural SEP by (b) SSI, (c) MCE, (d) L1-3, (e)

L1-12, (f) LORETA, and (g) sLORETA using two different methods.

One used the single dipole source at the voxel with maximal activ-

ity (left column); and another used the entire current density distri-

bution (right column). [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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[Ding et al., 2005], and evaluated quantitatively using cross-
talk and point spread metrics [Liu et al., 2002]. The conserva-
tive average crosstalk and point spread values of 5–10% from
Liu et al. [1998] study indicated the similar energy concentra-
tion (i.e., 0.01%). Liu et al. [1998] used an inverse solution
regularized by fMRI data that can significantly reduce the
crosstalk and point spread, which, however, could not
change the smooth nature of L2-norm GMNEs. The sparse
nature of the L1-norm GMNE is thus attractive, especially, in
the inverse source imaging constrained by fMRI. Its lesser
popularity as compared with the L2-norm GMNE may be
due to two reasons. The first is the similar source localization
accuracy as L2-norm GMNEs in previously reported L1-
norm GMNEs (Fig. 3a for the 1st step). The second reason is
its relative difficulty in solving a nonlinear optimization
problem due to the use of the L1-norm while the L2-norm
GMNE can basically be solved by a linear operator. In the
present study, we have introduced a new method to accu-
rately model a sparse source field which corrects the orienta-
tion discrepancy in other L1-norm GMNEs (see Fig. 2). We
have further implemented a novel nonlinear optimization
solver, i.e. SOCP, to obtain its mathematical solution. In the
present study, the L1-norm GMNE shows significant
improvements in location and orientation estimations as
compared with the L2-norm GMNE in both simulations
(Figs. 5 and 9) and experimental data analysis (see Fig. 10).
In previously reported L1-norm GMNEs [Matsuura and

Okabe, 1995; Uutela et al., 1999; Wagner et al., 1998], the con-
cept of sparseness regularization has not been fully inter-
preted. The L1-norm was only mathematically implemented
to replace the L2-norm and the sparseness of the inverse solu-
tion was then observed. In some studies [Fuchs et al., 1999],
the L1-norm was not only applied to the regularization term,
but also to the data term in Eq. (2). However, the sparse con-
straint on the noise field which is defined by the data term
appears inappropriate since it is unusual that the measure-
ment noise is sparsely distributed or focused on several chan-
nels instead of approximately homogeneously distributed
over all channels. To distinguish the present algorithm from
other L1-norm algorithms, we term it SSI as interpreted from
the Bayesian theory. In the present study, the performance of
the new SSI is dependent upon the size of solution space (see
Fig. 4), noise level (see Fig. 5), and number of sources (see Fig.
9). However, unlike the other algorithms, it is not depth-de-
pendent (see Fig. 10). The new SSI also has the most concen-
trated energy (Figs. 2, 3, and 5) which indicates that it suffers
less from the false peak problem. Furthermore, in cases with
multiple sources, the error caused by the orientation discrep-
ancy is dominated by the error due to the increased number of
sources. The advantage of SSI over other L1-norm GMNEs
thus becomes less significant (see Fig. 9).

Orientation Consideration and Estimation in

L1- and L2-Norm GMNEs

In various L1-norm GMNEs, L1-3 and L1-12 show larger
orientation errors than SSI in both the simulation and ex-

perimental data. This shall be caused by the inaccurate ori-
entation consideration in these two algorithms. As shown
in Fig. 10, prediction of the potential field generated by
cortical sources depends not only on the accurate estima-
tion of source locations, but also on the accurate estimation
of source orientations. The sources imaged by L1-3 and
L1-12 responsible for the N/P30 potential seem to be more
radially oriented to the local curvature of cortical surface
as compared with the more tangentially oriented sources
imaged by SSI. Because the sparseness a priori in L1-3 and
L1-12 is applied to the source components at each voxel,
the orientations of imaged sources are aligned to the coor-
dinate axes as closely as possible. Thus, the preferred ori-
entations of L1-3 and L1-12 are limited which introduces
the orientation discrepancy as witnessed in the noiseless
case (see Fig. 2) and less so in the noisy cases due to regu-
larization (Figs. 3 and 5). The large orientation error leads
to the large localization error in the MCE, L1-3, and L1-12
algorithms (Figs. 2, 3, and 5) because of the interdepend-
ence of these two types of errors as indicated in Fig. 6. The
performance improvement from L1-3 to L1-12 is due to the
greater number of allowed source orientations. It is worth
to point out that the L2-norm GMNE did not produce
accurate orientation estimations, e.g. >308 in all noise lev-
els for LORETA (Figs. 5 and 9b), which may be due to the
smooth regularization. Comparing the subdural potentials
reconstructed by a single current dipole in the voxel of
maximal activity with these by the entire current density
distribution, the present results suggest that the voxel of
maximal activity in a smooth source distribution from L2-
norm GMNEs may be a reasonable estimate for source
location, but not a good estimate for source orientation.

