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Abstract
Background: High-throughput microarrays are widely used to study gene expression across
tissues and developmental stages. Analysis of gene expression data is challenging in these
experiments due to the presence of significant percentages of differentially expressed genes (DEG)
observed between tissues and developmental stages. Data normalization methods that are widely
used today are not designed for data with a large proportion of tissue or gene effects.

Results: In our current study, we describe a novel two-dimensional nonparametric normalization
method for analyzing microarray data which functions well in the absence or presence of large
numbers of gene effects. Rather than relying on an assumption of low variability among most genes,
the method implements a unique peak selection strategy to distinguish DEG from genes that are
invariant in expression, prior to nonlinear curve fitting. We compared the method under simulated
and experimental conditions with five alternative nonlinear normalization approaches: quantile,
lowess, robust lowess, invariant set, and cross-correlation (Xcorr). Simulations included various
percentages of simulated DEG and the experimental data used is from publicly available datasets
known to be difficult to analyze due to the presence of approximately 34% DEG.

Conclusion: We have demonstrated that the new method provides considerable improvement in
the accuracy of data normalization when large proportions of gene effects are present. The
performance improvement is mostly attributed to its variable selection component, which is
designed to separate expression invariant genes from DEG. Adding this key component of the new
method to alternative normalization approaches rescues the most of the sensitivity of these
methods to gene effects. The results indicate that our method may be used without prior
knowledge of or assumptions about housekeeping genes to normalize microarrays that are quite
different.

Background
Identifying microarray target concentration changes in
response to developmental and environmental cues is one
of the most common end points of microarray data anal-

ysis. However, diverse and numerous sources of variation
are known to affect the accuracy and reliability of such
results [1,2]. Large community-wide efforts including The
Microarray Quality Control (MAQC) Project [3] and The
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External RNA Controls Consortium (ERCC) [4] have been
initiated to further identify sources of variation, establish
reliable assessment metrics, and improve the accuracy of
the interpretation of microarray data. Normalization is an
important analytical step to correct systematic noise
inherent in microarray technology. To make arrays com-
parable current normalization techniques rely on knowl-
edge or assumptions about genes expected to have low
variation. We present a novel microarray normalization
method that avoids the need to know or hypothesize
about genes with low variation and thereby provide a
more robust procedure.

Not all sources of variation that are known to have an
impact on data normalization performance are noise. Bio-
logical sources of variation (gene effects), namely, differ-
ential gene expression, are frequently observed in
microarray data. In raw measurements, it is difficult to dis-
tinguish between biological sources of variation and the
variation due to limited sampling, differences in array
production batches, hybridization and washing condi-
tions, scanning power, etc. When arrays under compari-
son are generated from different tissues or developmental
stages, the total impact of biological variation and the per-
centage of genes containing gene effects are expected to be
significantly large. This presents a challenge to microarray
data normalization, which is an important step for remov-
ing experimental noise. A salient question with respect to
normalization is how to deconvolute two sources of vari-
ation so that the associated experimental noise can be
accurately assessed and removed by normalization. With
proper normalization, the underlying biological variation
across experimental groups becomes quantifiable.

Frequent observation of nonlinear systematic noise in
both Affymetrix chip data and cDNA microarrays has led
to the development of several normalization methods for
correcting nonlinear experimental differences between
arrays. Among them, quantile normalization in RMA [5],
lowess [6], and invariant set method [7,8] are well
adopted for analyzing Affymetrix chip data. To prevent
the perturbation caused by the presence of gene effects or
other sources of outliers, lowess provides a built-in robust
regression option in the method (robust lowess).
Designed for the same purpose, the invariant set method
selects expression invariant probes whose rank difference
is proportionally small between two chips prior to nonlin-
ear curve fitting via either Lowess [8] or median-based
procedures [7]. These approaches provide robustness
against small gene effects.

However, they require that a critical assumption hold: any
gene effects that exist are small or symmetric over the
entire intensity range [9]. Therefore, dChip recommends
users to provide a known set of housekeeping genes which

are assumed to have low variability across experimental
groups when normalizing arrays from different tissues. To
relax the statistical assumption, Fan et al. proposed a sem-
ilinear in-slide model to iteratively assess two sources of
variation [10,11] and thereby directly address the issue of
gene effects. Variations of the semilinear models have also
been proposed [12]. These methods often impose the
requirement that sufficient numbers of replicated genes
are present over the entire intensity range. With all these
methods, there is a demand for a set of known low-varia-
bility genes over the intensity range.

