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The microbial community present in the human mouth is engaged in a complex network of diverse metabolic
activities. In addition to serving as energy and building-block sources, metabolites are key players in inter-
species and host-pathogen interactions. Metabolites are also implicated in triggering the local inflammatory
response, which can affect systemic conditions such as atherosclerosis, obesity, and diabetes. While the genome
of several oral pathogens has been sequenced, quantitative understanding of the metabolic functions of any
oral pathogen at the system level has not been explored yet. Here we pursue the computational construction
and analysis of the genome-scale metabolic network of Porphyromonas gingivalis, a gram-negative anaerobe that
is endemic in the human population and largely responsible for adult periodontitis. Integrating information
from the genome, online databases, and literature screening, we built a stoichiometric model that encompasses
679 metabolic reactions. By using flux balance approaches and automated network visualization, we analyze
the growth capacity under amino-acid-rich medium and provide evidence that amino acid preference and
cytotoxic by-product secretion rates are suitably reproduced by the model. To provide further insight into the
basic metabolic functions of P. gingivalis and suggest potential drug targets, we study systematically how the
network responds to any reaction knockout. We focus specifically on the lipopolysaccharide biosynthesis
pathway and identify eight putative targets, one of which has been recently verified experimentally. The current
model, which is amenable to further experimental testing and refinements, could prove useful in evaluating the
oral microbiome dynamics and in the development of novel biomedical applications.

Understanding the role of microbial communities in human
health is emerging as a fundamental and fascinating biomedi-
cal challenge (42, 46, 94). In the fight against infectious dis-
eases, we are witnessing the discovery of novel connections
between infection, inflammation, and systemic human diseases
(2–4, 14, 29, 39, 48–50) and a rise in the evolution of antibiotic
resistance (12, 15, 17). These threats reinforce the necessity to
understand the mechanisms that underlie pathogenicity and
the interactions between pathogenic and nonpathogenic mi-
crobes coexisting in our body as a means to identify novel drug
targets for more aggressive and carefully targeted therapies.
Rising technical advancements open new avenues to make
progress in this endeavor. Most notably, as sequencing tech-
nologies become increasingly approachable, a variety of organ-
isms and community-level metagenomic samples are being se-
quenced (17, 18, 53). In parallel, the awareness of the
importance of quantitative methods and system-level mathe-
matical approaches is gradually percolating through different
branches of biology and is going to be a fundamental compo-
nent of the study of microbial physiology and pathology (24,
63, 64, 76, 77, 92).

These motivations are especially pertinent in the case of the

human oral flora, which comprises at least 400 to 700 different
bacterial species (42). Oral microorganisms constitute a very
complex and dynamical community, responsible for, among
others, two oral infectious diseases affecting virtually all hu-
mans: carious and periodontal disease. Periodontal disease is
the inflammatory process that occurs in the tissues surrounding
the teeth in response to the accumulation of bacterial plaque.
Chronic and progressive bacterial infection of the gums is
responsible for alveolar bone destruction and loss of tissue
attachment to the teeth (6, 30, 98). In addition to the local
tooth and gum effects, periodontal disease has been shown to
influence various systemic disorders and diseases (39, 71, 82,
87). In particular, significant associations between periodontal
disease and cardiovascular disease (55), diabetes mellitus (44),
preterm low birth weight (45), and osteoporosis (10) have been
discovered. Patients diagnosed with periodontal disease may
be at higher risk for these diseases also due to a compromised
immune system, since infectious and opportunistic microbes
responsible for periodontal infection may bring a burden onto
the rest of the body (39). Understanding and targeting the
pathogenic mechanisms responsible for these diseases is still
an open problem.

Among the several factors determining the dynamics and
virulence of the oral microbial flora, metabolic processes rep-
resent a ubiquitous key component. Many of the interactions
between different species are mediated by metabolic processes,
such as the competition for common resources, the exchange
of nutrients, and the chemical communication involved in quo-
rum sensing and biofilm formation (9, 42, 43, 84, 90). In addi-
tion, metabolites are often involved in shaping the relationship
between microbes and host cells, from the proinflammatory
role of lipopolysaccharides (LPS) present in the bacterial outer
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membrane (58, 86, 91) to the cytotoxic effect of organic acids
secreted as catabolic by-products (72, 90). Therefore, in order
to understand the complex interactions in the microbial flora,
we need to comprehensively analyze the metabolism of the
main individual species involved. The prominent role of me-
tabolism offers the opportunity to undertake quantitative stud-
ies, since genome-scale metabolic networks are one of the most
well characterized and computationally approachable net-
works in the cell (7, 19, 28, 67, 75, 79, 88).

Here we start studying the metabolic properties of the oral
microbial flora by implementing the first genome-scale stoichi-
ometric model of one of its most prominent pathogenic rep-
resentatives, the gram-negative anaerobe bacteroides Porphy-
romonas gingivalis. In particular, we construct and analyze with
flux balance methods the metabolic network properties of P.
gingivalis strain W83, whose genome sequence was completed
in 2003 (61). While research has been performed for several
decades exploring the metabolic behavior of P. gingivalis (83),
relatively little is known compared to other organisms for
which genome-scale stoichiometric models were built. Gaining
an understanding into P. gingivalis metabolism is crucial in
order to fully dissect host-parasite and intermicrobe interac-
tions in periodontal diseases. Even though P. gingivalis con-
tains functional glucose transporters, the organism’s glucose
utilization is known to be very poor (83). Under basal medium
conditions, the addition of glucose results in negligible in-
creases in the overall cell yield (83). Conversely, sequencing of
the P. gingivalis W83 genome identified a large number of
putative open reading frames (ORFs) that are parts of amino
acid degradation pathways, such as those of arginine, lysine,
serine, and glutamate. Through sequencing and homology-
based comparisons it was found that as many as 11 amino acids
may be substrates for the organism. Amino acids could be used
as carbon, as well as nitrogen, sources (61). Interestingly, the
growth yield is increased when the organism is grown on mix-
tures of amino acids and peptides. A preference for peptides is
probably a consequence of the organism’s gingipain enzymes,
known to be highly proteolytic (93). As a result, the organism
can take full advantage of the degradation of host tissues by
metabolizing the peptide fragments (1). Some by-products of
amino acid catabolism, such as isobutyrate, are thought to be
mediating the interaction with other species. Another distinc-
tive metabolic property of P. gingivalis is its requirement for
heme (65), whose external accumulation is responsible for the
black coloration of the cell. It has been suggested that the
heme aggregation around the organism constitutes a method
of creating an anaerobic microenvironment. The heme on the
surface of the cell reacts and binds to oxygen in the surround-
ing environment. This effectively reduces the ability of oxygen
molecules in the environment to come in contact with the cell,
mitigating the possible oxidative damage (65). Finally, similarly
to other virulent microbes, some P. gingivalis metabolites are
known to have powerful effects on the immune system. In
particular, LPS activate macrophages to synthesize and secrete
a variety of proinflammatory molecules, including the cyto-
kines interleukin-1 and tumor necrosis factor alpha, prosta-
glandins (especially prostaglandin E2), and hydrolytic enzymes
(13, 47, 99).

