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Genome structural variation includes segmental duplications, deletions, and other rearrangements, and array-based
comparative genomic hybridization (array-CGH) is a popular technology for determining this. Drawing relevant
conclusions from array-CGH requires computational methods for partitioning the chromosome into segments of
elevated, reduced, or unchanged copy number. Several approaches have been described, most of which attempt to
explicitly model the underlying distribution of data based on particular assumptions. Often, they optimize likelihood
functions for estimating model parameters, by expectation maximization or related approaches; however, this
requires good parameter initialization through prespecifying the number of segments. Moreover, convergence is
difficult to achieve, since many parameters are required to characterize an experiment. To overcome these
limitations, we propose a nonparametric method without a global criterion to be optimized. Our method involves
mean-shift-based (MSB) procedures; it considers the observed array-CGH signal as sampling from a probability-
density function, uses a kernel-based approach to estimate local gradients for this function, and iteratively follows
them to determine local modes of the signal. Overall, our method achieves robust discontinuity-preserving
smoothing, thus accurately segmenting chromosomes into regions of duplication and deletion. It does not require the
number of segments as input, nor does its convergence depend on this. We successfully applied our method to both
simulated data and array-CGH experiments on glioblastoma and adenocarcinoma. We show that it performs at least
as well as, and often better than, 10 previously published algorithms. Finally, we show that our approach can be
extended to segmenting the signal resulting from the depth-of-coverage of mapped reads from next-generation
sequencing.

Array-based comparative genomic hybridization (array-CGH) ex-
periments (Solinas-Toldo et al. 1997; Pinkel et al. 1998) are used
to detect and map chromosomal imbalances, which are common
phenomena in cancers and other diseases. This technology has
been applied successfully to study copy-number variants (CNVs)
(Iafrate et al. 2004; Sebat et al. 2004), i.e., submicroscopic dele-
tions and duplications, which commonly occur in the “normal”
human population (Iafrate et al. 2004; Sebat et al. 2004; Tuzun et
al. 2005). CNVs or microscopically visible larger amplifications
and deletions may affect the transcription or, in some instances,
the structure of genes in cis or in trans. As such, they may be
responsible for phenotypic variation. In more extreme cases,
these variations may cause cellular processes to malfunction,
leading to diseases such as genetic disorders and cancer. For ex-
ample, some particular types of observed genomic derangement
reflect an underlying failure in the maintenance of genomic sta-
bility during the development of solid tumors. It is important to
locate the chromosomal events that are responsible for human
phenotypic variation and the pathogenesis of many diseases
(Bredel et al. 2005; Pinkel and Albertson 2005).

Array CGH has become a powerful high-throughput tech-

nique. For instance, CGH arrays using bacterial artificial chromo-
some (BAC) clones have been broadly used. Nowadays, their reso-
lution is in the order of 100 kb (Redon et al. 2006; Coe et al.
2007). cDNA and oligonucleotide arrays are also popular for CGH
(Pollack et al. 1999; Brennan et al. 2004). The short probes on
these arrays present a higher resolution of 25–100 kb (Coe et al.
2007). Recently, new technologies using tiling arrays were intro-
duced for an even finer resolution. These techniques allow for
the detection of microamplifications and deletions (Lucito et al.
2003; Ishkanian et al. 2004). In particular, high-resolution CGH
(HR-CGH) has been developed (Selzer et al. 2005; Urban et al.
2006; Korbel et al. 2007a) and has been shown to accurately
detect the presence and extent of CNV at resolutions up to 200
bp, in turn making it possible to sequence CNV breakpoints (Ur-
ban et al. 2006; Korbel et al. 2007a). The rapid development of
the array-CGH technology challenges bioinformatics researchers
to come up with methods for the accurate identification of chro-
mosomal segments.

Array-CGH data consist of the log ratios of normalized fluo-
rescence intensities (array readouts) from disease vs. control
samples. The data are indexed by the physical location of the
probes on the chromosome. The regions of interest are the con-
centrated high or low log ratios of intensities. These regions can
be very small, which makes the identification of biologically rel-
evant events challenging.
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A variety of computational methods have been proposed for
analyzing array-CGH data. Initially, a heuristic method was in-
troduced by smoothing the ratio profiles using a moving average,
and a threshold was applied to indicate the presence of amplifi-
cation or deletion events (Pollack et al. 1999). Hughes et al.
(2000) used a simpler error-weighted mean approach for ge-
nome-wide prediction of aneuploidy. Their heuristic scanning
method identifies at least four contiguous overexpressed or un-
derexpressed genes as potentially amplified or deleted segments.

Recently, following these proof-of-principle type ap-
proaches, more sophisticated algorithms for scoring CGH arrays
have been developed. Many of these approaches are model-
based; that is, they assume that there is a sequence of segments
(amplifications or deletions) in the genome, which is itself a
function of several prespecified parameters (e.g., the number and
locations of breakpoints, and the mean and variance of each
segment’s distribution). Typically, maximization of a likelihood
function is used to estimate model parameters from the data.
Different model-based approaches use different distribution as-
sumptions and/or different definitions of the penalty term for
the likelihood function. For instance, Hodgson et al. (2001) ini-
tially proposed a simple maximum likelihood method based on
the assumption of a mixture of three Gaussian distributions, with
each Gaussian referring to gain, loss, and normal regions, respec-
tively.