Performance of various normalization methods have
been evaluated and compared in many studies. Most eval-
uation does not involve data with significantly large num-
bers of gene effects, due to a lack of suitable experimental
microarrays. Recently, Fujita et al compared several non-
linear normalization methods including lowess using an
artificial dataset containing up to 40% outliers [13]. Their
results indicate various degrees of robustness to outliers
with respect to normalization choices. When the percent-
age of outliers increases from 5% up to about 40%, all
methods incur increasing amounts of normalization
errors. To overcome the lack of experimental microarrays
of known large gene effects, Choe et al generated a spike-
in array dataset (named Golden Spike) containing
approximately 34% gene effects [14]. As expected, nor-
malization based on only unchanged genes clearly per-
forms better than normalization on both unchanged
genes and differentially expressed genes (DEG), indicat-
ing that the deleterious impacts of incorrect assumptions
about which genes have no gene effects are present in all
normalization methods studied. In light of this study, Iri-
zarry et al. stress the need for new normalization methods
when processing microarray datasets that are quite differ-
ent [15].

In our current study, we propose a two-dimensional non-
parametric modeling approach named nonparametric
variable selection and approximation (NVSA) for normal-
izing Affymetrix arrays in experiments that may have sig-
nificantly large numbers of gene effects. NVSA identifies
genes exhibiting no differential expression, and uses them
as the basis for normalization. Using benchmark evalua-
tion procedures, we demonstrate the following: 1) NVSA
prevents interference by gene effects and results in higher
accuracy and higher precision normalization under condi-
tions where the performance of alternative approaches are
affected; 2) the variable selection component of NVSA can
be used to improve the performance of alternative meth-
ods; and 3) NVSA analysis generates statistically consist-
ent data whether all genes or only housekeeping genes are
used for normalization. Taken together, our data indicates
that NVSA may be a useful utility for data normalization
analysis in any experiment, and especially in experiments
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currently known or expected to be difficult to analyze such
as those containing samples from different tissues or
development stages.

Results
The NVSA methodology
Let xi, yi, i = 1, 2,... n be the measured log2 baseline and
sample array intensity at the ith gene, or probe, respec-
tively. Following the MA convention [6], we thus have

Mi = yi - xi = δi + f(Ai) + εi (1)

where δi denotes gene effect, Ai = 0.5* (xi + yi), f(Ai) is the
intensity effect and εi is random error. To estimate the
intensity and gene effect levels independently, we first
fixed f(Ai) by segmentation or binning. To provide suffi-
cient degrees of freedom to estimate f(Ai), the data were
binned into Q fixed-width intervals by A. When the width
is sufficiently small, the Awithin an interval will be simi-
lar, thus the corresponding f(Ai) is approximately con-
stant. Then for the interval J centered at Aj, (1) is rewritten
as

Mj = δj + f(Aj) + εj (2)

where Aj ∈ J, j = 1, 2,...,m. This equation indicates that only
when the gene effect δ = 0, can the intensity effect f(Aj) be
solved independently from the gene effect. Three classes
of gene effect may exist: no gene-regulation (δ = 0), up-
regulation (δ > 0), and down-regulation (δ < 0). There-
fore, the density distribution of {Mj} may be skewed, as
well as multimodal, depending on the relative propor-
tions of these three gene effect classes.

Let rj = Mj, f(r) be the density of r with k numbers of dis-
tinct classes or modes, k >= 1. We approximate f(r) via
one-dimensional Gaussian kernel density estimation
[16]:

where K(u) is a Gaussian with zero mean and standard
deviation of 1 and h is the fixed width smoothing window
(h = 0.125, half of the bin width). The boundaries of each
mode (class) are identified via gradient search:

where grad( (r)) ≥ 0.001. The expected value of each

class ∏i, i = 1, 2,...,k is computed by averaging the top 80%

of the peak area of the class to prevent convolution
between classes. We are primarily interested in identifying

the invariant class ∏iv, which is enabled by following the

two priors: 1) predominance rule: The area in ∏iv is the
largest when invariant genes are dominant, and 2) inten-
sity effect f (A) is slowly changing [17] along A, as does the

expected value of the invariant class (E(∏iv)). Let ∏L be the
class with largest area, wL be the ratio of the largest class to
the total area in all classes within an interval. We compute
the central moving standard deviation (MSD) on wL data

and moving coefficient of variation (MCV) on E(∏L) data,
respectively, across intervals with window size of 3. The
initial seed invariant classes were selected once relative
homogeneity in predominant classes occurs (MSD <= 0.2
and MCV <= 0.2). The invariant classes for the remaining
intervals are determined sequentially from the seed to the
left boundary and then from the seed to the right, employ-
ing the slow-changing rule:

arg min {|f'(x)|} ∩ arg min {|f"(x)|} (6)

where ,

, f"(xi) = f'(xi)

