
Fast and flexible simulation of DNA sequence data
Gary K. Chen,1,2 Paul Marjoram,1 and Jeffrey D. Wall2,3

1Department of Preventive Medicine, University of Southern California, Los Angeles, California 90033, USA; 2Institute for Human
Genetics and Department of Epidemiology and Biostatistics, University of California, San Francisco, California 94143, USA

Simulation of genomic sequences under the coalescent with recombination has conventionally been impractical for
regions beyond tens of megabases. This work presents an algorithm, implemented as the program MaCS (Markovian
Coalescent Simulator), that can efficiently simulate haplotypes under any arbitrary model of population history. We
present several metrics comparing the performance of MaCS with other available simulation programs. Practical
usage of MaCS is demonstrated through a comparison of measures of linkage disequilibrium between generated
program output and real genotype data from populations considered to be structured.

[Supplemental material is available online at www.genome.org. The MaCS source code is freely available at
http://www-hsc.usc.edu/∼garykche/.]

With recent advances in DNA microarray technology, it is now
feasible to conduct genome-wide association studies (GWAS) for
identifying genetic variants that affect a particular phenotype of
interest. Despite the vast amount of genotype data already col-
lected, there are still open questions regarding the optimal ex-
perimental design of future association studies and the best
methods for analyzing large data sets. One important tool that
may help answer these questions is computer simulation. For
example, a computationally efficient method for simulating
whole-genome single nucleotide polymorphism (SNP) data
would allow one to compare different mapping methods, or con-
duct a power study to determine the optimal study design under
specific disease or phenotype models.

Several simulation-based methods have utilized existing
data to make inferences about additional unobserved data (either
additional SNPs or genotypes from additional individuals), in-
cluding “hide the SNP” studies, bootstrap resampling studies,
and more sophisticated methods (Durrant et al. 2004; Stram
2004; Scheet and Stephens 2006). These data-perturbation meth-
ods, though appealing in some ways, have several weaknesses. In
particular, there is no guarantee that these methods are accu-
rate—patterns of linkage disequilibrium (LD) at longer distances
cannot necessarily be extrapolated from patterns of LD at shorter
distances (Wall 2004). Also, data-perturbation methods can only
be used for populations that already have extensive SNP data.
They are necessarily uninformative about the patterns of LD in
other populations.

An alternative approach to making inferences about unob-
served data involves simulating under a plausible evolutionary
model. Of these “model-based” methods, by far the most popular
and most useful is the coalescent (Kingman 1982; Hudson 1991).
Model-based methods have the advantage of being able to pro-
duce (simulated) data that are not dependent on an existing data
set. However, any particular model makes assumptions, and the
data produced will necessarily be sensitive to these initial as-
sumptions. For humans, this concern may be somewhat miti-
gated by knowledge of the basic demographic parameters (Reich
et al. 2001; Schaffner et al. 2005; Voight et al. 2005; Plagnol and
Wall 2006). The coalescent has been generalized to include a
wide variety of biologically realistic scenarios, including models

of population structure, changes in population size, variable re-
combination rates, and intragenic gene conversion (Hudson
1991, 2002; Wiuf and Hein 2000; Li and Stephens 2003).

Though the coalescent is flexible enough to simulate many
different demographic scenarios, it does not scale well to simu-
lating extremely long stretches of DNA (i.e., hundreds of Mb)
when recombination events are included in the model. In par-
ticular, simulating the entire ancestral recombination graph
(ARG), which describes all past coalescent and recombination
events for a given sample, poses a large computational burden
(Griffiths and Marjoram 1996). For example, we estimate that
simulating a medium-sized chromosome (100 Mb) in 2000 indi-
viduals would take ∼2–3 mo on a single 2-GHz processor and
more than 32 GB of RAM. Though computers are continually
getting faster, it is clear that simulation studies (involving many
replicates) of whole-genome SNP data using standard coalescent
methodology will not be computationally feasible for many years.

In part because of these limitations, two studies proposed a
simplification of the standard coalescent, the Sequentially
Markov Coalescent (SMC), that is much more computationally
efficient (McVean and Cardin 2005; Marjoram and Wall 2006).
While the standard coalescent starts at the present time and
simulates backward in time, the SMC starts at one end of the
sequence and simulates sequentially across its length. Specifi-
cally, the SMC starts with a coalescent tree at the left-hand end of
the sequence and progressively modifies the tree with recombi-
nation events as it moves to the right. Each successive tree modi-
fication generates a new tree at the current position, also known
as a local tree. In other words, a local tree explains the genealogy
for a region that is flanked by two successive recombination
events. Computational efficiency is obtained by assuming that
the recombination process operates as a Markov process, namely,
that modifications to the tree due to recombination happen in-
dependent of any previous recombination events. This allows the
runtime of the SMC to scale linearly with the length of the se-
quence being simulated. In contrast, in the standard coalescent,
recombination events do not happen independent of each other
(Griffiths and Marjoram 1996), and runtimes scale more than
quadratically with sequence length (Marjoram and Wall 2006).
The increase in speed of the SMC algorithm is obtained at the
cost of a slight degree of approximation to the full ARG.

In this work, we describe an intermediate approach that is a
compromise between the accuracy of the standard coalescent
and the speed of the SMC. Our method, called MaCS (Markovian

3Corresponding author.
E-mail wallj@humgen.ucsf.edu; fax (415) 476-1356.
Article published online before print. Article and publication date are at http://
www.genome.org/cgi/doi/10.1101/gr.083634.108.