Understanding and manipulating complex metabolic net-
works at or beyond the cellular level requires tractable math-

ematical formulations and efficient computational approaches.
As opposed to traditional differential equations methods, the
approach of flux balance analysis (FBA) that we use is excep-
tionally scalable to (and beyond) cell-level systems and de-
pends minimally on parameters hard to measure in vivo (20,
38, 77). This simplicity, a consequence of the assumptions of
steady state and optimality, comes at a price, mainly the fact
that predictions are limited to reaction rates (fluxes) and do
not include metabolite concentrations. However, since several
FBA predictions have proven to accurately reflect experimen-
tal data (22, 34, 79, 88), the FBA approach is increasingly used
for various applications, most notably the study of how the cell
responds to genetic perturbations (e.g., gene deletions), and
environmental changes (e.g., carbon source shift). By assem-
bling a first version of the metabolic stoichiometry of P. gingi-
valis and analyzing it with these flux balance computational
techniques, we hope to pave the way for increasingly precise
single-species models and for a gradual understanding of the
oral community as a whole.

MATERIALS AND METHODS

Genome-scale metabolic network models usually consist of two major com-
ponents. The first is a “list of parts,” namely, the list of all metabolic reactions
(and the corresponding enzyme genes) present in the organism. This is often
referred to as metabolic reconstruction and encompasses the stoichiometric
coefficients of all known and putative biochemical reactions identified for the
desired organism. This stoichiometry, whose assembly usually requires several
rounds of trial and error and the screening of large amounts of biochemical
literature, can also be seen as a concise description of the topology and atomic
balance of the metabolic network and can be represented mathematically as a
matrix. The second component is the suite of algorithms that receive as an input
the network stoichiometry, together with other parameters, such as the condi-
tion-specific definition of available nutrients, and produce as an output predic-
tions of observable quantities, such as reaction rates and growth yield. The use
of a steady-state approximation and of optimality criteria make it possible to
obtain cell-scale predictions of metabolic fluxes in a fraction of a second.

P. gingivalis model construction. The FASTA file containing all annotated
predicted proteins from the sequenced genome of P. gingivalis strain W83 (36)
was downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
(44). These proteins are predicted by an automated algorithm (KAAS) that is
part of the KEGG system (56). As part of this process, each metabolic enzyme
is associated with an Enzyme Commission (EC) number that characterizes its
function. Enzymes associated with reactions that involve tRNAs or generic DNA
or protein molecules were not pursued further. For each remaining enzyme (and
corresponding EC number) we needed to identify the detailed metabolic reac-
tion stoichiometry. Since FBA models can be quite sensitive to atomic balance
errors in the reaction stoichiometry, the safest process was to select, based on the
extracted EC numbers, reactions already used in other well-established FBA
models. We accessed multiple FBA stoichiometric models through the online
BIGG database developed by Bernhard Palsson and collaborators at the Uni-
versity of California at San Diego (51). We first included in the model all
reactions associated with P. gingivalis EC numbers found in the Helicobacter
pylori, Escherichia coli, or Saccharomyces cerevisiae networks available from the
BIGG database. Furthermore, for P. gingivalis enzymes with incomplete EC
numbers, we identified and included in our model all H. pylori reactions whose
EC numbers matched the available P. gingivalis EC digits. In total, we included
361 reactions based on complete or partial EC numbers matching to reactions
available in previous models. Note that ORFs associated with incomplete EC
numbers for which we could not find matching EC numbers in H. pylori were not
included in the current model. Although predictions of transporters specific to P.
gingivalis can be obtained through the transportDB pipeline (65), these predic-
tions usually lack the specificity of substrates. Therefore, upon verifying that
transporter classes predicted by transportDB for P. gingivalis matched the ones
included in the H. pylori model iIT341, we included all H. pylori transporters in
the P. gingivalis model (70 reactions). An additional category of reactions that
had to be included in the model is the one of ORFs associated with complete EC
numbers which did not match any reaction already present in other microbial
models. For the EC numbers in question, we relied on the reaction stoichiom-
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etries reported in the corresponding KEGG database entries. KEGG metabolite
names were translated into BIGG database names using a “dictionary” available
from the BIGG database website (51). This step added to the model 70 reactions.
We also included in our P. gingivalis model the 76 reactions that appear in the H.
pylori model and that lack an EC number. This step relies on the assumption that
H. pylori is metabolically close enough to P. gingivalis to guarantee that funda-
mental putative metabolic functions ascribed to H. pylori are likely present also
in P. gingivalis. Indeed, several steps in our reconstruction make use of informa-
tion from the already-reconstructed organism that is metabolically closest to P.
gingivalis, namely, H. pylori (64). The metabolic similarity between H. pylori and
P. gingivalis was established by comparing to each other the enzyme profiles of
multiple bacteria for which a stoichiometric model has been published (see below
and Fig. 1B). The last step of our reconstruction involved subjecting the list of
reactions to a manual screening based on literature searches. This step resulted
in the addition of an extra 35 reactions. Overall, despite containing several
putative reactions present also in other organisms (especially H. pylori), our P.
gingivalis model counts many reactions that make it metabolically unique. A list
of all such unique reactions is available in a spreadsheet in the supplemental
material. In addition, detailed information for a selected subset of such unique
reactions is displayed in Table 1. Note also that a special tag in the spreadsheet’s
main page (column H) in the supplemental material provides information about
the origin of every single reaction in the P. gingivalis reconstruction. This will
make it easy to include or exclude whole categories of reactions (e.g., reactions
added from KEGG) for the purpose of future troubleshooting and refinement
processes.

In the manual refinement process we paid special attention to the biosynthesis
of P. gingivalis-specific LPS, which is very relevant for their role in triggering host
immune response. The LPS pathway (see Fig. 7) was assembled manually based
on H. pylori similarity and on P. gingivalis specific details available in the litera-
ture (40, 41). The chemical structure of P. gingivalis LPS is unique among other
bacterial LPS structures due to the presence of odd-number-chained branched
fatty acids that consist mainly of 3-hydroxytetradecanoic acid and are advocated
to play an important role in P. gingivalis pathogenesis (69, 70). Our main focus
was on the lipid A structure, since this is the section of the LPS that is exposed
to the extracellular environment and an organism-specific moiety. A putative
pathway was assembled by modifying the H. pylori model’s single LPS pathway to
incorporate the three different lipid A molecules biosynthesis pathways for P.
gingivalis. These pathways use as a precursor the molecule 3-methyl-butrylyl-
coenzyme A (CoA), found also in B. subtilis (60, 97). Putative malonyl-CoA-
based fatty acid extension reactions (13MMA, PMACP) were then used to
produce 13-methyl-myristic acid and 15-methyl-palmitic acid. These molecules,
in turn, form the basis of the C15 and C17 terminal branched chains that make up
the exposed moieties of the lipidA molecule. Similarly, taking advantage of the
detailed study by Takahashi et al. (90), we could refine manually the details of
the amino acid fermentation pathways (see below and also Fig. 7).