- f'(x-1), -1, -2 denote the preceding two intervals, respec-

tively. If none of the classes in the interval to be evaluated
meets the condition specified in equation [6], the interval
will be skipped. The intra-bin intensity effect is then

derived by f(AJ) = E(∏iv), according to [2]. To compute the

fitted intensity effects { (Ai)}, Q numbers of bin-condi-

tioned intensity effects {f(AJ }) are smoothed on intensi-

ties {AJ} by a weighted smoothing spline [18], where

weight is defined as:

where n is the logarithm to the base 2 of the number of

data points in an interval, τa, τb are tolerance factors of a

smoothing spline, and τa ≤ τb (default values τa = 0.01 and

τb = 0.05). The final normalized log2 intensity is given by,

. The NVSA was written in MatLab [19] and

is available free of charge for academic purposes upon
request.

Normalization accuracy and precision under conditions of 
gene effects
To evaluate whether our NVSA method would be suffi-
ciently robust against the impact of gene effects, we con-

ˆ( ; ) ( )f r h
mh

k r r j

J

M

= −
=

∑1

1

(3)

K u e u( ) /= −1
2

2 2

p
(4)

grad grad f r( ( ( ))) ≥ 1 (5)

f̂

′ = ∏ − ∏ −f x E Ei i
iv( ) ( ) ( )1

′ = × ∏ − ∏ + ′− − − −f x E E f xiv iv( ) . (( ( ) ( ) ( ))1 1 2 20 5

f̂

w n
n n

n n a b b( ) min
max min

( )= −
−

× − +t t t (7)

′ = −y y f Ai i i
ˆ( )
Page 3 of 11
(page number not for citation purposes)



BMC Bioinformatics 2008, 9:505 http://www.biomedcentral.com/1471-2105/9/505
structed simulated data based on a simple multiplicative
error model with the ground truth data generated from
real microarray data (Methods). Three intensity effects,
three gene regulation modes, and 12 various percentages
of gene effects are simulated alone or in combinations.
Data series labeled D1, D1.25, and Dnl represent linear
intensity effects of 1 and 1.25, respectively, and nl denotes
nonlinear intensity effects (Fig. 1A). Gene regulation
modes are up-regulation only, down-regulation only, and
mixed up- and down-regulation (1:1 ratio) known as a
globally symmetric gene effect.

Six alternative normalization procedures, quantile, low-
ess, robust lowess, invariant set, cross-correlation (Xcorr),
and global median were chosen to be compared with
NVSA due to their availability. Cross-correlation is a novel
peak-matching algorithm to address unbalanced shifts in
transcripts levels [20]. All datasets were normalized to the
ground truth data under default conditions. Figure 1B, C
shows a typical scatter plot of intensities before and after
NVSA normalization, illustrating that nonlinearity is
removed by NVSA normalization.

We then used accuracy and precision measurements to
quantify the performance of each normalization proce-
dure. Accuracy here refers to closeness to the true value,
computed as the mean relative error in the estimated nor-
malization factors: average of |(estimated – true)/true|. A
highly accurate method incurs low error. The precision
benchmark, an indication of reproducibility, refers to how
near the values of repeated measurements are to each

other. The array-averaged Coefficient of Variation (CV)
was used to evaluate the precision between the normal-
ized Dnl and their gene effect and regulation mode
matched D1 array intensities (e.g., Dnl-10% up vs. D1-
10% up regulation).

The accuracy results show that all nonlinear normaliza-
tion procedures perform equally well in conditions where
there is a zero percentage of DEG (Fig. 2A). However, the
accuracy of the quantile, lowess and invariant set are pro-
gressively affected by an increase in the percentage of gene
effects. Robust lowess, on the other hand, appears to pro-
vide protection against gene effects ranging up to 15%.
Among alternative methods, cross-correlation is most
robust, exhibiting a similar low error rate until 30% gene
effects. Among all methods evaluated, the errors in the
NVSA-normalized data were found to be the lowest and
do not appear to be significantly affected up to 50% DEG.
This indicates that under gene effect conditions, NVSA is
the most accurate method and is the most resistant to the
presence of DEG. The accuracy results with the linear
D1.25 dataset also show similar pattern [See Figure S1 of
additional file 1], indicating that the performance differ-
ence in normalization is not due to the ability to remove
the data nonlinearity itself, but owing to each method's
robustness against gene effects.