More recently, Hupe et al. (2004) introduced a Gaussian
model-based approach called GLAD, which uses a more complex
likelihood function with weights determined adaptively to solve
the estimation problem. Their estimation approach is coupled
with an adaptive weights smoothing procedure. Furthermore, in
another study, a genetic search algorithm was used to maximize
the likelihood function (Jong et al. 2004), again using a penalty
term that contains the number of breakpoints. Picard et al.
(2005) used a penalized likelihood criterion to estimate break-
points and to avoid the underestimation of the number of seg-
ments. In this method, known as CGHseg, the distribution as-
sumption may have an important consequence in the model. A
homogeneous variance assumption, among different regions,
tends to result in a more segmented profile for maintaining the
variance homogeneity between segments. The results may be
more precise but can be more difficult to interpret (Picard et al.
2005). Yet another method called ChARM uses an edge filter to
estimate the rough location of edges as an initial step. These
edges are then located more accurately by an expectation maxi-
mization (EM) algorithm (Myers et al. 2004).

Concurrently, there are other model-based approaches us-
ing hidden Markov models (HMMs). These approaches assume
that the underlying copy numbers are the hidden states with
transition probabilities (Snijders et al. 2003; Fridlyand et al. 2004;
Sebat et al. 2004; Korbel et al. 2007b; Stjernqvist et al. 2007). For
instance, aCGH is a popular HMM-based package, which fits an
unsupervised HMM to the data (Fridlyand et al. 2004): The state
emission distributions are Gaussian with state-specific means
and variances. K-means partitioning is used to estimate the
means, and the transition probabilities are set proportional to
copy number distance between pairs of states for initialization.
Parameter optimization is performed with the Baum-Welch al-
gorithm (an EM-like algorithm).

Model-based approaches usually employ a maximum likeli-
hood estimate function for optimization, whereas global optimi-
zation is known to be hard to reach (Wand and Jones 1995;
Comaniciu 2002). These approaches usually have to impose a

distribution assumption. Moreover, many of these methods or
their formulations are based on the EM algorithm (Snijders et al.
2003; Fridlyand et al. 2004; Myers et al. 2004; Picard et al. 2005;
Stjernqvist et al. 2007), which has the some inherent drawbacks.
First, it usually assumes a mixture of normal structures, which
may not hold true under certain conditions. Furthermore, it re-
quires the specification of the number of segments as an initial-
ization step. Finally, its correct convergence becomes difficult
when the number of clusters or states is large.

Here, we propose a nonparametric mean-shift-based
method (MSB) to overcome these limitations. Our data-driven
approach does not employ a global criterion that should be op-
timized, and it is not affected by the number of segments. It does
not impose a distribution assumption in finding structures in the
data. It effectively preserves the discontinuity and abrupt
changes (breakpoints) through kernel density estimation and the
mean-shift procedure, in which local neighborhoods are adapted
to the local smoothness of the intensities measured by the ob-
served data. The procedure can therefore remove the noise cor-
rectly in homogeneous regions of the chromosome and preserve
discontinuities at the same time. We show the capabilities of this
method to detect the segments of changed copy numbers in ar-
ray-CGH data by applying it to both simulated data and pub-
lished experimental data sets.

There are several other types of methods for CGH analysis.
We compare our method to these as well as to the above model-
based approaches, showing the advantages of our method. In
particular, a common approach applied is based on locally
weighted regression and smoothing of scatterplots (lowess)
(Beheshti et al. 2003). Wavelet smoothing has been introduced,
handling abrupt changes in the CGH profile (Hsu et al. 2005).
Quantile smoothing (called quantreg) creates sharper boundaries
between segments based on the minimization of errors in L1

norm (the sum of the absolute errors), rather than L2 norm (the
sum of the squared boundary) (Eilers and de Menezes 2005).
Olshen and Venkatraman proposed the circular binary segmen-
tation (CBS) method, which recursively uses the maximum of the
likelihood ratio statistics to detect narrower segments of aberra-
tions (Olshen and Venkatraman 2002, 2004; Venkatraman and
Olshen 2007). In addition, Wang et al. (2005) propose a hierar-
chical clustering-style tree to “cluster along chromosomes”
(CLAC) so as to identify regions of interest. More recently, Klijn
et al. (2008) identified cancer genes using a statistical framework
for multiexperiment analysis of nondiscretized array-CGH data.

Finally, we show that because of the nonparametric and
model-free nature of MSB, it can be readily be applied to a related
problem of array-CGH—inferring structural variation (SVs) from
the depth of coverage of mapped short reads coming from next-
generation sequencing. We provide a brief proof-of-concept case
study demonstrating this.

Methods

Overview

Our method to analyze array-CGH data is based on kernel density
estimation and mean-shift theory. Array-CGH data are intensity
measurements across the chromosome; these intensity measure-
ments detected fluctuate around certain genomic copy levels due
to noise and other factors. Model-based approaches usually make
some probability distribution assumptions, which may not be
true in certain circumstances, in order to infer the distribution. In
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statistics, kernel density estimation (also called “Parzen window
method”) is a nonparametric way of estimating the probability
density function (p.d.f.) (Wand and Jones 1995).

The density maxima in the distribution of intensities are the
modes of the p.d.f., where the gradient of the estimated p.d.f. are
zeros. The mean-shift method presents an elegant way to locate
these density maxima without having to estimate the density
directly (Comaniciu 2002). The mean-shift vector always points
in the direction of maximum increase in the density. The mean-
shift process is an iterative procedure that shifts each data point
to these density maxima.