It must be noted that although our model is based on the genome of the W83
strain, experimental data useful for model validation are mostly available for the
ATCC 33277 strain (90). At this point we do not have enough data to make a
distinction between the metabolic functions of these two strains. Hence, we
assume that the stoichiometric model built for one strain applies equally well to
the other strain, especially with respect to amino acid uptake. Reportedly, a large
proportion of the differences between the ATCC 33277 and W83 is composed of
genome rearrangements and insertions of genetic elements, while the majority of
the gene sequence is conserved (95). Future models may gradually allow one to
capture potential differences between the two strains.

Visualization of enzyme-based distances for model organisms. The KEGG
database contains EC numbers for annotated enzyme genes in a large number of
sequenced organisms. Using this enzymatic information, it is possible to con-
struct a binary vector that captures the overall EC-based functionality of an
organism. If i � 1,…, n describes an index that runs over all possible EC num-
bers, the enzyme content of an organism X can be represented as a binary profile
S(X), whose component Si

(X) is 1 if the corresponding EC number is present in
organism X, or 0 otherwise. We computed the metabolic similarity between any
two organisms X and Y for which a stoichiometric model has been published by
evaluating the Jaccard distance (36) between S(X) and S(Y), defined as follows:

JDist�A, B� � 1 �
�A � B�
�A � B�

In essence, what is calculated is the number of all common EC numbers between
the two organisms, normalized by the total amount of EC numbers present in the
two organisms. This method provides us with a matrix of distances not unlike
those that would be computed for a phylogenetic tree. Using these distances and

the neighbor-joining method, we constructed a tree that provides an easy way to
compare the metabolomes of multiple organisms (73).

FBA and reaction deletions. FBA is a constraint-based approach for predicting
steady-state reaction rates (fluxes) in a metabolic network and has been de-
scribed in detail elsewhere (21, 38, 77). The network of reactions is uniquely
defined by a stoichiometric matrix S, whose element Sij represents the stoichi-
ometry of metabolite i in reaction j and is positive if a metabolite is produced and
negative if it is consumed. The steady-state constraint is hence formally ex-
pressed as S � v � 0, where v is the vector of reaction fluxes. In addition to the
steady-state assumption, inequality constraints can be imposed to set upper and
lower bounds on individual fluxes. As done before, we use these constraints to
impose the irreversibility of specific reactions and to set limits on nutrient uptake
rates. In the second step of FBA, linear programming is used to identify among
the flux vectors that satisfy the above constraints one that optimizes a given
objective function. In the current FBA calculations we used as our objective
function the biomass flux (vgrowth), corresponding to a requirement of optimal
utilization of resources toward maximal growth. The specific proportions of
different metabolites composing the vgrowth are based on the H. pylori objective
function. The only modification is the addition of three LPS molecules present in
P. gingivalis and the removal of the single LPS molecule present in the original
H. Pylori biomass equation. The linear programming problem solved is therefore:

max �growth

s.t. S � � � 0
�i � �i � �i

It is known that this optimization problem can have multiple solutions (51, 79).
In other words, for a given set of constraints, there can be several different sets
of fluxes which result in an optimal value for vgrowth. To eliminate uncertainty in
our calculations, we performed a secondary optimization in which we selected,
among all flux vectors that had the maximal value for vgrowth, the one which had
the minimum sum of absolute values of fluxes. The motivation for this secondary
optimization is that an organism may attempt to maximize growth with a mini-
mum investment of resources (32). This criterion has been previously utilized for
the study of both wild-type and gene deletion strains (31). Since, by definition, all
equivalent optimal solution display the same growth rate vgrowth, the use of a
secondary optimization is meaningful only when fluxes other than vgrowth are
analyzed. Hence, a secondary optimization was applied only for the investigation
of amino acid uptake rates and by-product secretion rates (see Fig. 3).

The reaction deletions performed (see Fig. 6) were computed by constraining
to zero the flux through the deleted reaction and again optimizing for the flux
through vgrowth. All optimizations were carried out by using the GNU linear
programming kit (GLPK) optimization software package (52), through the
glpkmex Matlab interface.

Comparison with experimental data on growth on amino acid. Model behavior
was assessed by comparing uptake and/or secretion flux predictions with the
corresponding experimentally measured rates reported by Takahashi et al. (90)
for in vitro growth of P. gingivalis under different amino acid availability condi-
tions (see Fig. 3, 4, and 5). The set of experimental data in this work details the
amount of each amino acid initially available in the medium (Ci for amino acid i), as
well as the amounts actually used by the cells throughout the experiment (�Ci).
If T is the time length of the experiment, and B the total amount of biomass
produced, the upper bound to the uptake fluxes to impose in the model should
be ui

(UB) � Ci/(T � B), while the experimental fluxes to which predictions should
be compared will be roughly ui

(Exp) � �Ci/(T � B). Hence, since all fluxes are
defined up to a factor (T � B, which is experimentally determined and is the same
for all amino acids), we may as well solve the FBA problem by imposing rescaled
upper bounds wi

(UB) � Ci and make sure to compare the outcome results to the
rescaled fluxes wi

(Exp) � �Ci. In the figures, to make the interpretation easier, we
plot the fraction of influx of each amino acid relative to the total amino acid
uptake, i.e., the quantities wi

(Exp)/	wi
(Exp) and wi

(FBA)/	wi
(FBA) for the experi-

mental and FBA-predicted fluxes, respectively. The media used by Takahashi et
al. provided tryptone as the primary source of amino acids. One may worry about
the fact that, in addition to tryptone, the medium used in the experiment contains
also yeast extract, whose complex composition cannot be easily mimicked in
silico. However, we are primarily concerned in the present study with amino acid
availability, whose actual initial concentrations (irrespective of their origin) are
measured in the experiment and provided here. Model-predicted amino acid
uptake rates were computed with FBA, assuming optimal growth (See details of
FBA above, and Fig. 3A). Corresponding experimental amino acid uptake rates
were estimated as the concentration changes of amino acids in the medium in the
first 240 min of the experiment (Table 2). Currently, the model does not make
the distinction between peptides and free amino acids. As a result, the uptake
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rates were calculated based on the sum of the concentration changes for free
amino acids and peptides. In addition to amino acid uptake rates, Takahashi et
al. report the experimentally measured production rates of several fermentation
products during growth in the tryptone-based medium. For additional validation
of the model, we compared these secretion rates with corresponding model
predictions (Fig. 3B and C and 4). Assessment of model predictions of by-
product secretion rates revealed that there was a wide range of production rates,
which were compatible with the optimal growth rate and amino acid uptake
rates. For the purpose of comparing model predictions to the experimentally
measured production rates, we selected two specific sets of feasible production
rates to display, both equally consistent with optimal growth. The first is the set
of production rates at minimal Manhattan distance from the experimental mea-
surements. The second is the set of production rates achieved when the sum of
the absolute values of fluxes through the entire metabolic network is minimized
(see below for the rationale for using this secondary objective) (88).