Consistent with the differences in the data modeling strat-
egies, the invariant set and robust lowess approaches are
more robust against gene effects when compared to quan-
tile and lowess. The improved accuracy in NVSA over the

Removal of nonlinear intensity effects by NVSAFigure 1
Removal of nonlinear intensity effects by NVSA. (A) Simulated scaling factor as a function of intensity in the constructed 
simulation data series D1 (blue), D1.25 (green), and Dnl (red). Gene and random effects are not introduced so that the scaling 
factor line can be revealed. The log2 true intensities (x-axis) and the corresponding log2 (true intensities × scaling factors) are 
plotted. (B-C) Typical intensity scatter plots illustrating the nonlinearity before normalization (B) and removal of nonlinearity 
after (C) NVSA normalization. D1_g0 data (x-axis) is constructed using a linear scaling factor of 1 (blue in A) and zero gene 
effects plus random effects. Dnl_g10ud (y-axis) is simulated with the nonlinear scaling factors shown in A (red), 5% up-regulated 
plus 5% down- regulated genes (a total of 10% gene effects) in addition to random effects. Each blue dot represents a feature 
on the simulated microarray. The red line is 45-degree reference line.
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quantile and lowess is statistically significant under all 33
non-zero gene effect conditions (one-tailed paired Stu-
dent's t-test P-value < 0.001), Likewise, the larger normal-
ization errors in invariant set, robust loess, and cross-
correlation methods than the errors in NVSA are statisti-
cally significant under 19, 10, and 9 out of a total of 33
non-zero gene effects conditions, respectively.

The precision of the normalization was measured by the
array-averaged Coefficient of Variation (CV) between the
normalized Dnl and their gene-effect matched D1 array
intensities (e.g., Dnl-10% up vs. D1-10% up). The results
(Fig. 2B) show a similar pattern to the accuracy assess-
ment: 1) all six nonlinear normalization approaches per-
form equally well under zero gene effects, 2) The precision
of NVSA normalization does not appear to be negatively
affected by gene effects, but the precision of quantile, and
lowess methods worsens when the gene effect increases,
and 3) the cross-correlation, invariant set, and robust low-
ess approaches generally perform better than quantile and

lowess under nonzero gene effect conditions. Taken
together, our studies indicate that under our test condi-
tions, NVSA normalization is of high-accuracy and high-
precision regardless of the extent of the gene effects.

NVSA improves the robustness of alternative methods 
against gene effects
We postulate that the key difference in these normaliza-
tion methods lies in the effectiveness of the method to dis-
tinguish invariant genes from the ones that have altered
expression. Therefore, NVSA's unique invariant gene
selection approach may be useful for improving the
robustness of alternative methods.

Using the NVSA method, we filtered out the genes whose
log2 expression ratios (LER) are outside of the invariant
gene modes (named variant genes). The percentage of
genes that have been filtered out correlates well with the
percentage of gene effects (Fig. 3A). Normalization by
lowess, quantile, and cross-correlation on the remaining
data are subsequently carried out under the same default
conditions as used previously. It should be noted that the
NVSA filtering plus lowess analysis is equivalent to replac-
ing the rank invariant step of the invariant set method
with the NVSA variable selection procedure. Thus, nor-
malization by the curve-fitting component (lowess proce-
dure) of the invariant set method was not necessary and
was not performed. To prevent errors caused by extrapola-
tion, only the normalization errors on the invariant genes
were estimated. As expected, the accuracy of normaliza-
tion has been substantially improved with the introduc-
tion of NVSA analysis prior to data normalization (Fig.
3B), as compared to the one without, for all of the alter-
native methods tested. In most cases, NVSA-assisted alter-
native methods perform as well as the full NVSA
application. The results indicate that the performance gain
observed in Figure 2 is largely due to the variable selection
step of NVSA, and NVSA is most effective for identifying a
set of invariant genes that can be used to produce an accu-
rate normalization procedure.