This nonparametric technique does not require prior knowl-
edge of the number of segments or assumptions about probabil-
ity distributions. The mean-shift approach performs the discon-
tinuity-preserving smoothing on the array-CGH observation data
through kernel density estimation and the mean-shift computa-
tion. This procedure can remove the noise effectively in homo-
geneous regions of the chromosome and preserve discontinuities
at the same time.

Kernel density estimation and mean shift

The mathematical derivation of kernel density estimation theory
was described by Wand and Jones (1995) and Comaniciu (2002).
In pattern recognition, each sample is represented as a point in
d-dimensional space, called feature space. Its dimension is deter-
mined by the number of parameters (such as intensity and coor-
dinate loci on the genome for array-CGH data) to describe the
sample points. The feature space can be regarded containing an
empirical p.d.f. of the represented parameters. Given n data
points xi (i = 1, . . . , n) in the d-dimensional space Rd, the mul-
tivariate kernel density estimator (f̂(x)) at point x is computed
with kernel K(x) and a symmetric positive definite d � d band-
width matrix H

f̂�x� =
1
n �

i=1

n

KH�x − xi�, (1)

where

KH�x� = |H|−1�2K�H−1�2x�. (2)

In practice, the bandwidth matrix is often made either pro-
portional to the identity matrix H = h2I or diagonal H = diag
[h1

2, . . . , hd
2]. For example, if we employ the former case, which

provides one bandwidth parameter h > 0, we get

f̂�x� =
1

nhd �
i=1

n

K�x − xi

h �. (3)

The kernel K(x) is a bounded function that must satisfy the fol-
lowing conditions (Wand and Jones 1995):

sup
x ∈ Rd

|K�x�| < �, �
Rd

|K�x�|dx < �

lim
�x� − >�

||x||K�x� = 0, �
Rd

K�x�dx = 1.

The radially symmetric kernel is a special case that satisfies
K(x) = ck,dk(�x�2), where k(x) is the profile of the kernel (x � 0). ck,d

(assumed strictly positive) is the normalized constant that makes
K(x) integrate to one. By introducing profile notation, the density
estimator can be rewritten as

f̂�x� =
ck,d

nhd �
i=1

n

k��x − xi

h �
2�. (4)

The first step in the analysis of the feature space with underlying
density f(x) is to find the modes of the density, which are among
the zeros of the gradient �f(x) = 0. The mean-shift method is an
elegant way to locate these zeros without having to estimate the
density (Comaniciu, 2002). By computing, using the chain rule,
the gradient of f(x) � f(x), the Formula 4 is changed to

�̂h,Kf �x� =
2ck,d

nhd+2 ��
i=1

n

g��x − xi

h �
2����

i=1

n

xi g��x − xi

h �
2�

�
i=1

n

g��x − xi

h �
2�

− x� ,

(5)

where g(x) = �k’(x) using simplified notation. The kernel G(x)
then is defined as G(x) = cg,dk(�x�2), where cg,d is the corresponding
normalization constant.

In Equation 5, the first factor ∑n
i=1g(�(x � xi)/h�2) is assumed

to be a positive number. This condition is easy to satisfy for all
the profiles in practice. The second factor in Equation 5 is called
the mean shift, which is the difference between the weighted
mean (using the kernel G for weight) and the center of the kernel x.

mh,G�x� =
�
i=1

n

xi g��x − xi

h �
2�

�
i=1

n

g��x − xi

h �
2�

− x (6)

It has been proven that the mean-shift vector at location x com-
puted with kernel G is proportional to the normalized density
gradient estimate obtained by kernel K (Comaniciu 2002). The
mean-shift vector always points toward the direction of the
maximal increase in the density. The mean-shift procedure is
carried out by successive steps between the computation of the
mean-shift vector mh,G(x) and the translation of window by
mh,G(x). It has been proven that this procedure is guaranteed to
converge at a point nearby where the estimate has a zero gradi-
ent, if the kernel K has a convex and is monotonically decreasing.

Thus, the sequence of successive locations of kernel G, de-
noted by yj (j = 1,2, . . .) for each starting point xi (y1 = xi), can be
computed as

yj+1 =
�
i=1

n

xi g��yj − xi

h �
2�

�
i=1

n

g��yj − xi

h �
2�

. (7)

Provided that the mean-shift vector always points toward the
direction of the maximal increase in density, the local mean is
shifted toward the region in which the majority of the points are
located. Consequently, the mean-shift vector can define a path
that leads to a stationary point of the estimated density, as it is
aligned with the local gradient estimate. These stationary points
are called the modes of the estimated density. The mean-
shift procedure, obtained by consecutive computation of the
mean-shift vector mh,G(yj) and translation of the window
yj+1 = yj + mh,G(yj), is guaranteed to converge to a point where
the gradient of density function is zero. The set of all locations

Wang et al.

108 Genome Research
www.genome.org



that converge to the same mode defines “the basin of attraction”
of that mode. The points that are in the same basin of attraction
are associated with the same cluster (Comaniciu 2002).