In addition to the data presented above for growth in a tryptone-based me-
dium, Takahashi et al. also report a set of by-product secretion rates in media
where the primary amino acid source is glutamyl-glutamate or aspartyl-aspartate.
In order to compare model predictions to these data (see Fig. 5), we simulated
the relevant media by setting the upper bound on the uptake of glutamate
(aspartate) to 10 times the one of the other amino acids. The specific upper
bounds for amino acids were set so that the model prediction for ammonium
secretion would match the corresponding experimental values.

LPS targeted knockouts. In the knockout map presented in Fig. 6 we sought
to determine whether the perturbed cell can produce a specific biomass compo-
nent, irrespective of whether the capacity to produce all other components was
compromised or not. In analyzing in more detail the producibility of LPS mol-
ecules (Fig. 7 and Table 3), we wanted to implement a slightly different approach
that would mimic the situation of a cell that could still potentially survive but be
defective in the capacity to produce LPS. Therefore, we removed the require-
ment for LPS production from the definition of biomass. A fixed lower bound
(10% of wild-type complete biomass growth rate under the same conditions) was
then added to the modified objective, forcing the model to produce all other
components of the biomass. In the subsequent computation of all reaction

knockouts, we used as an objective function a sink reaction that exports each one
of the three LPS molecules in turn. Only knockouts of reactions that were
associated with one or more specific proteins were selected for further analysis.
Knockout strains predicted to be able to grow but not able to produce one of the
LPS molecules would provide potential targets for impairing the ability of P.
gingivalis to produce LPS.

Network visualization. The central carbon metabolic fluxes in Fig. 4 were
displayed by using the freely available VisANT network analysis software pack-
age (33). Metabolic networks were displayed as a bipartite graph, with the two
classes of nodes representing reactions and metabolites. Edges are directed, such
that an edge leading from a metabolite to a reaction indicates that the metabolite
is a reactant in the connected reaction, and an edge leading from a reaction to
a metabolite indicates that the metabolite is a product of the reaction. Edges
were weighted by their relative flux through the network, such that a thicker edge
indicates a larger flux. The metabolic chart of Fig. 2, and its LPS biosynthesis
subgraph, shown enlarged in Fig. 7, were generated automatically using the
network visualization package GraphViz (dot.exe script) through Matlab. Sub-
graphs, enclosed in boxes, represent individual pathways (based on the pathway
annotation available in the spreadsheet in the supplemental material). An inter-
active, zoomable, and searchable version of the network is available online at
http://prelude.bu.edu/pg/.

RESULTS

We assembled the genome-scale metabolic network stoichi-
ometry of P. gingivalis W83 by integrating multiple data sources
(Fig. 1A). As with most previous stoichiometric models, the
bulk of information utilized was derived from the annotated
sequenced genome of the organism (61). In particular, we used
sequence-derived annotation of enzyme genes to infer the
presence of the corresponding metabolic reactions (see Mate-
rials and Methods). A total of 319 reactions were inferred
directly from the genome annotation, and the corresponding
stoichiometries were derived from online databases (BIGG
and KEGG; see Materials and Methods and Fig. 1). As dem-
onstrated in previous genome-scale metabolic network models
(24, 63, 64, 92), standard genome annotations are typically not
sufficient to produce networks detailed and complete enough
to serve as the basis for quantitative modeling. In particular,
holes in a pathway, missing transporters, or isolated subnet-
works, which are abundantly found in networks generated
from such automated annotation, can affect the predictive ca-
pacity of the model and must be addressed by additional meth-

TABLE 2. Amino acid-rich minimal mediuma

Medium
component

Concn (mM)
in modified

amino acid-rich
medium

Ala................................................................................................. 2.9
Arg ................................................................................................ 2.35
Asn ................................................................................................ 0
Asp ................................................................................................ 3.25
Cys................................................................................................. 0.2
Gln ................................................................................................ 0
Glu ................................................................................................12.4
Gly................................................................................................. 2.4
H2O............................................................................................... —b

Heme ............................................................................................10
His ................................................................................................. 1.35
Ile .................................................................................................. 2.2
Leu ................................................................................................ 4.65
Lys ................................................................................................. 3.15
Met................................................................................................ 0.55
Phe ................................................................................................ 1.9
Phosphate .....................................................................................10
Pimelate........................................................................................10
Pro................................................................................................. 5.55
Ser ................................................................................................. 4.05
Thiamine ......................................................................................10
Thr................................................................................................. 2.75
Trp................................................................................................. 1
Tyr ................................................................................................. 0.9
Val................................................................................................. 3.9

a Modified from Takahashi et al. (90). Pimelate and thiamine are not present
in the original media but are required for the current model. Pimelate, thiamine,
phosphate, and heme are added in excess to make sure that they are not limiting
factors.

b —, Water uptake is not constrained in the model.

TABLE 3. Predicted reaction knockouts that affect the production
of LPS without affecting the production of other

biomass componentsa

Reaction Protein ID Gene Description

GMAND PG1288 gmd GDP-D-mannose dehydratase
KDOPP PG0658 3-Deoxy-manno-octulosonate-8-

phosphatase
GFUCS PG1289 fcl GDP-L-fucose synthase
PMANM PG1094,

PG2010
pgm Phosphomannomutase

MAN6PI PG0468 manA Mannose-6-phosphate isomerase
MAN1PT2r PG2215 manC Mannose-1-phosphate

guanylyltransferase (GDP)
reversible

UDPG4E PG0347 galE UDP-glucose 4-epimerase
KDOCT PG1815 kdsB 3-Deoxy-manno-octulosonate