Gene effects result in skewed distributions
Normalization methods assuming symmetric gene effects
are expected to be sensitive to skewed LER distributions, a
condition that can occur when there is an over abundance
of up- or down-regulated genes within a small range of
intensities in a dataset. Using the simulation data, we
measured the extent of the skewed LER distribution
within each bin according to the AG method in the Dnl
data series [21]. The studies reveal that the percentage of
genes in skewed distributions increases concurrently with
an increased percentage of gene effects (Fig. 4A). Studies
of actual local DEG percentages reveal uneven distribu-
tion of up- and down-regulated genes locally, when these
two populations are balanced globally (Fig. 4B, C). Thus,

Comparison of normalization accuracy and precision using seven different analytical methodsFigure 2
Comparison of normalization accuracy and precision 
using seven different analytical methods. (A) Mean rela-
tive error in normalization (scaling) factors determined by 
the seven different normalization methods using Dnl dataset. 
The relative error for each feature of the microarray is 
defined as |(estimated – truth)/truth|, where the mean rela-
tive error is derived by averaging all features in an array. 
Errors that are greater than 50% are not shown. (B) Coeffi-
cient of variation (CV) between D1 and gene-effect matched 
normalized Dnl data. D1 and Dnl are defined in Fig. 1. The x-
axis in (A-B) corresponds to the total percentage of gene 
effects (shown as DEG) in a microarray, and up, down, and 
up/down indicates these effects as up-, down-, and an equal 
mixture of both, respectively. Xcorr: cross-correlation. 
Median: global median normalization.
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both globally- symmetric and asymmetric gene effects
cause a local skewing of the LER distributions and these
observations are consistent with our performance assess-
ment results.

Agreement of normalization regardless of gene effects
Normalization methods that are robust to gene effects are
expected to output similar normalization curves from
data including or excluding genes containing gene effects.
We therefore use this criterion to compare the perform-
ance of normalization methods on experimental microar-
rays where the true normalization factors are unknown
but the genes that are differentially expressed are known.
The Golden Spike data set, developed by Choe et al. [14],
is unique in that the relative concentrations of all 3,866
gene transcripts between control (C) and spike-in (S)
samples are defined: 2,535 have identical concentrations
between S and C samples; 1,331 have increased concen-
tration in S over C samples at a fold-change level ranging
from 1.2 ~ 4 folds. Thus, the dataset has approximately
34% gene effects between C and S samples yet 0% gene
effects between replicate arrays. This allows us to study the
agreement of normalization under the conditions of large

gene effects versus no gene effects, as well as between the
analyses from all genes versus non-DEG only.

Figure 5 illustrates typical agreement of normalization
curves computed from all genes (red) and non-DEG
(black) when C and S chips (non-replicate; Fig. 5A) or C
and C chips (replicate; Fig. 5B) are paired. The red and
black lines overlap over the entire intensity range in all
methods with the replicate array pair, indicating that nor-
malized intensities from all genes agree with the ones
computed from non-DEG genes under 0% gene effects
(Fig. 5B). However, in the non-replicate array pair, all
methods except NVSA and cross-correlation display sig-
nificant divergence between black and red colored nor-
malization curves, and the divergence appears rising with
the increasing amounts of DEG (Fig. 5A). We then
employed the two-sample Kolmogorov-Smirnov test sta-
tistic to test the null hypothesis that the two sets of nor-
malized intensities (or two normalization curves) were
drawn from the same population (Fig. 6). At a 1% signif-
icance level (p < 0.01), the null hypothesis is accepted for
all NVSA analyses under conditions of both replicate and
non-replicate array pairs, indicating that the normalized
intensities based on all genes by NVSA are statistically

Use of NVSA for improving normalization accuracyFigure 3
Use of NVSA for improving normalization accuracy. 
The NVSA variable selection function (denoted as nv) was 
used prior to quantile, lowess, or xcorr normalization analy-
sis of Dnl data series. (A) The percentage of variant genes fil-
tered out by the NVSA variable selection procedure 
increases along with the percentage of gene effects. (B) Nor-
malization accuracy measured by the mean relative error 
versus the total percentage of gene effects represented by 
DEG. Up, down, up/down indicate the gene effects as up-, 
down-, and an equal mixture of both, respectively. Errors 
that are greater than 20% are not shown to allow a better 
view of details in the low error region.
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Positive correlation between the percentages of skewed LER distribution and gene effectsFigure 4
Positive correlation between the percentages of 
skewed LER distribution and gene effects. (A) Percent-
age of genes in skewed local LER distributions along with 
gene effects for the Dnl data series. The x-axis is the same as 
in Figure 2. The error bar represents standard deviation 
computed from 3 replicates. (B) Actual local DEG percentage 
at each intensity interval. Data used is Dnl simulated with 
50% gene effects with an equal proportion of up- and down- 
regulated genes globally. Black arrow points to the intensity 
interval used in C. Intensity refers to geometric mean inten-
sity before normalization, which is known as A of a MA plot. 
(C) Probability density distribution of LER in the interval high-
lighted in B. LER: logarithmic expression ratio.
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indistinguishable from the ones based on known invari-
ant genes on all tested conditions. However, quantile,
lowess, invariant set, and robust lowess methods display
statistically significant divergence in two populations of

normalized intensities on all non-replicate array pairs
(Fig. 6), yet no significant divergence on replicate pairs. In
data analyzed by the cross-correlation method, 11 out of
15 non-replicate array pairs display statistically significant

