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Organisms must adapt to make optimal use of the metabolic system in response to environmental changes. In the
long-term, this involves evolution of the genomic repertoire of enzymes; in the short-term, transcriptional control
ensures that appropriate enzymes are expressed in response to transitory extracellular conditions. Unicellular
organisms are particularly susceptible to environmental changes; however, genome-scale impact of these modulatory
effects has not been explored so far in bacteria. Here, we integrate genome-scale data to investigate the evolutionary
trends and transcriptional control of metabolism in Escherichia coli K12. Globally, the regulatory system is organized in
a clear hierarchy of general and specific transcription factors (TFs) that control differing ranges of metabolic
functions. Further, catabolic, anabolic, and central metabolic pathways are targeted by distinct combinations of these
TFs. Locally, enzymes catalyzing sequential reactions in a metabolic pathway are co-regulated by the same TFs.
Regulation is more complex at junctions: General TFs control the overall activity of all connecting reactions, whereas
specific TFs control individual enzymes. Divergent junctions play a special role in delineating metabolic pathways and
decouple the regulation of incoming and outgoing reactions. We find little evidence for differential usage of
isozymes, which are generally co-expressed in similar conditions, and thus are likely to reinforce the metabolic
system through redundancy. Finally, we show that enzymes controlled by the same TFs have a strong tendency to
co-evolve, suggesting a significant constraint to maintain similar regulatory regimes during evolution. Catabolic,
anabolic, and central energy pathways evolve differently, emphasizing the role of the environment in shaping the
metabolic system. Many of the observations also occur in yeast, and our findings may apply across large
evolutionary distances.

[Supplemental material is available online at www.genome.org.]

Small-molecule metabolism is the set of all chemical reactions
that allow a cell to assimilate environmental nutrients, generate
energy, and synthesize precursors necessary for macromolecular
synthesis. In order to survive in a habitat, organisms must use the
nutrients that exist in the environment efficiently and adapt to
changes in their availability. In the long term, prolonged expo-
sure to particular habitats leads to the evolution of the metabolic
enzymes encoded in the organism’s genome (Herring et al. 2006).
In bacteria—which are generally highly streamlined and efficient
organisms—small-molecule metabolism assumes special impor-
tance as typically a quarter of gene content is devoted to metabo-
lism. In fact, the number of enzymatic genes is a key determinant
of bacterial genome size (Ranea et al. 2005). Systematic analyses
of metabolic evolution are now possible owing to the availability
of several hundred bacterial genome sequences accompanied by
information on organism habitat and phenotype (Shlomi et al.
2007b; Kreimer et al. 2008). More recently, the dependence be-
tween bacterial gene content and the environment has been
highlighted by metagenomic studies, which have suggested that
specific metabolic functions act as signatures for particular types

of habitats (Gill et al. 2006; Turnbaugh et al. 2006; Dinsdale et al.
2008).

The enzymatic gene content of an organism represents just
one dimension of the metabolic system, as many bacteria live in
variable environments and not all enzymes are required at all
times. In the short term, an adaptive response to changing nu-
trient conditions can be achieved through transcriptional regu-
lation of intracellular enzyme concentrations. A powerful ap-
proach to study metabolic activity has been through the use of
network representations, in which enzymatic reactions are de-
picted as directed edges and small molecules as nodes. The avail-
ability of genome sequences, coupled with the biochemical char-
acterization of enzymes, has led to high-quality computational
reconstruction of metabolic networks for a wide variety of organ-
isms. Graph-theoretical analyses and simulations such as flux-
balance analysis have been applied to these networks to study
their structural and functional properties (Jeong et al. 2000;
Ravasz et al. 2002; Ibarra et al. 2003; Almaas et al. 2004, 2005).

Control of metabolic activity can be studied by overlaying a
transcriptional regulatory network in which edges represent
regulatory interactions from transcription factors (TFs) to target
genes. Data for the best-studied bacterium Escherichia coli are
available in RegulonDB, which is a compilation of more than
2000 regulatory interactions derived largely from literature de-
scribing small-scale experiments (Salgado et al. 2006). This sub-
stantial data set has been used to improve phenotypic predic-
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tions by integrating regulatory information into metabolic flux
balance simulations (Covert and Palsson 2002; Herrgard et al.
2003; Covert et al. 2004; Barrett et al. 2005; Shlomi et al. 2007a).
It has also been used to characterize recurring patterns of TF–
target gene interactions termed “network motifs” that confer dif-
ferent kinetic properties to metabolic circuits (Shen-Orr et al.
2002; Mangan et al. 2003, 2006; Zaslaver et al. 2004; Alon 2007).

In parallel, three genome-scale investigations have made
important contributions to our understanding of general prin-
ciples that underlie transcriptional regulation of the metabolic
system (Ihmels et al. 2004; Kharchenko et al. 2005; Notebaart et
al. 2008). In Saccharomyces cerevisiae, Ihmels et al. (2004) combined
large-scale gene expression data with the metabolic network to
demonstrate that transcriptional regulation ensures coherent me-
tabolite flow between sequential enzymes. Kharchenko et al. (2005)
reported, again in yeast, that enzymes show more similar expres-
sion profiles if they are closer together in the metabolic network.
Very recently in both S. cerevisiae and E. coli, Notebaart et al. (2008)
argued that strong correlations in metabolite flow calculated
from flux balance simulations are better predictors of coexpres-
sion than simple distance separation in the metabolic network.