cytidylyltransferase

a Here we include only reactions associated with a specific P. gingivalis protein.
For each reaction, we list the KEGG protein identification (ID) and gene name,
as well as a description of the enzyme function. The entry in boldface is a
knockout for which an effect has been reported in the literature (59).
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FIG. 1. (A) Reactions included in the P. gingivalis model can be classified based on two criteria: (i) source of the reaction in the model-building
process and (ii) metabolic pathway classification. Some reactions have multiple metabolic pathway annotations. All reactions have only one source.
The EC match category represents reactions that have an associated EC number which either matches exactly or closely matches the enzyme
classification of a protein gene in the P. gingivalis genome. Transport H. pylori refers to transport reactions that were added based on TransportDB
results and on the stoichiometry of transport reactions from the H. pylori model. The extra H. pylori reaction category relates to reactions that had
no EC annotation but were added in order to allow the producibility of several biomass components (see Materials and Methods). KEGG reactions
were included from the KEGG database on the basis of an exact EC match. Finally, the manual reaction category includes reactions that were
introduced and curated manually based on literature searches. The LPS pathway in the model is almost completely putative, as reflected in an
increased number of manually added reactions under the lipid metabolism pathways class. KEGG-based reactions contribute greatly to amino acid
metabolism and cofactor and vitamin metabolism. This reflects the fact that P. gingivalis is heavily dependent on amino acids from its environment.
It is also interesting that, in agreement with the fact that the organism does not rely heavily on carbohydrate metabolism, reactions that are part
of the carbohydrate metabolism are relatively under-represented across all reaction sources. (B) Tree of enzyme profile distances between several
prokaryotes for which flux balance models are available: P. gingivalis (the present study), H. pylori 26695 (92), E. coli K-12 MG1655 (23), R. etli
CFN42 (68), Pseudomonas aeruginosa PAO1 (63), Pseudomonas putida KT2440 (62), Mycobacterium tuberculosis H37Rv (37), Clostridium
acetobutylicum (81), Bacillus subtilis (64), Lactococcus lactis (66), and Staphylococcus aureus N315 (8). Using data from the KEGG database, it is
possible to calculate the normalized proportion of enzymes that are different between any two organisms (see Materials and Methods). The
depicted neighbor-joining tree, based on such a distance metric, provides a map of metabolic similarity between available stoichiometric models.
In particular, this shows that the organism metabolically closest to P. gingivalis is H. pylori.
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ods. While some automated methods for pathway completion
are available and are subject of active research (26, 74, 80), the
most reliable approach for achieving good predictive capacity
is currently still to complement genome analyses with manual
curation and literature searches. Our manual curation of the
model involved (i) adding putative transporters matching the
results of a transport prediction tool; (ii) incorporating reac-
tions lacking a gene and EC number, found in the most closely
related previously reconstructed stoichiometric model (that of
H. pylori; see Fig. 1B); and (iii) refining the list of reactions
based on biochemical evidence reported in the literature. The
proportions of reactions added based on different criteria, bro-
ken by pathway categories, can be seen in Fig. 1A. The reac-
tions added from the KEGG database (and not found in pre-
viously reconstructed E. coli, H. pylori, and S. cerevisiae
models) are enriched for cofactor and vitamin-related func-
tions, as well as for amino acids metabolism. This last aspect is
a preliminary indication of the importance of amino acids
catabolism in P. gingivalis relative to other organisms. The
abundance of lipid-related reactions in the category of manual
curation reflects largely the complexity of the LPS biosynthesis
pathways, on which we focused in detail. The complete list of
reactions, including references to relevant literature, and the
criteria that warranted their inclusion in the model, are avail-
able in the in the supplemental material.

The current version of the fully assembled P. gingivalis net-
work includes a total of 679 reactions and 564 metabolites.
Following a custom established in previous FBA models, we
named our model iVM679. A bird’s-eye view of the P. gingivalis
metabolic network, zoomable and searchable in the online
version, can be seen in Fig. 2. The network, whose layout
(subdivided by pathway categories) was generated automati-
cally (see Materials and Methods), includes two types of nodes:
metabolites (gray) and reactions (red or yellow). Red reaction
nodes correspond to reactions for which a specific gene and
protein was identified, and yellow reaction nodes to reactions
inferred or putative, lacking a corresponding gene. The over-
view figure, while not readable in detail, emphasizes the overall
distribution of reactions associated with known genes in the
network. Uncertainty seems uniformly distributed throughout
the network. This implies on one hand that the challenge of
producing predictions compatible with experimental observa-
tions is greater than in other cases. At the same time, this also
means that the potential for discovery is unusually rich.

The lack of comprehensive studies of P. gingivalis metabo-
lism poses challenges not only for model construction but also
for model validation. Thorough validation of metabolic models
requires quantitative experimental data capturing metabolic
behaviors under specific environmental conditions (88). To
fulfill the need for quantitative data describing the metabolic
behavior of P. gingivalis, we utilized data previously published
by Takahashi et al. (90). In their study, Takahashi et al. grew P.
gingivalis on a medium containing tryptone as the primary
carbon, nitrogen, and energy source and measured amino acid
uptake rates, along with by-product secretion rates. This data
set is ideal for assessing our metabolic model for two reasons.
First, the tryptone-based medium provides a physiologically
relevant glimpse into P. gingivalis metabolic behavior, since it is
well known that P. gingivalis primarily relies on peptides scav-
enged from the oral cavity to meet its metabolic needs (101).

Second, the fact that both metabolic inputs and outputs were
measured over time allowed us to assess the model’s nutrient
preferences and catabolic pathway utilization.

The tryptone media provided contained all 20 amino acids,
in concentrations proportional to the amino acid composition
of the protein. An initial observation made by Takahashi et al.
was that P. gingivalis showed different preferences for different
amino acids, as demonstrated by the variability in their uptake
rates. This observation suggested that P. gingivalis prefers cer-
tain amino acids as primary carbon sources. As a first assess-
ment of our metabolic model, we sought to determine whether
we could reproduce the amino acid usage under the studied
condition. To do this, we simulated a condition in which amino
acids were available in the proportions reported by Takahashi
et al. and computed the amino acid usage, assuming maximum
growth rate as the metabolic objective. Imposition of a meta-
bolic objective is necessary with flux balance models in order to
select a particular set of fluxes, among all those that are com-
patible with steady-state and nutrient availability constraints.
Maximal growth is often used as a metabolic objective (38, 79,
96), with the underlying assumption being that an organism has
evolved to meet metabolic challenges in an optimal manner.
Comparisons of experimentally determined and model-pre-
dicted amino acid usage are shown in Fig. 3A. Specifically, we
compared predicted amino acid uptake rates with experimen-
tally measured changes in amino acid concentrations in the
media after 240 min (see Materials and Methods for details).
The correlation between predicted and observed amino acid
usage is highly significant (Spearman rank; r � 0.77, P � 4.0 

10�4), indicating that the model accurately captures the rela-
tive efficiencies with which different amino acids can be catab-
olized. Although the correlation is overall quite strong, it
should be noted that some uptake rates are predicted better
than others, suggesting that certain catabolic pathways may be
incomplete in the model. In addition, while some correlation
exists between the imposed upper bounds derived from initial
amino acid concentrations and the experimental uptake rates,
correlation of predicted uptake rates is stronger with the latter.

Assessment of the model’s ability to reproduce amino acid
usage evaluates how well the model captures the relative effi-
ciency with which different amino acids are transformed into
biomass components. On the other hand, the ability to predict
amino acid uptake rates does not guarantee the correctness of
the pathways by which the amino acids are predicted to be
catabolized. To provide further support for the correctness of
model-predicted catabolic routes, we next compared predicted
by-product secretion rates to those reported by Takahashi et
al. for the same tryptone-based medium composition discussed
above (90). The results for this comparison are shown in Fig.
3B, with model predictions again based on an optimal growth
assumption. Although imposition of the optimality assumption
resulted in unique predictions of amino acid uptake rates,
there was a wide distribution of by-product secretion rates that
were compatible with the optimality assumption. This is due to
the presence of alternative optima, or in other words, to the
existence of several routes through the metabolic network
which all result in equal growth under the modeled condition
(51, 79). The results in Fig. 3B are for two specific alternate
optima, one minimally distant from the experimental observa-
tion and the other obtained by assuming the minimal overall
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flux necessary to achieve optimal growth (see Materials and
Methods and reference 32).