Agreement of normalization between all data and a subset of dataFigure 5
Agreement of normalization between all data and a subset of data. Normalizations were carried out from perfect-
match probes of all probes (blue) or a subset of probes (green) that are spiked in to be unaltered at transcript levels between 
C and S samples of Golden Spike data. Fitted normalization curves over all (red) or the subset (black) data are shown in MA 
plots of non-replicate arrays (A) and replicate arrays (B). Microarrays used in A are C2 as baseline array vs. S2. Data used in B 
are C2 as baseline array vs. C1. There are approximately 34% gene effects in non-replicate arrays. C1, C2: C chip replicate 1, 
2, respectively. S2: S chip replicate 2. It should be noted that the two normalization curves generated by Xcorr in A are not sig-
nificantly different in this non-replicate array pair as defined in Fig. 6.
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divergence, this agrees with our previous observation with
simulation data that the method generates substantial
error rates when gene effects are greater than 30%.

Therefore under our test conditions, NVSA is most robust
for normalizing experimental microarrays containing sig-
nificantly large and asymmetric gene effects. The perform-
ance characteristics associated with NVSA could be
important since it removes the requirement for a priori
knowledge of or assumptions about housekeeping genes
in experiments involving multiple tissues or stages of
development in which it is reasonable to assume the exist-
ence of a large number of DEG.

Discussion
In the current study, we describe a novel two-dimensional
nonparametric normalization method to address the
problem of significant gene effects in Affymetrix microar-
rays. This problem is significant in experiments involving
multiple tissues or developmental stages since knowledge
of and assumptions about gene expression, including
those of housekeeping genes are tenuous. We demon-
strate the high performance characteristics of our new

analysis method in dealing with the influence of gene
effects during normalization.

We show that the NVSA approach maintains high accu-
racy and high precision during the normalization of data
containing 0 to 50% simulated gene effects. Normaliza-
tion by alternative approaches, however, becomes increas-
ingly compromised when the extent of gene effects
increases. The analysis on experimental microarrays con-
firms that NVSA performs better than alternatives when
gene effects are large. These performance characteristics
are consistent with the difference in model assumptions
and method approaches. NVSA is nonparametric for both
the intensity and LER dimensions, as opposed to the
quantile, lowess, and invariant set methods that are non-
parametric in one dimension (intensity). Nonparametric
versus parametric assumptions of LER distribution is the
key distinction between NVSA and the available alterna-
tives in model assumptions. Nonparametric assumptions
of LER distribution means that the algorithm does not
assume the symmetry, modality of LER distributions.
When LER is symmetrically distributed, all methods are
expected to perform well and our results confirm this.
When LER is asymmetrically distributed, nonparametric
treatment of LER distribution for identifying the center of
invariant genes is expected to be superior to parametric
methods, since NVSA characterizes LER distributions
rather than assuming them. The variable approximation
process of NVSA is functionally similar to other nonlinear
normalization methods including lowess. However, the
dimensions of the input data (# bins + 1) are dramatically
reduced (usually < 100 data points for NVSA compared
with all array data points in lowess), resulting in a faster
implementation (an average of 12, 25, 300, and 600- fold
faster than invariant set, lowess, robust lowess, and cross-
correlation methods, respectively).

Although both NVSA and the invariant set methods spe-
cifically aim to identify invariant genes, the variable selec-
tion process of NVSA takes a more sophisticated approach
to achieve two aims: 1) to segregate gene and intensity
effects in mutually independent ways using a two-dimen-
sional nonparametric approach, and 2) to identify invari-
ant genes even when they are not in the predominant
classes using a rule-based global optimization approach.
Our study demonstrates that NVSA provides superior per-
formance to the invariant set method under many com-
mon and important experimental conditions.