Kernels in array-CGH analysis

The multivariate kernel can be decomposed as the product of two
radially symmetric kernels. In particular, the Euclidean metric
allows a single bandwidth parameter for each domain (Co-
maniciu 2002). For example, for CGH profiles, we may use

Khs,hr
�x� =

N

hs
2hr

2k��xs

hs
�
2�k��xr

hr
�
2�, (8)

where xs refers to the spatial position of the genomic probes in
the CGH profiles (called spatial domain), xr is the log ratio of the
intensity of hybridization (called range domain or intensity do-
main), k(x)is the common profile used on both domains, hr and
hs are the employed kernel bandwidths, and N is the correspond-
ing normalization factor. Without loss of generality, we used the
normal kernel in our CGH analysis. The profile function kN(x) =
exp(�1⁄2x)(x � 0) yields the multivariate normal kernel KN(x) =

(2�)�d/2 exp(�1⁄2�x�2).

MSB-CGH method

Traditional smoothing algorithms replace the points in the cen-
ter of a window by the weighted average of the window. There-
fore, they indiscriminately blur the signals by removing not only
the noise but also the salient information. MSB smoothing, by
contrast, is based on the use of local information. It has been
proven to be a discontinuity-preserving smoothing method,
which adaptively reduces the amount of smoothing near abrupt
changes (e.g., edges) in the local structures (Comaniciu 2002).

Let xi and zi be data points in the input and filtered output,
respectively. For each point xi, assume that xi

s is the spatial-
domain position in array-CGH profiles, while xi

r is the range do-
main (log ratio of the intensity measurement in CGH experi-
ments). The mean-shift filtering process (Comaniciu 2002) is as
follows:

1. Initialize j = 1 and y1 = xi

2. Compute yj+1 = (∑n
i=1xig(�(yj � xi/h)�2)/∑n

i=1g(�(yj � xi/h)�2)) un-
til convergence, we get yc.

3. Assign zi = (xi
s, yc

r), which is the filtered data. This means that
the filtered data at the spatial location xi

s will have the range
component (or intensity domain for array-CGH) of the point
of convergence yc

r.

The kernel in the mean-shift procedure moves in the direc-
tion of maximum increase in the joint density gradient. The key
feature of the mean-shift procedure is the use of local informa-
tion, which differentiates it from traditional smoothing meth-
ods. Each point is associated with a significant mode located in
its neighborhood. The most important advantage of the mean-
shift procedure is that points are attracted to the modes (local
maxima) of the underlying density function. Therefore, it effec-
tively preserves the discontinuities and promotes the breakpoint
detection. We may straightforwardly extend the mean-shift pro-
cedure and define that the neighboring points on the chromo-
some attracted by the same mode in the intensity domain belong
to the same segment of the CGH profiles.

Intuitive illustration of mean-shift procedures

A simplified example using data generated from glioblastoma
samples from the study of Bredel et al. (2005) is illustrated in
Figure 1. For simplicity, only a very short region (59 probes) from
the glioblastoma data is shown, and the points are visualized
sparsely. Figure 1A illustrates the mean-shift process. The tri-
angles show sets of successive locations (yj) from a starting point
xi during the mean-shift iterations, starting from some exemplary
original data points. The connecting lines show the mean-shift
vectors between successive locations. Figure 1B shows the mean-
shift smoothing process; the triangles show sets of successive
locations in the intensity domain (yj

r in the second step of the
filtering process) that converge to the same mode, i.e., the basin
of attraction of that mode. The figure shows that the points on
the left side of the breakpoint boundary are attracted to the mode
at the amplitude of 4.75, while the points on the right side of the
breakpoint boundary are attracted by the mode at the amplitude
of 0.2. Particularly, the eighth and ninth points are attracted to
different respective modes in the intensity domain. Therefore,
this method preserves the discontinuity and edges between the
abrupt changes.

Bandwidth selection

The resolution of the output of mean-shift segmentation is con-
trolled by the kernel bandwidth. The analysis of the data set that
exhibits multiscale patterns often requires kernel density estima-
tion technique with locally adaptive bandwidth. We adopt a
data-driven bandwidth selection algorithm. Its details were ex-
plained by Comaniciu (2003). Briefly, the fixed bandwidth
mean-shift procedure with different analysis scales is applied at
the initial step. For each scale, each data point is classified into a
local mode. The trajectory points and mean-shift vectors are then
used to fit a normal surface to the density surrounding each
mode. The most stable covariance matrix across scales is then
selected using a specialized version of the Jensen-Shannon diver-
gence for each data point. At last, the covariance matrices are
used in the variable-bandwidth mean shift. This data-driven
bandwidth selection algorithm estimates the bandwidth for mul-
tiscale patterns in the data set. It has been proven to be applicable
in both normal and non-normal structures. It has been proven to
be a reliable algorithm that takes into account the stability of
local bandwidth estimates across scales. In our experiments, we
applied the data-driven band selection algorithm to the range
domain (log ratio of intensities of CGH), while we empirically
chose the anticipated minimum length of segments as band-
width for the spatial domain on chromosomes. This only re-
quires prior knowledge of a range of scales for the intensity do-
main, which is a practical criterion.