Size of Solution Space

Although the two-step procedure was first introduced to
estimate source orientations at each voxel by MCE [Uutela
et al., 1999], we have found that such a two-step procedure
is also helpful in reducing the localization error (Fig. 3a),
orientation error (Fig. 3c), and possibility of false peaks
(Fig. 3d) for SSI, L1-3, and L1-12. The reason for this is
that the second step has a smaller-sized solution space
than the first step (i.e., three times). The performance de-
pendence of SSI on the size of the solution space is sug-
gested by simulation in noisy cases (see Fig. 4), which
indicates that this effect is closely related to the regular-
ization. The ill-posedness in underdetermined problem
becomes more severe when the number of unknowns in-
creases dramatically. By significantly reducing the number
of unknowns from the first step to the second, the regulari-
zation becomes more efficient in controlling the ill-posed-
ness. Figure 7 shows significant dependence of the accu-
racy of the L1-norm GMNE in the second step on the accu-
racy in the first step. The SSI algorithm exhibits the lowest
orientation estimation error in the first step (Fig. 3c), and
thus has the highest accuracy in location and orientation
estimations in the second step (Fig. 3a,c). Such a two-step
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procedure implies that SSI can be realized iteratively. First,
a coarse grid of voxels can be formed to approximately
represent the solution space. The grid can then be itera-
tively updated to reduce source representation error due
to the coarse grid by refining the local neighborhood of
voxels exhibiting activity and abandoning voxels without
activity to keep the size of the solution space as small as
possible. More interestingly, the solution space can be fur-
ther constrained using prior information from other imag-
ing modalities such as fMRI.

Second-Order Cone Programming

SOCP, like LP, is an efficient and globally convergent
algorithm to solve the sparseness regularization problem in
the presence of the L1-norm. The use of SOCP is due to the
presence of nonlinear terms in Eq. (3), while LP can only
handle linear equalities or inequalities. The most important
advantage of sparseness regularization, i.e., strong sparse-
ness of the inverse solution, is reserved in SOCP as it is in
LP. Furthermore, due to the same reason, the selection of
regularization parameters was approximated by LP in L1-3,
L1-12 [Fuchs et al., 1999], and MCE [Uutela et al., 1999]. In
SOCP, we used the discrepancy principle [Morozov, 1966] in
all L1- and L2-norm GMNEs. One limitation of the present
SSI is that there is no limit to the strength of the current
source at each voxel, which possibly makes the source esti-
mation over focused. And, in the present study, we only
investigated the source configurations with their complexity
defined by the number of sources, not the source extent.
However, the lower and upper limits to the source strength
can be applied by introducing additional inequalities in
SOCP as discussed in Appendix. These lower and upper
limits can be found using the reported estimates of dipole
moment density on the cortical surface which is based upon
electrophysiological measurements generally ranging bet-
ween 25 and 250 pAm/mm2 [e.g., Hämäläinen et al., 1993].
These values can also be introduced as additional con-
straints, which will not allow the single dipole at each voxel
of unlimited strength and make sparse source reconstruction
with each source of certain extent possible. The ability of
SOCP to incorporate more constraints gives additional flexi-
bility to the current SSI in order to take advantage of prior
information as compared with the relatively fixed linear
operators that are popular in L2-norm GMNEs.

CONCLUSIONS

In the present study, we have introduced the concept of
sparseness regularization achieved using the L1-norm in
GMNE. From the Bayesian theory, the L1-norm could be
interpreted as exponential a priori source field modeling
which results in strong sparseness of the inverse solution.
Based upon this framework, we have developed a new SSI
method by accurately modeling the sparse source field.
The new SSI was studied by a series of simulations and
evaluated using human SEP experimental data with sub-

dural recordings as compared with other various L1- and
L2-norm GMNEs. The present simulation results indicate
that the new SSI has significantly improved performance
in the estimations of source location and orientation. The
human evaluation study using independent subdural
measurements further confirms that the new SSI has the
best prediction of the subdural potential field in the SEP
protocol. Most attractive about the new SSI is the strong
sparseness of inverse solution as well as the flexibility of
solver (i.e., SOCP) which is able to incorporate many phys-
iologically meaningful priors for the purpose of multimo-
dal imaging. While we examined the performance of SSI in
EEG source imaging, the proposed SSI concept and algo-
rithm should also be applicable to MEG source imaging.
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APPENDIX