Resource

136 Genome Research
www.genome.org

19:136–142 ©2009 by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/09; www.genome.org



Coalescent Simulator), proceeds from one end of the sequence to
the other as do previous methods (Wiuf and Hein 1999; McVean
and Cardin 2005; Marjoram and Wall 2006); like the SMC, it
models dependencies between recombination events that are
physically close to each other but treats recombination events
that are far apart as independent. As with the standard coalescent
as implemented in the program ms (Hudson 2002), our algorithm
models mutation events based on the infinite sites model (Wat-
terson 1975) where no recurrent mutations occur at any given
site. MaCS produces simulated data that are virtually identical to
data simulated under the standard coalescent, but in much less
time and using much less memory. The source code that imple-
ments this method, written in C++, is freely available to the re-
search community at http://www-hsc.usc.edu/∼garykche/. This
program is as flexible as the widely used coalescent simulator ms
(Hudson 2002), allowing for a great range of demographic mod-
els and assumptions about recombination. While our proposed
algorithm does not execute as quickly as the SMC algorithm (data
not shown), it does support more demographic scenarios and al-
lows for the incorporation of intragenic gene conversion. We illus-
trate how MaCS can be used in an applied context to simulate
genome-wide case-control data under any specific disease model.

Results
Implementation

The algorithm for MaCS was implemented in C++ to maximize
efficiency in terms of memory usage and speed while maintain-
ing object-oriented design principles to facilitate future exten-
sions. To make the program more widely applicable to human
data, we implemented the same range of demographic models
used in ms (Hudson 2002), such as Wright’s island model (Wright
1931). In general, these modifications were straightforward and
were implemented in ways analogous to those used in the stan-
dard coalescent (Hudson 1991, 2002). We also included more
subtle modeling capabilities, such as recombination rate varia-
tion using a piecewise constant model (Li and Stephens 2003)
and intragenic gene conversion (Wiuf and Hein 2000). The me-
chanics behind these last two features are elaborated in the Meth-
ods section.

We first summarize the behavior of the algorithm behind
MaCS, which is in essence a variation of the Wiuf and Hein
algorithm (Wiuf and Hein 1999). To simulate a set of sequences,
the Wiuf and Hein algorithm begins with a coalescent tree at the
left end of the sequence, gradually constructing an ARG one re-
combination event at a time along the sequence until the full
ARG is determined when the algorithm terminates at the right
end of the sequence. Thus, the ARG at any point on the sequence
captures only the recombination events that occurred among the
set of sequences from that particular location to the left end-
point. Recombination events are assumed to follow a Poisson
process along the sequence length so that the distance of each
segment between recombination events is calculated from an
exponential draw with an intensity parameter proportional to
the scaled recombination rate � and total ARG branch length b.
In turn, b is a function of the sample size n and any demographic
parameters. Mutations also occur as a Poisson process, similar to
recombination events, except the scaled mutation rate � replaces
�. Specific details follow in Methods and are in the Wiuf and Hein
article (Wiuf and Hein 1999). The entire sequence to be simulated
is scaled to the unit interval [0,1], and time is scaled in units of 2Ne

generations, where Ne is the diploid effective population size.

The Wiuf and Hein algorithm possesses the curious property
that simulated recombination events become denser along the
length of the sequence as the algorithm progresses further. As the
current position moves to the right, the total branch length b of
the ARG increases, leading to shorter and shorter distances (i.e.,
shorter waiting times for the exponential draws) between succes-
sive recombination events. This happens because recombination
can occur on any existing line of the ARG, including lines that
are not ancestral to the set of sequences at the current position.
One consequence is that the Wiuf and Hein approach is compu-
tationally infeasible for simulating large regions (e.g., whole
chromosomes). In contrast, the more recent SMC algorithm
(McVean and Cardin 2005) is much faster because only the last
local tree (embedded within the ARG) is considered when (1)
seeking the location of the next recombination event, and (2)
determining which existing branch this new line eventually coa-
lesces to. In our algorithm, we generalize the SMC by modifying
step 2. In the SMC, coalescent events are restricted to edges
within the last local tree only. In contrast, in our algorithm, at
the point of recombination on the local tree, a new line emerges
from an edge in the local tree and coalesces to an edge among any
of the last k (denoted as the tree-retention parameter in this ar-
ticle) local trees provided that the coalescent event occurs earlier
in time than the recombination event and that the new line and
the selected coalescing edge belong to the same population when
simulating from an island model. Any edge that is unique to the
local trees beyond (left of) the last k local trees is pruned and not
considered in the algorithm. A user-specified “history” parameter
h denotes a sequence length (in base pairs) that the algorithm
uses to estimate how many local trees to retain as it simulates
from the left end of the sequence to the right. Once the user
specifies a sequence length h (in base pairs), k is then automati-
cally computed based on the expected number of recombination
events that would occur in a region of length h. Higher values of
h lead to better approximations of the standard coalescent, but at
the cost of a slightly slower runtime and slightly greater memory
requirements (see Performance section). For a given sample size n
and sequence length h, runtimes scale linearly with the simu-
lated sequence length.