Simulated data sets

The simulation was carried out by generating aberrations involv-
ing five, 10, 20, and 40 probes (here referred to as width) with
three different signal-to-noise ratio (SNR) levels (1, 2, and 4). The
SNR is defined as the average magnitude of the signal divided by
the standard deviation of the (superimposed) Gaussian noise. For
each aberration width and SNR, 100 “artificial” chromosomes
were generated. Each artificial chromosome consists of 100
probes. The aberrations were located in the centers of the chro-
mosomes (Lai et al. 2005).
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Application to the glioblastoma data set

We used glioblastoma multiforme (GBM) data from the study of
Bredel et al. (2005), consisting of 26 primary GBM samples,
which were cohybridized with pooled human controls onto
custom spotted cDNA microarrays. The scanned raw data were
deposited in the Stanford Microarray Database (http://genome-
www5.stanford.edu). Lai et al. preprocessed the data and normal-
ized the data with the Limma package (Smyth 2004). They also
removed the missing values in each array to avoid the effect of
imputed values in subsequent analyses (Lai et al. 2005). The GBM
data are composed of a mixture of wide, low amplitude regions of

gains/losses and narrow, high-amplitude
regions of amplifications/deletions,
both of which should be detected by al-
gorithms scoring array-CGH data. Fur-
thermore, these data are quite noisy
(standard deviation of the log ratios for
each array range from 0.35–0.9), provid-
ing a reasonable reference for examining
different CGH algorithms. We chose to
examine two representative samples
(one with a broad, low-amplitude
change and one with some narrow,
high-amplitude changes) using MSB and
other CGH analysis approaches.

Array-CGH algorithms for comparison

Eight CGH analysis algorithms were
picked for the comparison based on the
public availability of R statistical lan-
guage implementation. These algo-
rithms are CGHseg (Picard et al. 2005),
GLAD (Hupe et al. 2004), wavelet (Hsu et
al. 2005), CBS (Olshen and Venkatra-
man 2002, 2004; Hsu et al. 2005), lowess
(Beheshti et al. 2003), quantreg (Eilers
and de Menezes 2005), HMM (Fridlyand
et al. 2004), and CLAC (Wang et al.
2005). CGHseg was ported from MATLAB
to R by Lai et al. (2005). Additionally, we
used their results from ChARM (Myers et
al. 2004) on the simulation data sets for
comparison purpose.

Default parameter settings were
used when suggested by the investiga-
tors. Otherwise, appropriate parameters
were selected or computed based on pro-
gram documentation as well as related
papers. These settings are consistent
with a previous comparative study (Lai
et al. 2005): For the wavelet algorithm,
Stein’s unbiased risk estimate (SURE) for
soft thresholding with a maximum
wavelet coefficient level of 3 was chosen
following the method of Hsu et al.
(2005); for the lowess algorithm, a
smoothing window of 10 was used, and
the smoothing span was defined as the
size of the smoothing window divided
by the number of probes on the chromo-
some (Lai et al. 2005). Finally, for the

quantreg algorithm, twofold cross-validation was used to esti-
mate the value of � that minimizes the overall penalty term as
suggested by the investigators (Eilers and de Menezes 2005); �

was estimated as 1.5.

Results

Evaluation of MSB on simulated data

First, we compare MSB on the simulated abnormality widths and
noise levels. The simulated data were generated by the various
aberration widths and different noise levels, as described in detail

Figure 1. Mean-shift mode finding: A simple example of an array-CGH data segment from glio-
blastoma sample. (A) Mean-shift process: The successive set of triangles shows the yj, more particularly
(yj

s, yj
r), in the mean-shift iterations, while their connecting dashed lines show the mean-shift vector. (B)

Mean-shift smoothing in the intensity domain: The successive set of triangles shows (xi
s, yj

r), where xi
s

refers to the spatial location, and yj
r refers to the intensity domain. The value zi = (xi

s, yc
r) after conver-

gence is the filtered data point. Here, we visualize only 59 points for the purpose of illustration. The
data represent a small segment of chromosome 7 of the GBM29 sample. The data consist of 67 probes
among the nucleotide positions ranging from 54,908,778–64,080,642 on chromosome 7 of GBM29.
The points represent the actual measurements of the CGH experiments along the chromosome seg-
ment. The straight lines show the results of MSB. The sets of successive locations shown by triangles
converge to the local modes of the intensity domain. The last one of these successive locations is the
point of convergence for each set. The eight points on the left side are attracted by the mode at the
amplitude of 4.75 in the intensity domain, while the 51 points on the right are attracted by the mode
at the amplitude of 0.2 in the intensity domain. Clearly, the eighth and ninth points (shown with stars)
are attracted by different modes separately.
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in the Methods section. Figure 2 shows an example of the com-
posed simulated CGH data with increased aberration widths (2,
5, 10, 25) and with noise � = 0.25. We intuitively show how MSB
works compared with nine other CGH analysis algorithms. In
Figure 2 only MSB, HMM, and CGHseg detected all five aberra-
tions correctly.

Receiver operating characteristic (ROC) analysis was carried
out using the following conditions: The true positive rate (TPR)
was defined as the number of probes within aberration regions,
which have fitted values above the threshold level, divided by
the total number of probes within aberration regions. The false
positive rate (FPR) was defined as the number of probes outside
the aberration regions, which have fitted values above the
threshold level, divided by the total number of probes outside
the aberration. The threshold for determining the aberration was
altered from the minimum log-ratio value to the maximum in
order to obtain sensitivities (i.e., TPR) at different specificity lev-
els (FPR = 1 � specificity) for the ROC curve plots. For each simu-
lation data set (i.e., given aberration width and SNR), the corre-
sponding TPR (sensitivity) and FPR (1 � specificity) were plotted
defining the algorithm’s ROC profile.