Cross-correlation is a newly developed normalization to
address the issue of asymmetric gene effects. The method
accumulates significant amounts normalization error
starting from 30% gene effects in simulation data and pro-
duces statistically significant disagreement between
results of normalization on all genes and those on only

Kolmogorov-Smirnov tests for agreement of normalization in the analysis of Golden Spike dataFigure 6
Kolmogorov-Smirnov tests for agreement of normal-
ization in the analysis of Golden Spike data. Assess-
ment of statistical difference (Kolmogorov-Smirnov tests) 
between normalized intensities computed via all-gene 
approach and normalized intensities via non-DEG genes with 
the same normalization method. All normalized intensities 
were calculated relative to a reference array. Each one of six 
arrays was chosen as a reference array. A total of 12 repli-
cate array pairs and 18 non-replicate arrays pairs could be 
formed. Blue, green, cyan, magenta, black, and red mark the 
reference array C1, C2, C3, S1, S2, and S3, respectively. Dif-
ference in two normalization curves is statistically significant 
when P value < 0.01.
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invariant genes in the majority of golden spike data con-
taining ~34% gene effects. We speculate that the cross-cor-
relation method may be dependent on an assumption
that the local invariant genes are present as a predominant
class. We have generated a MA plot for Dnl data contain-
ing 30% up-regulated genes, which shows that in four
intensity bins, invariant genes are not the predominant
classes (Fig. 7A, red dots in variant genes). Consistent with
this notion, erroneous normalization by cross-correlation
occurs in one of the regions where invariant genes are not
dominant (Fig. 7B). We have further plotted the number
of non-dominant invariant gene classes along with all
gene effects conditions (Fig. 7C). Visual comparison of
Fig. 7C to Fig. 2A suggests that the conditions where the

cross-correlation method fails are generally the conditions
where the number of non-dominant invariant classes is
greater than 3. A higher number of non-dominant invari-
ant class correlates with a larger normalization errors in
this method. These analyses results support our hypothe-
sis that the cross-correlation method requires an implicit
assumption that may be violated in simulation data sets.

Our current results confirm the hypothesis that significant
gene effects cause skewed LER distributions, the condi-
tions under which the critical assumptions made by other
approaches break down and cause the methods to pro-
duce errors. Interestingly, the percentages of genes in
skewed distributions are higher in up- than in down-regu-
lated genes. Skewed distributions have also been found in
data simulated with globally balanced gene effects. We
reason that it is the result of combinations of asymmetric
intensity distributions and boundary effects. It is known
that the intensity distribution in a typical microarray is
non-normal, with a long tail skewed to the right and
denser distribution on the left side. The magnitude of neg-
ative fold-changes is thus more likely to be subdued by a
scanner's low detection limit than the magnitude of posi-
tive fold-changes to be tempered by the upper detection
limit; Positive fold-changes are thus likely to increase the
percentage of local DEG more than negative fold-changes
do due to the asymmetric intensity distribution.

When the extent of gene effects is locally greater than
50%, invariant genes are not in the largest peak of local
LER distribution. This may cause NVSA to mistake the var-
iant genes as invariants, which may influence the accuracy
of seed invariant class selection. When this does occur,
NVSA is expected to break and incur large errors. To esti-
mate exactly when the performance of NVSA breaks, we
have generated Dnl or D1.25 data containing 55 to 95%
gene effects in a 5% increment, and then 96 to 100 per-
cent in a 1% increment. For Dnl data, the NVSA normali-
zation has maintained similar small error rates as seen in
Fig. 2 and then start to break when data contains 100%
up-, 90% down-, and 85% up/down-regulated genes,
respectively [See Figure S2 of additional file 1]. Corre-
spondingly, large normalization errors start to be
observed in NVSA-normalized D1.25 data containing
95% up-, 75% down-, and 80% up/down-regulated
genes, respectively. In all theses cases, the performance
break-down is due to the miss-selection of seed invariant
classes. This error may be corrected by manually typing
the correct corresponding intensity interval of the seed
invariant class if the class is visually definable. Another
factor that may influence NVSA performance is the choice
of bin width, which can cause overfitting or underfitting
of the data. However, some local overfitting or underfit-
ting errors can be mitigated by the following spline
smoothing procedure. We set our default bin width at