It can be seen in Fig. 3B that for both of these particular
model solutions, predicted by-product secretion rates match
experimentally measured values for all products, with the
exception of succinate, for which the model predicts more
production than was observed experimentally. Despite the con-
cordance between both sets of model predictions and the ex-
perimental values, it is clear that there are differences between
these two sets of model predictions, despite the fact that both
were consistent with the identical growth rate. Specifically, the
fluxes predicted based on minimal overall flux did not predict

sufficient amounts of butyrate, propionate, or acetate and in
turn predicted more succinate to be produced.

The apparent flexibility in amino acid catabolic pathways, as
demonstrated by the range of by-product secretion rates com-
patible with optimal amino acid usage, prompted us to next
explore the relationship among the production rates of differ-
ent by-products. Figure 3C shows the relationship between
three major amino acid catabolic by-products: succinate, pro-
pionate, and butyrate. These relationships were determined by
computing all possible secretion fluxes for these three by-prod-
ucts, which are compatible with the previously determined
optimal growth. Figure 3C demonstrates that there is abundant

FIG. 2. Representation of the whole P. gingivalis metabolic network model using the GraphViz package (see Materials and Methods). The
reactions are grouped by pathway. Some reactions and metabolites are present in more than one pathway (see spreadsheet in the supplemental
material for details). Highly connected metabolites such as ATP and NADH have been removed to simplify the layout. Gray nodes denote
metabolites, whereas red and yellow nodes denote specific reactions. Red nodes are reactions that are associated with specific proteins; yellow
nodes denote putative reactions.
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flexibility in the production of these three by-products. In other
words, the only constraint seems to be on the total by-product
formation and not on the particular by-product that is formed.
The implication of this is that the metabolic routes to these
by-products are equivalent with respect to redox balancing and
energy production. The catabolic routes (and flux intensities)
from all amino acids predicted to be utilized as carbon sources
to succinate, propionate and butyrate are shown in Fig. 4.

Although the predicted flexibility in by-product secretion by
P. gingivalis in tryptone medium has potentially interesting
implications for community interactions (see Discussion), it
suggests that a clearer insight into specific amino acid degra-
dation processes might be gained from studying growth in
simpler media, e.g., rich in a single amino acid at a time. To
this end, we utilized additional data provided by Takahashi et
al. for by-product production rates in media where the primary
amino acid sources were glutamyl-glutamate or aspartyl-aspar-
tate dipeptides, as opposed to tryptone (see Materials and
Methods). We specifically wanted to see whether the model
could capture the differences in fermentation product secre-
tion rates between the two media, reflecting the different cat-
abolic routes for aspartate and glutamate. Figure 5 shows the
predicted ranges for by-product production and the experi-
mentally measured values. With the exception of butyrate pro-
duction under glutamate availability, all experimental mea-
surements fall within the range of model predictions. In
addition, for all by-products except propionate, the rank of the
averages of the predicted ranges under the two conditions
studied reflects the experimentally measured ranks.

As mentioned above, one of the applications for which the
computational efficiency of FBA has been particularly useful is
the systematic prediction of the effects of genetic perturba-
tions, especially gene deletions (20, 79). After validating that
our model is consistent with experimental measurements of
amino acid uptake and organic acid secretion, we therefore
performed a systematic analysis of perturbations, both to gain
insight into whether our model can capture biologically signif-

icant features and to exemplify the potential use of this model
for biomedical applications. The analysis presented in Fig. 6
differs slightly from previous systematic gene deletion analyses
performed for other organisms. Since, in the case of P. gingi-
valis, there are often not enough data to establish a specific
relationship between genes and reactions, we do the knockout
experiment at the level of reactions rather than with respect to
genes. This implies, for example, that if we wanted to really
block a reaction whose deletion produces a useful phenotype,
we would have to independently identify the gene or genes
whose enzyme protein product allows that reaction to occur
(possibly affecting other reactions as well). Moreover, in addi-
tion to looking at whether a certain reaction knockout strain
can or cannot produce all biomass components simultaneously
and in the correct proportions, we check what single biomass
components fail to be produced upon the perturbations. Since
we have 596 reactions to delete and 53 objectives to maximize
(52 single components and 1 complete biomass), this amounts
to 31,588 FBA calculations, which are summarized, after two-
dimensional clustering, in Fig. 6. The outcome of this calcula-
tion is similar to the producibility analysis performed previ-
ously for E. coli (35). Gray or black bars in Fig. 6 indicate that
the specific deletion strain cannot produce the selected bio-
mass component. The bar is black for reactions for which a
specific P. gingivalis gene was identified and gray otherwise.
Colored boxes highlight selected clusters of reactions and bio-
mass components for which one can clearly identify the biology
behind the observed patterns. For example, knockouts en-
closed in the green box are related to LPS production. Most
(but not all) reactions in this cluster are explicitly annotated as
being LPS related. Also, most of these reactions have no as-
sociated gene and affect all three LPS molecules. Reactions
associated with LPS production defects and which have an
associated gene are discussed in more detail later. Another
significant cluster of biomass components not producible upon
several deletions is the one marked in blue. This involves
defects in CoA, succinyl-CoA, and acetyl-CoA production. As

FIG. 3. A quantitative assessment of model behavior was done by comparing model predictions to experimentally determined amino acid
uptake rates and by-product secretion rates reported by Takahashi et al. (90). (A) Experimentally measured fractions of amino acids consumed
by P. gingivalis against corresponding flux balance model predictions in linear scale (main plot) and log-log scale (inset) (see Materials and Methods
for details). The model correctly predicts glutamate, aspartate, serine, and threonine as the four amino acids with the highest uptake rates. In
addition, the model predictions of the relative rates with which less highly utilized amino acids are taken up shows strong correlation with the
experiments. On the other hand, model predictions for some amino acids do not match the experiments. For example, the model fails to predict
that valine, leucine, and arginine are taken up in significant amounts, although experimental measurements suggest they are utilized nearly as much
as serine, threonine, and alanine. Such discrepancies indicate incomplete knowledge of the catabolic route for these amino acids and suggest
metabolic pathways where further research can provide novel insights. (B) Experimentally determined by-product secretion rates (f) were
compared to two sets of model predictions. The first (o) was the set of model-predicted production rates compatible with optimal growth, with
the minimal Manhattan distance from the associated experiments. The second (�) was the set of model predicted production rates compatible with
optimal growth, which were associated with the flux solution minimizing the overall sum of absolute values of fluxes through the network.
Minimizing the sum of flux through the network is a common secondary optimization used to select a particular optimal flux solution. Both sets
of predicted fluxes show good agreement with experiments for butyrate, acetate, and ammonium secretion. The predicted rates, which were
minimally distant from the experimental values, also accurately capture propionate production. Despite the good agreement with experiments,
there is clearly significant flexibility in model-predicted by-product production rates that are compatible with optimal growth. (C) The relationship
between model predictions for propionate, succinate, and butyrate production, in the same tryptone media utilized in part A, was assessed by
computing all possible values for the three production fluxes, which were consistent with optimal growth. This analysis demonstrated that the model
only has constraints on the overall by-product production rate and not on the rates of production of the specific by-products. Succinate and
propionate production are metabolically equivalent in the model, with butyrate production differing from the other two by a multiplicative factor.
It should be noted that the equivalence between these by-products is only true for the catabolism of particular amino acids. This explains why,
despite the symmetry of the surface, butyrate production must be greater than zero for all solutions, whereas succinate and propionate production
can be zero. Specifically, butyrate production from glutamate is not equivalent to propionate and succinate production.
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FIG. 4. The predicted catabolic routes for glycine, alanine, serine, threonine, aspartate and glutamate relative to the analysis illustrated in Fig.
3 are shown on a metabolic network generated with the VisANT network visualization tool. Red nodes represent reactions, and blue nodes
represent metabolites. An edge leading from a metabolite to a reaction indicates that the metabolite is a reactant, while an edge leading from a
reaction to a metabolite indicates that the metabolite is a product. Relative reaction flux rates are represented by the thicknesses of the edges
between metabolite and reaction nodes. This visualization demonstrates how different amino acids enter central carbon metabolism and allow for
production of biosynthetic precursor metabolites and ATP. ATP production is primarily associated with the conversion of acetyl-CoA to acetate,
which occurs through reactions catalyzed by phosphotransacetylase and acetate kinase, respectively.
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indicated by the pathway enrichment of the reactions in this
block, deletions tend to cause a disruption in CoA production
from alanine B. Another cluster of reactions very prominent in
Fig. 6 is the one associated with many biomass components
(red box). Related knockouts found are enriched for pyrimi-
dine and purine biosynthetic pathways. Since most cofactors
such as gtp and atp are connected to this pathway, it would be
expected that disruption of purine and pyrimidine synthesis
would disrupt cofactor production. Gluconeogenesis (yellow
box) is instrumental in the production of a number of cofactors
from glycolytic intermediates.