The comprehensive comparison of algorithms is shown in
Figure 3. The upper left panels show scenarios with wider region
aberrations and relatively low noise (high SNRs). It is evident that
most algorithms performed well in detecting the existence and
the width of aberrations in those situations. For the cases of
smaller aberrations and low SNRs (the lower, right panels), MSB
appears to outperform other methods (Lai et al. 2005), especially
in the low FPRs (i.e., high specificity levels). Also, it is noticeable
that the four smoothing-based methods (i.e., MSB, wavelets, low-
ess, and quantreg) give better detection results (higher sensitivity
and specificity) than other methods in these cases. The smooth-
ing-based algorithms follow low amplitude and local trends in
the data; whereas the other six estimation algorithms were less

sensitive to such features. The other six estimation algorithms
(Lai et al. 2005) cannot detect the narrow and noisy aberrations
reliably, presumably because the signal is too weak to differenti-
ate it from the noise. MSB performs the best among these meth-
ods for aberration with small widths and low SNRs. MSB takes
advantage of the mean-shift procedure, in which data points are
attracted to the modes (local maxima) of the underlying density
function. Therefore, this procedure adaptively reduces the
amount of smoothing near the abrupt changes in the local struc-
tures. It filters and reduces noise without blurring the edges of
the boundaries.

Evaluation of MSB on glioblastoma data

GBM is a malignant type of brain tumor. The GBM data obtained
in an earlier experimental study (Bredel et al. 2005) are relatively
noisy. We examined two examples from the preprocessed GBM
data (Bredel et al. 2005; Lai et al. 2005), which represent cases of
narrow, high-amplitude and broad, low-amplitude changes, re-
spectively.

Let us first examine the case with multiple amplitude
changes on relatively small regions. There are three high-
amplitude amplifications around the epidermal growth factor re-
ceptor (EGFR) gene on chromosome 7 (GBM29 sample). The
nucleotide positions are from 40,640,694–64,966,234 (build 16),
where there are sequentially 193 probes of length ranging from
99–123,181 on the corresponding chromosomal region. Only
four probes separate the first two amplification regions. As shown
in Figure 4, MSB, CGHseg, GLAD, wavelet, and quantreg detected
all three amplifications correctly; CBS detected three amplified
regions with the wrong amplitude; lowess detected the first two
amplifications as one larger region, CLAC took all three amplifi-
cations as a single region, and the HMM-based algorithm did not
detect any event. ChARM also failed to separate these three am-
plifications, as shown by Lai et al. (2005). CLAC and ChARM use

Figure 2. An example of simulated array-CGH data by composed aberrations with increasing width (2, 5, 10, 20, and 40 probes). This signal profile
consists of five aberrations of width in increasing order. The amplitude of aberration is 1. Gaussian noise with � = 0.25 was imposed onto the signal
profile in the simulated data. MSB, CGHseg, and HMM clearly detected all five aberrations.
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mean smoothing as the initial step for filtering the data. How-
ever, the mean smoothing blurs the edges of the boundaries
when it denoises the data. MSB adopts an advanced discontinu-
ity-preserving filtering process. Therefore, the edges of the
boundaries are effectively preserved.

Furthermore, in some instances, regions of loss or gain mea-
sured by array-CGH may exhibit a very low amplitude change
and are thus hard to detect. In particular, since not all tumor cells
in a given cell/tissue sample will have the same type of gain
and/or loss, the overall amplitude change may be low due to the
heterogeneity. For instance, in the GBM31 sample there is a large
region of loss on chromosome 13 (from 17,206,847–113,010,904,
a region covered by 797 probes) exhibiting a rather low SNR.
Recognizing that it is obviously a challenge for array-CGH analy-
sis approaches to detect such subtle changes, we tested the ability
of MSB and eight other algorithms to detect this particular event
(Fig. 5). MSB, CGHseg, GLAD, CBS, and HMM successfully iden-
tified the proximal loss of chromosome 13. CLAC, wavelet,
quantreg, and lowess missed this subtle change. The other three
smoothing algorithms (wavelet, quantreg, and lowess) failed to
detect this subtle change, because the global loss was obscured by

their smoothing process, while the mean smoothing step of the
CLAC algorithm tended to reduce noise at the cost of blurring the
edges of the boundaries. The successful segmentation of chromo-
some 13 by MSB indicates the power of our method, which pre-
serves edges (i.e., discontinuities) while smoothing the data and
removing noise.

Application of MSB to lung cancer data

We applied our method to array-CGH data from lung cancer cell
lines, originally published by Coe et al. (2006) and Garnis et al.
(2006). These data are particularly useful, as phenotypic patterns
have been validated using PCR. To compare the output results of
our method and other approaches, we ran the algorithms on the
data. Figure 6 shows a comparison of the results of our method
and eight other approaches on a data set of chromosome 2 of
non-small cell lung cancer (NSCLC) adenocarcinoma. This data
set contains 2592 BAC-derived tiling fragments, which covers
242,913,687 base pairs. It contains a region of wide amplification
and a region of short deletion.