Testing the accuracy of the method

First, we compared the output of MaCS with the output from the
standard coalescent simulator ms (Hudson 2002). Our interest
was both in ensuring that our program was accurate and in de-
termining whether storing more or less information (i.e., via the
history parameter h) might bias estimates of coalescent times.
We compared the times to the most recent common ancestor
(TMRCA) averaged across 10 million replicates between MaCS
and ms for each of the first 15 trees and the final tree one en-
counters beginning at the left end of the sequence. Results are
shown in Table 1 for n = 20 sequences, using a scaled recombi-
nation rate parameter � (= 4NeLr) of 100, which approximates an
L = 167 kb region, assuming an effective population size
Ne = 12,500 and per-site recombination rate r of 1.2 � 10�8/bp.
In general, MaCS generates a distribution very similar to that of
ms, even for the case of h = 1 bp (equivalent to SMC). As h in-
creases (i.e., as we store more information about nearby genealo-
gies), MaCS becomes a better approximation to ms. In the limit as
h → � (when all previous local trees are stored), the average TM-
RCAs generated by MaCS are identical to those produced by ms,
which reflects the fact that both algorithms are essentially simu-
lating the same process. We compared the two programs

Simulation of genome-length data

Genome Research 137
www.genome.org



using lower and higher values for the rate � (e.g., � = 1 and 1000).
In all cases, behavior was consistent with the � = 100 case, with
essentially identical values when h → � and slightly inflated tree
heights with lower values of h.

We also ran extensive simulations comparing sequence
polymorphism data generated by the two programs. For a range
of parameter values, we tabulated the mean and variance of
simple summaries of the data, including �W (Watterson 1975), �

(Tajima 1983), D� (Lewontin 1964), and r2 (Hill and Robertson
1968). In all cases, the distributions of summary statistics were
indistinguishable between the two models (see Supplemental
Table S1).

Performance

We now compare our program to other similar simulation pro-
grams in terms of computational time and memory require-
ments. For the standard coalescent, we compare with ms (Hud-
son 2002), which is substantially faster than other coalescent
implementations (e.g., Laval and Excoffier 2004; Mailund et al.
2005) (data not shown). In addition to ms, we also include two
other recently released programs: GENOME (Liang et al. 2007),
which employs a retrospective approach to simulation similar to
the coalescent, and FORWSIM (Padhukasahasram et al. 2008),
which uses a forward-in-time simulation approach. To highlight
the basic characteristics of the algorithms underlying all four
implementations, we run simple test cases in which no popula-

tion structure was specified. Table 2 presents running times and
typical memory footprints for a range of different sample sizes
and simulated sequence lengths. To ensure that all of the algo-
rithms simulated data that were consistent with each other, we
plotted LD decay curves across programs for each of the various
scenarios. We did not discern any differences among the decay
curves, suggesting that all four algorithms generated consistent
LD patterns. We were not able to compare average tree heights as
shown in Table 1, since only output from MaCS and ms provided
us with the ability to determine tree heights.

We note that runtime speed for GENOME was similar to ms
for a small region, but substantially faster for the large region of
100 Mb. FORWSIM appears to use memory more efficiently than
GENOME or ms. However, all three programs had substantial
memory requirements, forcing several tests to be aborted early.
Our program appears to scale well to large regions and samples
sizes, and is generally both quicker and less memory intensive
than the other tested programs.

Applications

As an example of how MaCS might be used, we simulated whole-
genome SNP data meant to mimic the YRI data from the HapMap
(Frazer et al. 2007). We first inferred phase in the YRI data using
a hidden Markov model-based algorithm implemented in the
program fastPHASE (Scheet and Stephens 2006). We then esti-
mated demographic parameters for a two-population model us-
ing resequencing data from Yoruba and European samples in the
Environmental Genome Project (Livingston et al. 2004) and a
summary likelihood approach (Plagnol and Wall 2006). We esti-
mated recent population growth (20 kyr ago) in the Yoruba and
a recent population bottleneck (20 kyr ago) in the European
population. Then, we simulated data under the best-fit model
using MaCS and tabulated the decay of LD (measured by r2) as a
function of distance for nearby pairs of SNPs for the real and the
simulated data. The results are shown in Figure 1. The curves for
the simulated and actual data line up reasonably well, though it
looks like there is less LD at short distances in the actual data.
This is likely due to slight inaccuracies in the model assumptions,
which could presumably be corrected if a more systematic study
were undertaken (Schaffner et al. 2005).

We also note that the faster runtime of MaCS makes it more
feasible to directly simulate case-control data under a specified
disease model and prevalence. When evaluating novel methods
for analyzing case-control data in GWAS, it is useful to not only
assess how sensitive a method is (i.e., power), but also how well
it performs with respect to the rate of false positives (i.e., speci-
ficity). While it is relatively easy to simulate scenarios to measure

Table 1. Average times to most recent common ancestor for 20
haplotypes across a 167-kb region (� = 100)

Tree ms h = �a h = 1 kB h = 1

1 1.90 1.90 1.90 1.90
2 1.95 1.96 1.96 1.96
3 2.00 2.00 2.00 2.01
4 2.03 2.04 2.04 2.05
5 2.06 2.07 2.07 2.08
6 2.08 2.09 2.09 2.10
7 2.10 2.11 2.11 2.13
8 2.12 2.12 2.13 2.15
9 2.13 2.13 2.14 2.16

10 2.14 2.14 2.15 2.18
11 2.15 2.15 2.18 2.19
12 2.16 2.16 2.18 2.20
13 2.17 2.17 2.18 2.20
14 2.18 2.17 2.19 2.21
15 2.18 2.18 2.20 2.22
last 1.90 1.90 1.90 1.90

One million trials were run, with standard errors <10�3 for all trees.
ah = � specifies that all simulated trees were retained.