The cluster of knockouts associated with defects in the pro-
duction of LPS is worth further investigation. P. gingivalis LPS
are very important due to their proven role in triggering a
strong human immune system response. In order to generate
predictions amenable to experimental testing, we repeated the
knockout in silico experiments for the production of LPS,
while at the same time requiring a minimal rate of production
of all other biomass components. In other words, for a specific
LPS molecule, we sought to determine what reaction knockout
might give rise to a viable cell that lacks only that specific LPS.
The pathway for production of LPS is rather complex (Fig. 7
and see Materials and Methods). Some of its genes were iden-
tified in the genome of P. gingivalis, but many other are still
unknown. The results of the knockout experiment for LPS,
restricted to reactions with an associated gene, are summarized
in Table 3. Some genes in this table, GMAND and GFUCS,
help to produce GDP-L-fucose, which is vital in the final step of
LPS assembly. PMANM, MAN6PI, and MAN1PT2r are also

involved in alternative carbon metabolism. These reactions
process fructose-6-phosphate into GDP-D-mannose, a precur-
sor of GDP-L-fucose. The KDOPP and KDOCT reactions
produce CMP-3-deoxy-D-manno-octulosonate, which is a com-
ponent of bacterial LPS. The UDPG4E mutant stops the pro-
duction of UDP-galactose from UDP-glucose. UDP-galactose
is required in multiple steps within the LPS synthesis pathway.
This specific mutant has been documented (59) and is known
to have a shortened O-antigen chain as a result but was still
viable. In light of this experimental validation of our modeling
approach, it will be useful to experimentally test the other
potential knockouts listed in Table 3.

DISCUSSION

The stoichiometric model we assembled for the metabolic
network of P. gingivalis W83 was obtained largely from
genomic information. As opposed to most other previous FBA
models, this one is built for an organism whose biochemistry is
still poorly understood. This implies, on one hand, that signif-
icant uncertainty should be expected in the prediction of
growth or flux phenotypes, especially under growth conditions
different from the one under which the model was curated and
tested. On the other hand, this also implies that the proposed
stoichiometry will probably be very useful in the future as a
dynamical tool for generating hypotheses that can be tested
experimentally. Previous genome-scale stoichiometric models,
such as the ones for E. coli and S. cerevisiae, were first pub-
lished in 2000 and 2003, respectively (20, 25), and have since
undergone significant improvement, reaching high levels of
agreement with high-throughput experimental data. Given the
increasing interest in the metabolic properties of the human
oral microbiome, we envisage that a similar refinement process
will take place in the coming years also for the P. gingivalis
model. Until more iterations of experimental validation and
model refinement are performed, the currently proposed P.
gingivalis stoichiometry, similarly to several first-round genome
scale models, should be regarded more as an exploratory
framework than a ready-to-use tool. Improvement of the P.
gingivalis model will also have to address the presence in the
literature of analyses performed using multiple strains, whose
metabolic differences are currently difficult to detect but might
become relevant in the future.

Our comparison of model predictions and experimental data
for growth on amino acids shows that, despite the current level
of uncertainty for several reactions in the stoichiometric
model, the FBA approach already constitutes a valuable quan-
titative framework for the study of P. gingivalis. Upon feeding
the FBA algorithm with stoichiometric coefficients, nutrient
limitations, and an objective function to be maximized or min-
imized, one receives back a prediction of all reaction fluxes,
including the biomass production flux (growth rate) and the
uptake/secretion rates. Since the FBA problem is posed as a
linear programming problem in a convex space, it is guaran-
teed that no multiple local optima will exist. However, the
global optimum may not be unique, i.e., there may be multiple
(in fact, infinitely many) solutions that are equally optimal for
the desired criterion. Although this may be seen as a mean-
ingless mathematical complication, it is possible that the free-
dom of choice inherent in multiple optima carries important

FIG. 5. Comparison of predicted and measured by-product secre-
tion rates during growth in a medium with aspartyl-aspartate or glut-
mayl-glutamate dipeptides as the primary source of amino acids (see
Materials and Methods). The vertical boxes indicate the ranges of
predicted secretion rates compatible with optimal growth in a medium
rich in aspartate (�) or glutamate (u). With the exception of butyrate
production in the presence of glutamate, all experimental measure-
ments of by-product secretion fall in the range of model predictions.
Furthermore, the model accurately captures the tendency for P. gin-
givalis to produce less acetate and succinate, but more butyrate, when
grown in glutamate-rich medium, relative to what is observed in as-
partate-rich medium. On the other hand, the model fails to predict the
correct trend for propionate.
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biological meaning (51, 79). In the analysis presented here we
found a potentially very relevant case of multiple optima,
whose explanation might relate to the interaction of P. gingi-
valis with other organisms. The surface presented in Fig. 3C
demonstrates that, upon amino acid catabolism, the organism
is predicted to secrete as fermentation products succinate,
propionate, and butyrate. All points on the surface are equally
optimal for growth rate, meaning that the cell can, within
certain overall constraints, arbitrarily choose what proportion
of each to secrete. The model thus tells us that, from the
perspective of energetic or reducing power economy, there is
no reason to prefer one over the other. However, as seen in
Fig. 3B, the cell does choose a certain proportion and specif-
ically produces butyrate and propionate, but no succinate.
There could be several explanations for this observation, two
of which fit nicely with independently known facts about the
physiology of P. gingivalis. The first is that succinate is being

produced as a catabolic by-product but can be recycled inter-
nally. This would be compatible with the observation that suc-
cinate secreted by Capnocytophaga ochracea, Actinomyces vis-
cosus, Prevotella intermedia, or Prevotella nigrescens is known to
be used by P. gingivalis to produce ATP (85). Alternatively, the
cellular choice of secreting mostly butyrate and propionate
might be a deliberate evolved strategy for inducing harm to
host cells or for supplying partner organisms with a share of
useful nutrients (27, 42, 89). In other words, the metabolic
freedom, which the cell might control transcriptionally or post-
transcriptionally, might be indicative of a controllable degree
of interactions with other organisms and with human host cells.