MSB and CGHseg successfully identified these two aberra-
tions, although the CGHseg result seems neater than that of

Figure 3. Receiver operating characteristic (ROC) analysis for array-CGH algorithms on simulation data sets. These data sets were simulated at different
aberration widths and signal-to-noise ratios (SNRs). Each row represents three different SNR levels (4, 2, and 1, from top to bottom, respectively), and
the columns represent aberration widths of 40, 20, 10, and 5 probes from left to right, respectively. The x-axis is 1 � specificity (the false positive rate)
and the y-axis is the sensitivity (true positive rate). The curves were generated by measuring the sensitivity and specificity on simulated data at different
threshold levels. The green curve refers to MSB. Its 90% confidence intervals are shown by the green bars for different levels. The blue curve is for
CGHseg (Picard et al. 2005); the cyan point curve for GLAD (Hupe et al. 2004); the yellow dot curve for wavelet (Hsu et al. 2005); the solid yellow curve
is for CBS (Olshen and Venkatraman 2002, 2004; Hsu et al. 2005); the magenta dot curve is for lowess (Beheshti et al. 2003); the blue dot curve is for
quantreg (Eilers and de Menezes 2005); the red dot curve is for ChARM (Myers et al. 2004; Lai et al. 2005), the solid black curve is for HMM (Fridlyand
et al. 2004); and the solid purple curve is for CLAC (Wang et al. 2005). The bottom right of each figure at SNR level 4 and 2 shows the zoom-in at the
low false positive rate region.
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MSB. However, MSB does not take any post-processing here. It
indicates that GLAD and CBS identify these two major aberra-
tions, but they show some hypersegmentation problems. This
problem becomes much more serious in HMM and quantreg and
the wavelet method. This recent lung cancer array-CGH data are
much more challenging to standard segmentation approaches,
where hypersegmentation is a known problem in this data. We
can see that MSB and CGHseg suffer less from this problem than

any other method. A simple post-processing step to overcome
hypersegmentation is to group all the convergence points that
are closer than the standard deviation of the noises in intensity
measurement in the contingent region. An optional step, not
taken here, is to eliminate spatial regions that contains less than
the predefined number of probes. This segmentation post-
processing would effectively eliminate the oversegmentation
problem.

Figure 5. Application of MSB and other eight methods to an array-CGH profile of chromosome 13 in a glioblastoma multiforme sample (GBM31).
The profile has a partial loss with subtle amplitude change. MSB, CGHseg, GLAD, HMM, and CBS clearly identified this region.

Figure 4. Application of MSB and eight other methods to an array-CGH profile of the three amplifications around EGFR in the GBM29 sample. MSB,
CGHseg, GLAD, wavelet, and quantreg clearly detected all three amplifications correctly. CBS detected three amplifications with the wrong amplitude.
lowess only detected the first two amplifications as one larger region. CLAC took these three amplifications as one region. HMM performed the worst,
with no detection.
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Proof-of-concept case study applying MSB to the pseudo-signal
from next-generation sequencing

One of the strengths of MSB is that it does not have to refine an
explicit model. Consequently, it can readily be applied to a re-
lated problem to array-CGH, determination of SVs from the high-
throughput sequencing. This problem takes advantage of the
great depth of coverage of the short reads from next-generation
sequencing, which effectively creates pseudo-array signals to be
partitioned. More specifically, new massively parallel sequencing
techniques such as Illumina (formerly known as Solexa sequenc-
ing), 454 Life Sciences (Roche), and ABI SOLiD, have made pos-
sible resequencing and analysis of bacterial and individual eu-
karyotic genomes with extremely high coverage (http://www.
1000genomes.org/) (Campbell et al. 2008; Durfee et al. 2008;
Wheeler et al. 2008). Typical analysis of the high coverage data
involves mapping of reads to a reference genome with the aim
of identifying single nucleotide polymorphisms or structural
variants. In the past, SV identification has involved looking for
the change in spacing of paired end reads (Korbel et al. 2007a).
However, here we suggest an alternate and complementary ap-
proach. The basic idea is that the regions that were deleted from
the target genome will have no mapped reads, or just a few, due
to errors in mapping. Conversely, regions that were duplicated
will have considerably more mapped reads than the average
coverage. Thus, we used nucleotide coverage depth (CD) of

the reads as an input signal for MSB. This approach can be ad-
vantageous for SV identification over, for instance, genome com-
parison or paired-end mapping approaches, in that it can naturally
utilize different reads (both paired-end and single reads of differ-
ent length) and requires no assembly or paired-end clustering.

While different in origin to array-CGH signal, the CD signal
is mathematically very similar to it. Similar to the array-CGH-
signal, it will have regions of high and low intensities caused by
SVs and repetitions in compared genomes. Likewise, it will have
noise caused by mapping errors and random fluctuations in ge-
nome coverage.

Thus, CD creates an array-like pseudo-signal that can be
analyzed for breakpoints in a similar fashion to array-CGH data.
To provide a simple proof-of-concept demonstration of the ap-
plication of MSB to this type of data, we have utilized a data set
of mapped Illumina paired-end reads for NA11995. This indi-
vidual was sequenced by the Sanger center as part of the 1000
Genomes Project. Mapping was performed with the aid of MAQ
software (Li et al. 2008) with redundant reads excluded from the
final mapping. We regard the choice of the data set as a repre-
sentative one and stress that the method can be easily applied to
other data sets as well (Korbel et al. 2007a; Campbell et al. 2008;
Durfee et al. 2008).