Table 2. Average execution times and memory usage

Region Sample size ms GENOME FORWSIM MaCS h = 1 Kb MaCS h = 1

10 Mb 100 5:35 (170 MB) 4:19 (434 MB) 0:05 (99 MB) 0:13 (9.6 MB) 0:11 (9.6 MB)
300 8:08 (308 MB) 5:05 (1.1 GB) 1:22 (153 MB) 0:43 (10 MB) 0:41 (10 MB)

1000 10:47 (1.1 GB) 6:18 (3.8 GB) 37:36 (582 MB) 3:00 (11.7 MB) 2:42 (11.7 MB)
3000 19:50 (3.6 GB) 18:13 (16.9 GB) 12 h (3.8 GB) 13:05 (13.8 MB) 9:31 (13.8 MB)

10,000 1:08:11 (13.3 GB) N/A (>18 GB) N/A (>18 GB) 50:50 (20.4 MB) 47:50 (20.2 MB)
100 Mb 100 13 d (942 MB) 51:38 (4.2 GB) 2:31 (820 MB) 2:15 (28 MB) 2:09 (28 MB)

300 >1 mo (>3 GB) 58:31 (8.5 GB) 53:54 (1.1 GB) 7:19 (36 MB) 6:36 (36 MB)
1000 N/A (>18 GB) N/A (>18GB) 29 h (4.7 GB) 24:03 (40.7 MB) 21:40 (40.5 MB)
3000 N/A (>18 GB) N/A (>18 GB) N/A (>18 GB) 2:21:24 (45.8 MB) 1:54:45 (44.9 MB)

10,000 N/A (>18 GB) N/A (>18 GB) N/A (>18 GB) 9 h (56 MB) 9 h (56 MB)

Memory usage in parentheses. N/A entries denote test cases that were terminated because requested RAM exceeded the system’s resources.

Chen et al.

138 Genome Research
www.genome.org



power, estimating specificity is generally more difficult, requiring
a realistic representation of the null distribution. Because our
program is model based, a variety of demographic models can be
tested, an advantage over schemes that either permute case-
control labels on existing data or perturb existing genetic data as
described earlier in this text.

We tested the computational feasibility of simulating case-
control data using our method assuming a model based on data
from Type 2 diabetes studies. The transcription factor-encoding
gene TCF7L2 has been widely implicated in disease risk across
several independent studies (Cauchi and Froguel 2008). Here we
assume a population prevalence K of 7% for Type 2 diabetes, a
minor allele frequency of TCFL2 of 26%, and heterozygous (RR1)
and mutant homozygous relative risks (RR2) of 1.45 and 2.41
(Grant et al. 2006). To obtain 2000 cases, we calculated the
sample size needed to be 33,333, or ∼67,000 haplotypes. Round-
ing up, we simulated 100,000 haplotypes for a 10-Mb region.
This took 983 min to complete, requiring 93 MB of RAM. Because
runtime is linear in sequence length, we can extrapolate that
simulating 100,000 copies of Chromosome 1 (∼270 Mb), should
require ∼40 h and 270 MB of RAM. Once data are generated, it is
straightforward to produce a SNP panel similar to a genotype
chip by ascertaining common SNPs (as described in Methods)
and to mask a random SNP with the desired disease allele fre-
quency.

Discussion

Simulation-based analyses of DNA sequence data have a long and
fruitful history in evolutionary and human genetics. They are
used to estimate evolutionary parameters, distinguish between
demographic models, detect the effects of natural selection, and
test the accuracy of fine-scale mapping methods. As molecular
sequencing technology improves, computer simulations will be
used in these and many other scenarios to help analyze increas-
ingly large data sets—whole genome sequence polymorphism
data sets are already available (Begun et al. 2007; Clark et al.
2007) and will soon become commonplace. We developed MaCS
in response to these developments. Whole chromosome simula-

tions can be performed in minutes to
hours on a standard desktop computer
(Table 2), much faster than any other
simulation program. Although our algo-
rithm loses efficiency in terms of speed
as sample size is increased, we have
shown that it is possible to simulate the
number of samples necessary for study-
ing common diseases. We have also de-
signed MaCS to allow users to specify the
level of accuracy they desire in the ap-
proximation of the coalescent through
the command line parameter h. Setting h
to its minimum value of 1 bp can still
provide a fairly good approximation to
the coalescent (Table 1; Marjoram and
Wall 2006). In general, however, we rec-
ommend setting h to larger values, espe-
cially when the user wishes to accommo-
date gene conversions, in which case h
should be longer than typical gene con-
version tract lengths. Setting h to 1 kb,

well beyond the assumed lengths of gene conversion tracts in
humans, we have found that our algorithm does not suffer any
substantive effect in terms of performance (Table 2). It is our
hope that MaCS will help facilitate the analyses of large-scale
data sets in the same way that standard coalescent simulation
programs (Hudson 1991, 2002) have done for single-locus DNA
sequence data sets.

Methods

Our modified Wiuf and Hein algorithm (Wiuf and Hein 1999)
can be outlined as follows:

1. Initialize the local tree ID variable i as 0. At position xcur = 0
(the left endpoint of the sequence), a coalescent tree T0 based
on the present day set of sequences is constructed using stan-
dard coalescent methodology (Kingman 1982; Hudson
1991), where each edge is labeled with the value i. The full
data structure is a graph, denoted as G. At this point, G = T0.
Once the tree is constructed, increment i by 1.