In addition to relating model predictions to experimental
data, we have analyzed the response of the network to system-
atic perturbations of single reactions. At this stage, the map of
Fig. 6 should be seen mostly as a set of guidelines for how to
prioritize future experimental testing helpful for model refine-

FIG. 6. Representation of the predicted capacity of the P. gingivalis metabolic network to produce each biomass component upon systematic
removal of each reaction in the model. In silico deletion experiments were conducted using an amino-acid-rich medium similar to the one from
Takahashi et al. (90) (see Materials and Methods). For each reaction deletion (row), we used the FBA model to check whether each biomass
component (column) could be produced. A black or gray bar indicates a case in which the specific biomass component cannot be produced under
the chosen reaction deletion. The first column represents the complete biomass, combining all 52 metabolites that are required for cell growth,
and corresponding to the objective function most commonly maximized in flux balance models. Biomass components that are not affected by any
single deletion would correspond to blank columns and are not shown. Similarly, reaction deletions that do not affect the producibility of any
metabolite would correspond to blank rows and were omitted. Black bars refer to reactions that are associated with specific proteins. Gray
knockouts denote reactions that currently have no specific protein association. The results are clustered both by biomass component and by
reaction deletions, revealing the existence of blocks characterized by similar producibility patterns. The deletions enclosed by the green box relate
to the production of all three LPS molecules. The reactions deleted are part of the LPS biosynthetic pathway. The majority of deletions affecting
the LPS are related to putative reactions, due to the highly putative nature of the LPS pathway. The yellow box encompasses reactions that are
predominantly members of glycolysis and relate to the production of NADPH, NADP, NADH, NAD, dATP, and ATP. Since the cell under the
specified nutrient conditions is predominantly catabolizing amino acids, these cofactors, which use glycolytic intermediates as precursors, require
an active flux through gluconeogenesis. The deletions enclosed by the red box relate to a large number of biomass components. The corresponding
reactions are enriched for purine and pyrimidine biosynthetic pathways. Without purine and pyrimidine biosynthesis, simple cofactors such as ATP
and GTP cannot be produced. These cofactors are integral for the production of almost all components of biomass. A version of this table with
all gene names is available (see Table S1 in the supplemental material).
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ment. Although experiments with P. gingivalis gene deletions
are possible and have been performed (57), the focus has not
been on metabolic enzymes. The results shown here indicate
that a lot can be learned from such knockouts, especially when
the data can be compared to FBA predictions. The added
value of combining FBA models with phenotype measure-

ments across different mutants and conditions has been re-
cently reported for S. cerevisiae (88).

The current P. gingivalis predictions for reaction deletions
are particularly promising for the LPS biosynthesis pathway.
We identified several genes whose deletion we predict would
disrupt the capacity to produce LPS. Some of these deletions

FIG. 7. Representation of the putative pathways for LPS biosynthesis in the iVM679 P. gingivalis model, with layout automatically generated
by using GraphViz (see Materials and Methods). Gray nodes denote metabolites; red and yellow nodes represent reactions. The red nodes denote
reactions that have been linked to specific reactions. Yellow nodes represent reactions that are putative and that were manually added in order
to make all three specific lipid A molecules. The UDPG4E reaction is linked to the galE gene, producing a UDP-glucose 4-epimerase. The galE
mutants are known to have modified lipid A molecules (59). The pathway culminates in the production of lps_PG1, lps_PG2, and lps_PG3
molecules, which refer to the PG1690, PG1450, and PG1435 lipid A structures, respectively.
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are upstream of the actual LPS biosynthesis pathway. This
emphasizes the importance of genome-scale analyses, since
correlations between functions in apparently unrelated path-
ways are more common than one might think (78). The reac-
tion deletions for which we can identify specific P. gingivalis
genes do not act selectively on different LPS but block the
production of all three LPS types simultaneously. Other puta-
tive reaction deletions visible in Fig. 6, however, do block
selectively specific LPS molecules. It is known that different
specific LPS molecular types affect differently the immune sys-
tem response (16). In particular, it has been shown that an LPS
preparation enriched for lipid A species at m/z 1,435 and 1,450
activates human and mouse TLR2, TLR2 plus TLR1, and
TLR4 in transiently transfected HEK 293 cells coexpressing
membrane-associated CD14 (16). From a therapeutic perspec-
tive, selectively blocking the production of specific LPS would
be especially valuable to allow control the inflammatory dele-
terious consequences of LPS production short of eradicating
or weakening P. gingivalis, given its potential role in biofilm
equilibrium and homeostasis. It is increasingly clear that the
microbial consortia that populate the human body serve fun-
damental beneficial purposes, including protection from much
more dangerous bacterial or fungal infections. Hence, in order
to contain infectious diseases caused by species constantly
present in the human microbial flora, it might be more pro-
ductive to target specific disease-related pathways than to try
and wipe out entire species. In other words, new drugs could
target specific microbial biosynthetic pathways without causing
major disruption in the global dynamic balance of microbial
consortia. While in the present study we focused mostly on
LPS as an example of a biomedically relevant pathway to study
in depth, other metabolic pathways crucial for the pathogenic-
ity of P. gingivalis could be the focus of future work, such as the
pathways related to heme biosynthesis and utilization.

We find it exciting that several molecules known to mediate
the interaction of P. gingivalis with host human cells and with
the rest of the human microbial flora are already present in the
proposed version of the stoichiometric model. Additional mol-
ecules, such as quorum-sensing signals, could be incorporated
in future versions (54). In the context of microbe-microbe
interactions, one of the future tasks of a flux balance model
could be to discriminate between molecules that are relevant
for growth because they represent building block or electron
sources, and molecules that are essential for growth because
they represent “green light” signals, reflecting favorable envi-
ronmental conditions. As the construction of stoichiometric
models becomes increasingly more automated and broadly ap-
proachable, models of different microbial species will facilitate
the study of what differentiates metabolic functions of micro-
bial consortia under normal and disease states. The capacity to
approach this problem in a quantitative way, in addition to
being useful for biomedical applications, will allow researchers
the opportunity to address fundamental questions about mi-
crobial consortia dynamics and evolution. For example, since
optimization methods are one of the key components of ge-
nome-scale metabolic network modeling, it might be possible
to determine whether individual species are metabolically op-
timized for their own survival or rather for striving in the
context of the biochemical properties of surrounding organ-
isms.
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