We limited our analysis to a relatively small region on chro-
mosome 21 (between coordinates 46,162,500 and 46,164,711).
Given the mapped locations of reads, the CD-signal was con-

Figure 6. Output of MSB and eight other methods to an array-CGH data set of chromosome 2 in a NSCLC adenocarcinoma case. This profile contains
a wide amplification region and a short deletion segment. MSB and CGHseg clearly identified these regions. A straightforward post-processing refined
the MSB results.
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structed by counting the frequency of mapped reads for each
nucleotide; then MSB was applied to the CD-signal (Fig. 7). Our
approach could readily identify a number of potential SVs as
shown in the figure.

Discussion

MSB shows excellent performance on both simulated data sets
and real data sets of the GMB. It was consistently successful in
meeting various detection challenges: different levels of SNRs
and aberration width in the simulated data sets (ranging from
“easy” large changes with high SNRs to “hard” small changes
with low SNRs), mixed aberration widths in one simulated pro-
file, multiple amplitude changes within relatively small regions
in human cancer sample, and a broad, low-amplitude change on
a human cancer sample. MSB consistently gives excellent results
under different scenarios. Moreover, the model-free nature of
MSB allows it to be readily adapted to the next generation se-
quencing data.

We are of course aware of the inherent difficulty in compar-
ing different algorithms objectively. Each method has its own
parameters, which may not have been set to optimum values.
Furthermore, previously reported algorithms were developed to
score array-CGH data from different experimental platforms, that
is, at distinct resolutions, and different SNRs. Thus, to a certain
extent, comparative studies should be taken with caution. We
have attempted to follow the investigators’ instructions and pre-
vious comparative studies for setting parameters (Olshen and
Venkatraman 2002, 2004; Beheshti et al. 2003; Snijders et al.
2003; Fridlyand et al. 2004; Hupe et al. 2004; Eilers and de
Menezes 2005; Hsu et al. 2005; Lai et al. 2005; Picard et al. 2005;
Wang et al. 2005; Venkatraman and Olshen 2007). It may be safe
to suggest, however, that if an algorithm is sensitive to changes
in parameters or if it is very difficult for users to determine the
correct parameters, then one may consider this is a weakness of
the method.

The time complexity of MSB is �(n2), where n is the number
of probes along the chromosome. The space complexity of MSB
is �(n). The time complexity is equivalent to the complexities of

the HMM-based method and the CBS approach. Nevertheless,
MSB will be slower than some fast local algorithms that run in
time �(n), such as lowess and wavelet. Generally, speed is not a
concern for BAC arrays. In the case of high-density oligonucleo-
tides tiling arrays, where speed is one of the primary require-
ments, MSB can be accelerated by selecting a set of q represen-
tative data points using an irregular tessellation approach (Co-
maniciu and Meer 1999) and only computing the trajectories of
those points (Comaniciu 2003). This is particularly useful for
large regions without aberrations obtained by some simple pre-
processing steps. In this case, the time complexity of MSB can be
decreased to �(qn), where q < < n.

Recently, Eilers and de Menezes (2005) suggested that, for
significance testing, many issues arise in connection with array-
CGH data in general. The reason is that statistical significance
refers to the consistency of effects. Namely, effects should occur
in a proportion large enough to rule out chance. However, in the
most important applications of array-CGH, such as carcinogen-
esis studies, most effects occur in a much too small proportion of
the cases (Nakao et al. 2004). Additionally, changes detected with
array-CGH should be validated by confirmatory experiments. In
fact, the assessment for verifying patterns is almost always made
based upon the biological context, rather than on the P-values in
CGH analysis. Consequently, statistical significance testing in
this context is unlikely to be helpful (Eilers and de Menezes
2005). For this reason, we have deliberately abstained from sig-
nificance testing.

Generally, the limitation of the approach based on mean-
shift and kernel density estimation is that it does not scale well
with the dimension of the space. It has been indicated that when
the dimensionality is above six, the analysis should be ap-
proached carefully (Wand and Jones 1995; Comaniciu 2002). Ar-
ray-CGH data are low-dimensional and thus very suitable for our
method.

Conclusion

We have demonstrated the general applicability of MSB in array-
CGH analysis. Moreover, we have shown through a brief case

Figure 7. Proof-of-concept application of MSB to Illumina CD signal on a part of chromosome 21. The data is from position 46,162,500–46,164,711
on the x-axis. The y-axis shows the half representation of frequencies (actual frequencies are multiplying the numbers by 2). Light color shows the
experimental results. MSB identified several regions of changed copy number, shown in black lines.
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study that the generality and model-free nature of MSB makes it
potentially applicable to next generation sequencing data. We
envision that a more sophisticated software suite for MSB can be
developed. For instance, the physical position of probes may be
incorporated into the approach (instead of using the index num-
ber of the probes without the actual spacing information) to
increase the sensitivity of the method. Second, MSB, which es-
sentially performs discontinuity-preserving smoothing, may be
coupled with a more advanced segmentation approach. For ex-
ample, the mean-shift segmentation algorithm (Comaniciu
2002) and downstream analysis may be implemented subsequent
to smoothing. This can lead to an advanced variant of MSB.
Third, a speedup module using irregular tessellation can be used
to accelerate the data processing, which is particularly useful
when applied to a large-scale data set with speed requirement.
Finally, to facilitate application of the method for biomedical
researchers, a graphical user interface (GUI), visualization graph-
ics, online database connections, and annotation systems are de-
sirable. These more advanced features will be integrated with our
core algorithm in a future publication.
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