2. Save the current position xcur along the sequence as xprev.
3. The distance xr to the first recombination point along the

chromosome is taken from an exponential draw xr ∼ exp(b�),
where the rate is a function of the total branch length b of
the current local tree Ti and the scaled recombination rate �

(= 4Nr, where r is the per-generation recombination rate
scaled across the length of sequence).

4. The distance xm to the first mutation point along the chro-
mosome is taken from an exponential draw xm ∼ exp(b�),
where b is defined as in step 3, and mutation rate � is defined
as 4Nµ, µ being the per-generation mutation rate scaled
across the length of sequence.

5. Update the current position along the sequence, defined as
xcur = xprev + xm.

6. If xcur < (xprev + xr), randomly choose a mutation site uni-
formly on the interval [0, b] within Ti. Any present day
samples that are descendants of this point contain the mu-
tation. Loop through all samples, printing 1 for the samples
with mutations and 0 for the others.

7. Repeat steps 4–6 until xcur > xprev + xr, at which point set
xcur = xprev + xr using the memory-less property of the expo-
nential distribution.

Figure 1. Average r2 values were computed across all pairs of nearby (maximum 1 Mb) SNPs for a
270-Mb region. Values for simulated data and HapMap YRI (Chromosome 1) are indicated by the
green and red lines, respectively.

Simulation of genome-length data

Genome Research 139
www.genome.org



8. Randomly choose a recombination site on the interval [0, b]
within Ti.

9. A new lineage is extended backward in time from the recom-
bination point by forking off the recombination node and
finding a new edge in G to coalesce to. This new line, which
is labeled with the value i, can coalesce with any existing
lines of ancestry by merging with the existing line at an
earlier point in time (i.e., higher in the graph than the re-
combination point). If there are l remaining lines of ancestry,
then the new lineage coalesces at rate l with a randomly
chosen line. Thus, the waiting time t before coalescence is
exponentially distributed t ∼ exp(l). Note that l changes over
time according to prespecified coalescent and recombination
events since the number of existing edges changes as one
moves up the graph. Traverse all edges that descend from the
recombination point, relabeling each of these edges with the
value i.

10. Define the new local tree Ti within G by labeling appropriate
edges in G as follows: Mark edges with the current local tree
ID i by traversing the edges of G upward from the present
time for each sample until a common ancestor is found given
the two constraints:
(a) The putative common ancestor cannot be lower than any

point on any edge in G labeled with the value i.
(b) When traversing up edges and a recombination node is

encountered (where two edges emerge above it), choose
the edge with the larger tree ID value.

11. Prune any edge with tree ID less than or equal to i – k, where
k is the tree-retention parameter described earlier.

12. Increment the tree ID variable i by 1.
13. Repeat steps 2–12 until the right endpoint (i.e. ,

xprev + xr > 1.0) of the sequenced region is reached. Replace b
in step 3 with br, the total branch length of the ARG consist-
ing of the last k local trees.

14. The algorithm is now complete. The output from step 5
across the entire region constitutes the sequence data, where
0 and 1 represent the ancestral and derived alleles, respec-
tively.

By labeling edges within a graph, we can store a set of local trees
more efficiently than if we were to explicitly store the local trees
separately as required by Hudson’s algo-
rithm (Hudson 2002). However, this
large improvement in memory effi-
ciency is gained at the expense of some
efficiency in speed. By storing informa-
tion in such a data structure, the num-
ber of physical edges that must be tra-
versed to determine a local tree is often
greater than the theoretical value of
n(n � 1)/2, since edges can be frag-
mented by nodes marking migration
events (under advanced demographic
scenarios) or recombination nodes re-
tained from previous local trees. Due to
this fragmentation, the algorithm be-
comes less efficient, particularly at the
step where edge labels need to be up-
dated to determine the next local tree.

The behavior of our algorithm is il-
lustrated in Figure 2 with a concrete ex-
ample in which three sequences are
simulated with the “tree-retention” pa-
rameter k fixed at 2. The set of thick
dashed lines at the bottom of the figure

is an ideogram of the sequences to be simulated, and the graphs
above the dashed lines indicate the topology of the current state
of the graph at each particular step in our algorithm. We consider
the vertical line immediately above each sequence to be a lin-
eage. For brevity, we present the graph topologies for only the
first two recombination events, along with a pruning event.
Here, each graph vertex (node) with at least two edges represents
either a recombination or coalescent event. Each vertical edge is
labeled according to the identity of the most recent local tree it
was a part of. Since horizontal edges carry no information regard-
ing time between events, they are not labeled in the figure.

1. The first topology shows the graph initialized as a coalescent
tree T0 at the start of the algorithm.

2. The first recombination event occurs at the point along the
sequence indicated by the second topology. The new coalesc-
ing line is labeled with the identity of the new local tree ID
(i.e., 1) as well as any lines that are descendants of the recom-
bination point.

3. A new local tree T1 shown in bold lines is subsequently de-
fined in the third topology by marking the edges to the value
1 according to the marking algorithm described above.

4. The fourth topology shows the second recombination event
followed by a coalescent event above the MRCA. The same
rules described in step 2 apply here.