Effect of non-dominant invariant genes on data normalizationFigure 7
Effect of non-dominant invariant genes on data nor-
malization. (A) MA plot of baseline array versus Dnl data 
containing 30% up-regulated genes. Each blue point repre-
sents a feature in a microarray. Red and black dots mark the 
expected values of the 1st and 2nd largest peaks of LER density 
distribution for each interval by NVSA method, respectively. 
Green labels each NVSA-fitted normalization value. Black 
arrow points to the center interval (red circle) of the seed 
invariant in NVSA analysis. (B) Fitted normalization values by 
cross-correlation method on the same microarray data 
(Green). (C) Number of non-dominant invariant gene classes 
that occur under each gene effect condition of Dnl data set. 
Invariant gene class is defined as non-dominant when the 
class is not the largest peak of LER distribution in NVSA anal-
ysis. It is noteworthy that the two or three non-dominant 
invariant gene classes shown in data containing 2.5 – 50% 
down- or 2.5 – 40% up/down- regulated genes are all located 
in the first two or three intensity intervals where normaliza-
tion errors are not 100% included in the calculation due to 
the exclusion of boundary data points. Thus in these data, the 
effect of non-dominant invariant genes may not be reflected 
in normalization errors.
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0.25. Our limited study indicates that small variations in
the choice of bin-width do not affect NVSA performance
as long as there are sufficient numbers of data points in
the bin. When the whole array data points are much
smaller than a typical Affymetrix array, a coarse binning
may be more appropriate. As with most normalization
methods, the performance of NVSA may also be affected
by the accuracy of background subtraction. For example,
nonzero intensities from large amounts of empty cells
may convolute the distribution of invariant genes and
thus interfere with the estimation of intensity effects. In
addition, various forms of experimental noise may influ-
ence the choice and performance of normalization meth-
ods. For any given experimental microarray, it is beneficial
to validate with statistical tests [22] whether a normaliza-
tion method is needed and which normalization method
is most suitable.

Conclusion
Our analyses revealed that a high percentage of gene
effects, whether they are globally balanced or not, causes
local asymmetric distributions of LER. The skewed LER
distributions increasingly interfere with the performances
of several normalization methods that are widely used
today. We presented a novel normalization method NVSA
that implements a unique integrated approach for select-
ing invariant genes. The accuracy in invariant gene selec-
tion was achieved using a two-dimensional
nonparametric approach for peak identification and a
rule-based global optimization method for peak selec-
tion. We validated the high performance of the new
method on simulated and experimental data sets contain-
ing up to 50% gene effects. Our analysis results indicated
that the new method may be a useful tool for data normal-
ization analysis in any experiment, and especially in
experiments containing samples from different tissues or
development stages in which it is reasonable to assume
the existence of a high percentage of gene effects.

Methods
Construction of simulated data
Ground truth data was constructed where each intensity
value is randomly obtained from the perfect-match
probes of Affymetrix U95 Latin square dataset [23]. The
resulting data has similar intensity distribution to the
original and contain a total of 50,504 probes. Gene effects
were introduced into the ground truth data by reducing or
increasing the values of randomly chosen data points by
2, 3, or 4 folds (these fold changes are present at 1:2:1
ratios) at a specified percentage (0 – 50%). The final sim-
ulated dataset (yi) were generated following a multiplica-
tive error model yi = siui + εi, where ui is the simulated true
expression value for ith gene and si is the scaling factor. The
error εi is normally distributed with a mean of zero and

standard deviation of csiui, where c = 0.1. Each percentage
has three simulated replicates. Data are floored to the
minimal true intensity, and ceiled to the largest value of
unsigned16-bit data.

Golden Spike data
The 6-chip Golden Spike dataset consists of 3 replicate
control chips and 3 replicate sample chips generated by
Choe et al. [14]. Briefly, cDNA clones corresponding to
3,866 unique probe sets were mixed to the extent that the
relative concentration of 2,535 transcripts are constant
between control and samples, whereas the rest of clones
have increased concentration in samples, causing ~34%
gene effects. Most of the increases in concentration are <=
1.5 fold.

Microarray data analysis
All analyses were conducted in MatLab [19] under
default settings. Cross-correlation version 2 was gener-
ously provided by the authors [20]. All other alternative
normalization methods are supplied by the bioinformat-
ics toolbox in MatLab R2008a. Normalization were per-
formed on all perfect-match probes when applicable,
except in Golden Spike data, the intensity values from
empty spots (10,144 probe sets) were all excluded from
normalization analysis. This is due to the observation
that large amounts of empty spots contain significant
intensities after background subtraction, which inter-
feres with all normalization methods under current
study. In the analysis of Golden Spike data, background
subtraction was performed using maximum likelihood
procedure in MatLab [19] prior to normalization. To
avoid introducing bias, data points that are floored or
ceiled during simulation data generation are excluded
from the calculation of normalization errors, coefficient
of variation, and the percentages of genes in skewed LER
distributions.
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