Second-Order Cone Programming and Its

Implementation in SSI

Although the L1-norm regularized inverse imaging
problem has a convex cost function, the solution is by no
means trivial. This is because the cost function is neither
linear nor quadratic when the L1-norm appears for vector
data. Such a problem cannot be formulated as LP or quad-
ratic programming. Fortunately, the use of the L1-norm for
vector data can be reformulated as SOCP [Nemirovski and
Ben Tal, 2001] which has an efficient globally convergent
solver known as the interior point methods. This method
has been implemented in a MATLAB package named
SeDuMi (which stands for self-dual-minimization) [Sturm,
2001]. Since the methods to solve SOCP problems have
been intensively studied theoretically and implemented
practically, we will focus our discussions on what kind of
problems can be solved by the SOCP and how to reformu-
late the SSI problem into the framework of SOCP.
SOCP explicitly deals with the constraints of form

k x2; . . . ; xn k2 � jx1j which are known as the Lorentz cone
[Nemirovski and Ben Tal, 2001] if x ¼ ½x1; x2; . . . ; xn�T is the
solution vector for a SOCP problem. SOCP has two stand-
ard forms over a pair of so-called selfdual homogeneous
cones, i.e., the primal form (left) and the dual form (right):

min cTx

subject to Ax ¼ b max bTx

x 2 Lorentz cone subject to c�ATy 2 Lorentz cone

Lorentz cone :¼ fðx1; x2; . . . ; xnÞ 2 R3Rn�1kx1j �k x2; . . . ; xn k2g ðA1Þ
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where b and c are the coefficient vectors and A is the coef-
ficient matrix, which are defined specifically in each given
problem. SeDuMi implements the selfdual embedding
technique [Sturm, 2001] for optimization over the selfdual
homogeneous cones defined above and estimates values
for the solution vector, x. Note that the solution vector, x,
here is not the same as the source vector, s, in Eqs. (3) and
(4) from SSI. The Eq. (A1) expresses the standard forms of
a SOCP problem which could be solved by SeDuMi while
the SSI problems formulated in Eqs. (3) and (4) are not in
such standard forms yet. Certain intermediate variables
need to be introduced in order to reformulate a SSI prob-
lem into a SOCP problem. The solution vector therefore
consists of the source vector and the intermediate variables
introduced during the problem reformulation. The SSI
problem can be reformulated into either the primal form
or the dual form and, here, we use the primal form to rep-
resent the problem without noise:

min cTx ¼ 0T 1T
� � s

t

� �

subject to / ¼ As

k wisi k2� ti i ¼ 1; 2; . . . ;N

ðA2Þ

where the coefficient vector c 5 1T and b 5 /, and the
coefficient matrix A is the lead field defined in Eq. (1).
The solution vector is defined as x ¼ sT tT

� �T
and

k wisi k2� ti is the Lorentz cone defined for the second-
order cone constraints where t is the introduced intermedi-
ate variable. Note that there are multiple Lorentz cones
with each one only involving a dipole at each voxel. Each
Lorentz cone constrains the weighted L2-norm of each
dipole element, as defined in Eq. (4), to an intermediate
variable ti and the L1-norm of the source vector s is mini-
mized by summing all ti. Note that all equalities or

inequalities in the standard form, i.e. Eq. (A1), involves ev-
ery element of the solution vector, x, which may not be
true in the realization of a specific problem, e.g. Eq. (A2).
A practical way is to assign zero values to the coefficients
in A, b, and c corresponding to the uninvolved elements.
In Eq. (A2), those uninvolved elements are simply ignored
to keep it easy for understanding.
The SSI problem with the presence of noise can be simi-

larly formed as

min cTx ¼ 0T 0T 1T
� � s

z

t

2
64

3
75

subject to z ¼ /� As

k z k2� b

k wisi k2� ti i ¼ 1; 2; . . . ;N

ðA3Þ

The solution vector x ¼ sT zT tT
� �T

, where z and t
are intermediate variables. t is a vector with each element
representing the weighted amplitude of dipole source at
each voxel as in Eq. (A2), while z represents the measure-
ment error vector. The introduction of z splits the nonlin-
ear constraint, k /� As k2 < b, into the linear constraint,
z 5 / 2 As, and the second order cone constraint,
k z k2 � b, which are standard forms for a SOCP problem.
Other formulations are similar as Eq. (A2).
All other L1-norm GMNEs studied in the article can be

formulated similarly as a SOCP problem which can be
solved by SeDuMi. Note that SOCP formulations were
used for all L1-norm GMNE algorithms since they used
the same regularization method which required a Lorentz
cone representation. The regularization method is dis-
cussed in the Regularization Parameter Selection section.
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