5. The fifth topology repeats the marking algorithm described
earlier, with edges labeled 2.

6. A pruning event is invoked since k = 2 and the current tree ID
i is equal to 2. Thus, any edges with tree IDs less than or equal
to 0 will be pruned from the graph.

Steps 2–6 may be repeated hundreds of thousands of times when
simulating long chromosomes for large sample sizes.

Variable recombination rates
A set of mappings between the unit interval [0,1] and recombi-
nation rate ratio (cM/Mb) mappings can be provided to MaCS
through a flat file. For example, if a 1-MB region is to be simu-
lated, and the first 100 kB is expected to have twice the base-
line recombination rate across the entire sequence, the first

Figure 2. A demonstration of the algorithm behind MaCS for a sample of three sequences and the
tree-retention parameter set to k = 2. The algorithm proceeds from the left end of the region to be
simulated toward the right end. Vertical edges are labeled to their immediate right with the ID of the
most recent tree that it belongs to.

Chen et al.

140 Genome Research
www.genome.org



line in the input file can be read into the program as
0<tab>0.10<tab>2.0.

The family of algorithms derived from the Wiuf and Hein
method (Wiuf and Hein 2000), including SMC and MaCS, can
easily accommodate recombination rate variation. At any user-
specified zone where the rate ratio is expected to deviate from 1,
the b� parameter in the exponential draw for the next recombi-
nation point is scaled by the rate ratio.

Gene conversion
From a topological standpoint, simple crossovers can be modeled
within the graph as a recombining node with two lines emerging
above it. One line, the “old” line, represents the original line
leading to its ancestors to the left of the recombination event; the
other line, the “new” line, leads to its ancestors to the right of the
recombination event. Gene conversion can be modeled within a
graph as a crossover event, immediately followed by a second
crossover event (close to the first crossover), with the added con-
dition that the new line of the second crossover event coalesces
to the old line of the first event, effectively forming a loop in the
graph. This concept is illustrated clearly by Wiuf and Hein
(2000).

We implement gene conversion using a model that incor-
porates a parameter f that reflects the ratio of the rate of gene
conversion events and the rate of crossover events (Frisse et al.
2001) and then assumes a geometric distribution of gene conver-
sion tract lengths L:

Pr(L = n) = (1 � �)�n

where n is the number of nucleotides and � is the probability a
tract continues once it begins (Hilliker et al. 1994). Estimates
of �, which determine the expected tract length, vary among
organisms, and its estimation is beyond the scope of this paper.
By use of the same general algorithm as described above, we
increase the recombination rate at any position by a factor of
(1 + f). Each recombination event is then labeled as a crossover
with probability 1/(1 + f) or a gene conversion event with prob-
ability f/(1 + f).

If the next event is a gene conversion event, we generate the
tract length and add to the graph the first crossover event of the
gene conversion. The recombining node and the endpoint
(scaled on the unit interval) for the tract is then stored in
memory until the algorithm reaches the endpoint of the tract. At
this point, we recall the two edges emerging upward from the
recombining node and add the second crossover event to the
graph, thus completing the gene conversion loop. Note that
there may be several gene conversion tracts that overlap one
another (especially with high f values). In certain cases, the gene
conversion loop cannot be completed. For instance, the old line
can be deleted if the edge label of this line is beyond the thresh-
old dictated by the tree-retention parameter k. Another case is
when a tract begins near the end of the simulated sequence and
the tract length endpoint exceeds the end (>1) of the total se-
quence.

Ascertainment of segregating sites
When simulating scenarios to model data generated by commer-
cial genotyping products, one needs to pay attention to the
schemes used to ascertain the markers. Because commercial prod-
ucts are usually geared toward optimizing statistical power, mark-
ers with rare minor alleles are almost always excluded. Most
simulation programs available, including ms, have provisions to
exclude sites with derived allele frequency less than a user-

specified threshold. We offer a more general approach by allow-
ing the user to provide an input file containing a list of bins
(identified as a range of minor allele frequencies) along with the
frequencies of mutations within each bin. MaCS will then pro-
duce simulations that mimic this distribution of allele frequen-
cies. For example, in the specific case where one would like to
filter out any SNPs <1%, one would include one line in the input
file that reads 0<tab>0.01<tab>0.0, which informs the program
that any SNPs with a derived allele frequency between 0 and 0.01
has a probability 0 of being output. Whenever feasible, we do this
by simulating as described before but with a higher mutation rate
and then iteratively thinning the data until the simulated fre-
quency spectrum matches the specified distribution of allele fre-
quencies. However, in cases where the user-specified constraints
cannot be met (e.g., insufficient number of segregating sites to
remove), we notify the user and do not post-process the data as
described above. Note that this approach is equivalent to the
ascertainment correction scheme described by Voight and col-
leagues (2006).

Benchmarking across programs
Generating comparable results from four different programs re-
quires some careful planning since each program interprets pa-
rameters differently. Specifically, the parameters Ne (effective
population size), µ (per site mutation rate), and r (per site recom-
bination rate) should be common across all test cases. Here, we
assumed Ne = 12,500, µ = 2 � 10�8/bp, and r = 1.2 � 10�8/bp.
This translates to a scaled mutation rate and recombination rate
(scaled in units of 4Ne generations) of 10,000 and 6000 for a
10-Mb region, values that are directly provided to the ms com-
mand line. We should expect to observe similar mutation and
recombination counts since all four algorithms assume that mu-
tations and recombination events follow a Poisson process with
intensity dictated only by the total branch length across sites and
the scaled mutation/recombination rates.

A distinct option of GENOME is the ability for the user to
specify a minimum tract length, d, of DNA in which no recom-
bination occurs. Consequently, if the length of the region being
simulated is L, then the maximum number of recombination
events one can expect to observe is given by L/(d � 1). The docu-
mentation notes that the tract length can be set to a 1 (i.e., a
single base pair) when sampling small regions but, for the sake of
memory efficiency, should be increased. To estimate what value
might be appropriate, we first ran simulations using ms for each
of the scenarios in Table 2 to obtain a rough estimate of the
expected number of trees (recombination events) and mutations
(segregating sites). We used the number of distinct trees gener-
ated by ms to derive the minimum tract length value in
GENOME, and thus an upper bound for the number of recom-
bination events. Note that imposing this hard constraint is likely
to lead to a bias toward a lower than expected number of trees,
but we felt that given the heavy memory burden, this was a small
cost.

For FORWSIM simulations, we set µ and r as above, but allow
Ne to vary across different runs. Specifically, we define Ne = 10n
(where n is the sample size), and follow each simulation for 10Ne

generations. For forward-time simulations to be accurate, the
population size must be large enough for the scaling to be ap-
propriate, but simulating large population sizes is costly both in
terms of runtime and memory usage. Our approach is something
of a compromise, and we have not tested specifically whether the
Ne values chosen are large enough (i.e., whether FORWSIM simu-
lations are good approximations of the neutral evolutionary pro-
cess for the particular values chosen).

To better gauge the baseline memory overhead across algo-

Simulation of genome-length data

Genome Research 141
www.genome.org



rithms, we polled memory usage at 1-sec intervals and calculated
the maximum for each test run, as indicated in Table 2.

Estimating demographic parameters for Yoruba HapMap data
We used the method described previously (Plagnol and Wall
2006) to estimate demographic parameters appropriate for the
Yoruba HapMap data. Briefly, we used data from the NIEHS SNPs
project (Livingston et al. 2004) to estimate demographic param-
eters under a two-population model meant to mimic the history
of West African and European populations. This model incorpo-
rated divergence and migration between populations, recent
population growth, and a population bottleneck in one of the
populations. We summarized the data using a variety of summa-
ries of the joint frequency spectrum and then used coalescent
simulations to determine demographic parameters that maxi-
mized the likelihood of the data. For further details, see Plagnol
and Wall (2006).

Estimation of sample sizes necessary for case-control
simulation
In the example for Type 2 diabetes, we can solve for the pen-
etrance probabilities f0, f1, and f2 for the wild-type homozygote,
heterozygote, and mutant homozygote genotype groups, respec-
tively, given a risk allele frequency pd using the relationship:

K = (1 � pd)2f0 + 2pd(1 � pd)f1 + pd
2f2,

where

RR1 = f1/f0 and RR2 = f2/f0.

Given the heterozygote (RR1) and homozygote (RR2) relative
risks, in order to calculate the sample size N required to have
expected n cases, we can substitute the values above into:

n = N(pd
2f2 + 2pd(1 � pd)f1 + (1 � pd)2f0).

Acknowledgments
This research was funded by National Institutes of Health grants
HG004049 (P.M and J.D.W) and R25T CA112355 (G.K.C. Fellow).

References

Begun, D.J., Holloway, A.K., Stevens, K., Hillier, L.W., Poh, Y.P., Hahn,
M.W., Nista, P.M., Jones, C.D., Kern, A.D., Dewey, C.N., et al. 2007.
Population genomics: Whole-genome analysis of polymorphism and
divergence in Drosophila simulans. PLoS Biol. 5: e310. doi:
10.1371/journal.pbio.0050310.

Cauchi, S. and Froguel, P. 2008. TCF7L2 genetic defect and type 2
diabetes. Curr. Diab. Rep. 8: 149–155.

Clark, R.M., Schweikert, G., Toomajian, C., Ossowski, S., Zeller, G.,
Shinn, P., Warthmann, N., Hu, T.T., Fu, G., Hinds, D.A., et al. 2007.
Common sequence polymorphisms shaping genetic diversity in
Arabidopsis thaliana. Science 317: 338–342.

Durrant, C., Zondervan, K.T., Cardon, L.R., Hunt, S., Deloukas, P., and
Morris, A.P. 2004. Linkage disequilibrium mapping via cladistic
analysis of single-nucleotide polymorphism haplotypes. Am. J. Hum.
Genet. 75: 35–43.

Frazer, K.A., Ballinger, D.G., Cox, D.R., Hinds, D.A., Stuve, L.L., Gibbs,
R.A., Belmont, J.W., Boudreau, A., Hardenbol, P., Leal, S.M., et al.
2007. A second generation human haplotype map of over 3.1
million SNPs. Nature 449: 851–861.

Frisse, L., Hudson, R.R., Bartoszewicz, A., Wall, J.D., Donfack, J., and Di
Rienzo, A. 2001. Gene conversion and different population histories
may explain the contrast between polymorphism and linkage
disequilibrium levels. Am. J. Hum. Genet. 69: 831–843.

Grant, S.F., Thorleifsson, G., Reynisdottir, I., Benediktsson, R.,
Manolescu, A., Sainz, J., Helgason, A., Stefansson, H., Emilsson, V.,
Helgadottir, A., et al. 2006. Variant of transcription factor 7-like 2
(TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 38:

320–323.
Griffiths, R.C. and Marjoram, P. 1996. Ancestral inference from samples

of DNA sequences with recombination. J. Comput. Biol. 3: 479–502.
Hill, W.G. and Robertson, A. 1968. Linkage disequilibrium in finite

populations. Theor. Appl. Genet. 38: 226–231.
Hilliker, A.J., Harauz, G., Reaume, A.G., Gray, M., Clark, S.H., and

Chovnick, A. 1994. Meiotic gene conversion tract length distribution
within the rosy locus of Drosophila melanogaster. Genetics 137:
1019–1026.

Hudson, R.R. 1991. Gene geneologies and the coalescent process. In
Oxford surveys in evolutionary biology (eds. D. Futuyama and J.
Antonovics), pp. 1–44. Oxford University Press, UK.

Hudson, R.R. 2002. Generating samples under a Wright-Fisher neutral
model of genetic variation. Bioinformatics 18: 337–338.

Kingman, J.F.C. 1982. The coalescent. Stochastic Process. Appl. 13:
235–248.

Laval, G. and Excoffier, L. 2004. SIMCOAL 2.0: A program to simulate
genomic diversity over large recombining regions in a subdivided
population with a complex history. Bioinformatics 20: 2485–2487.

Lewontin, R.C. 1964. The interaction of selection and linkage. I. General
considerations; heterotic models. Genetics 49: 49–67.

Li, N. and Stephens, M. 2003. Modeling linkage disequilibrium and
identifying recombination hotspots using single-nucleotide
polymorphism data. Genetics 165: 2213–2233.

Liang, L., Zollner, S., and Abecasis, G.R. 2007. GENOME: A rapid
coalescent-based whole genome simulator. Bioinformatics 23:
1565–1567.

Livingston, R.J., von Niederhausern, A., Jegga, A.G., Crawford, D.C.,
Carlson, C.S., Rieder, M.J., Gowrisankar, S., Aronow, B.J., Weiss, R.B.,
and Nickerson, D.A. 2004. Pattern of sequence variation across 213
environmental response genes. Genome Res. 14: 1821–1831.

Mailund, T., Schierup, M.H., Pedersen, C.N., Mechlenborg, P.J., Madsen,
J.N., and Schauser, L. 2005. CoaSim: A flexible environment for
simulating genetic data under coalescent models. BMC Bioinformatics
6: 252. doi: 10.1186/1471-2105-6-252.

Marjoram, P. and Wall, J.D. 2006. Fast “coalescent” simulation. BMC
Genet. 7: 16. doi: 10.1186/1471-2156-7-16.

McVean, G.A. and Cardin, N.J. 2005. Approximating the coalescent with
recombination. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360:
1387–1393.

Padhukasahasram, B., Marjoram, P., Wall, J.D., Bustamante, C.D., and
Nordborg, M. 2008. Exploring population genetic models with
recombination using efficient forward-time simulations. Genetics
178: 2417–2427.

Plagnol, V. and Wall, J.D. 2006. Possible ancestral structure in human
populations. PLoS Genet. 2: e105. doi:
10.1371/journal.pgen.0020105.

Reich, D.E., Cargill, M., Bolk, S., Ireland, J., Sabeti, P.C., Richter, D.J.,
Lavery, T., Kouyoumjian, R., Farhadian, S.F., Ward, R., et al. 2001.
Linkage disequilibrium in the human genome. Nature 411: 199–204.

Schaffner, S.F., Foo, C., Gabriel, S., Reich, D., Daly, M.J., and Altshuler,
D. 2005. Calibrating a coalescent simulation of human genome
sequence variation. Genome Res. 15: 1576–1583.

Scheet, P. and Stephens, M. 2006. A fast and flexible statistical model
for large-scale population genotype data: Applications to inferring
missing genotypes and haplotypic phase. Am. J. Hum. Genet. 78:
629–644.

Stram, D.O. 2004. Tag SNP selection for association studies. Genet.
Epidemiol. 27: 365–374.

Tajima, F. 1983. Evolutionary relationship of DNA sequences in finite
populations. Genetics 105: 437–460.

Voight, B.F., Adams, A.M., Frisse, L.A., Qian, Y., Hudson, R.R., and Di
Rienzo, A. 2005. Interrogating multiple aspects of variation in a full
resequencing data set to infer human population size changes. Proc.
Natl. Acad. Sci. 102: 18508–18513.

Voight, B.F., Kudaravalli, S., Wen, X., and Pritchard, J.K. 2006. A map of
recent positive selection in the human genome. PLoS Biol. 4:
e72.doi: 10.1371/journal.pbio.0040072.

Wall, J.D. 2004. Close look at gene conversion hot spots. Nat. Genet. 36:
114–115.

Watterson, G.A. 1975. On the number of segregating sites in genetical
models without recombination. Theor. Popul. Biol. 7: 256–276.

Wiuf, C. and Hein, J. 1999. Recombination as a point process along
sequences. Theor. Popul. Biol. 55: 248–259.

Wiuf, C. and Hein, J. 2000. The coalescent with gene conversion.
Genetics 155: 451–462.

Wright, S. 1931. Evolution in Mendelian populations. Genetics 16:
97–159.

Received July 22, 2008; accepted in revised form October 7, 2008.

Chen et al.

142 Genome Research
www.genome.org