The above studies are largely based on the metabolic and
regulatory apparatus of S. cerevisiae. Although both S. cerevisiae and
E. coli are unicellular organisms, their regulatory machineries are
vastly different (Fink 1987). For example, whereas more than half
of all E. coli metabolic regulators are activated by small-molecule
binding (Anantharaman et al. 2001; Madan Babu and Teich-
mann 2003), most eukaryotic TFs respond to complex signaling
cascades (Reece et al. 2006). It is unclear if the findings are ap-
plicable to prokaryotes, and it is important to perform an inde-
pendent study focused on a bacterial system.

Here we study, on a genomic scale, how the transcriptional
regulatory system controls small-molecule metabolism in E. coli.
First, we investigate the regulation of different types of metabolic
pathways on a global scale, and also introduce a functional hi-
erarchy of TFs. Next, we examine regulatory patterns at a local
scale, by assessing how gene expression is mediated for neigh-
boring metabolic reactions, with special attention on the control
of pathway junctions. Finally, we study the evolution of meta-
bolic pathways and evaluate whether there is a relationship be-
tween the coordinated regulation and the conservation of en-
zymes. In doing so, we establish rules of transcriptional regula-
tory system that are generally applicable to bacterial metabolic
systems.

Results and Discussion

Our study uses five distinct data sets:

1. A metabolic network comprising 788 reactions mapped onto
781 enzyme genes and 628 small molecules from the EcoCyc
database (Keseler et al. 2005);

2. a transcriptional regulatory network involving 111 TFs regu-
lating 388 enzyme genes (49.7% of all enzymes) via 913 regu-
latory interactions, sourced from RegulonDB (Salgado et al.
2006);

3. 43 binding interactions between 40 TFs and 39 small mol-
ecules from EcoCyc representing post-translational regulation
of TF activity;

4. Affymetrix microarray data covering 221 mRNA hybridiza-
tions across diverse cellular conditions from the M3D database
(Faith et al. 2007); and

5. protein sequences for E. coli K12 MG1655 and 380 other pro-
karyotic organisms with completely sequenced genomes ob-
tained from the KEGG database (Kanehisa et al. 2006).

The first four data sets contain information for E. coli K12 only.

Global regulation of metabolic enzymes

Hierarchy of general and specific TFs

The E. coli transcriptional regulatory network was previously
shown to have a pyramid-shaped hierarchical topology, with a
few master TFs at the top level regulating lower-level TFs (Ma et
al. 2004; Balazsi et al. 2005; Yu and Gerstein 2006). Recent stud-
ies have further shown that metabolic pathways are regulated by
shorter cascades of TFs than functions such as motility and bio-
film formation (Shen-Orr et al. 2002; Martinez-Antonio et al.
2008). Here we show that the regulation of the metabolic system
is also hierarchical in terms of the functionality of the targeted
enzymes (Fig. 1). All the results presented in this paper are robust
against perturbations in the underlying data set (i.e., introduc-
tion of errors and deletion of data points), indicating that our
findings are likely to remain valid as data sets are updated in the
future (Methods).

At the top of the hierarchy, general TFs regulate genes be-
longing to multiple functional categories as described by the
COG classification system (Tatusov et al. 2003). Ten of the 111
TFs in our data set belong to this group, and it includes six of the
seven global TFs described in an earlier publication (Martínez-
Antonio and Collado-Vides 2003). Despite the breadth of their
regulation, all these TFs display a statistical enrichment for a
single functional category that reflects the nature of the input
signal sensed by the TF concerned. For example, Lrp binds leu-
cine and preferentially targets amino acid metabolism. Even Fis
and IHF—which do not explicitly contain signal-sensing do-
mains, but whose activities are growth-phase-dependent (Ali
Azam et al. 1999)—favor regulation of energy metabolism (Blot
et al. 2006).

On the other hand, specific TFs restrict their target genes to
those in the same EcoCyc pathway or the same functional cat-
egory: 54 TFs are pathway specific, and 18 others are function
specific (i.e., regulate more than one pathway but only those of
single functional category). Again, the activities of many specific
TFs are post-translationally controlled through small-molecule
binding (Anantharaman et al. 2001; Madan Babu and Teich-
mann 2003); however, here, the regulatory metabolite tends to
originate from the pathway that is targeted by the relevant TF,
effectively forming a local feedback loop. A classic example is the
LacI repressor of the lactose utilization operon: On binding allo-
lactose, this TF immediately affects the corresponding catabolic
pathway. We could not classify the remaining 29 TFs, as there
were too few targets with metabolic COG or pathway annota-
tions in the current data set.

In direct relation to the diversity of target gene functions,
we find that general TFs regulate more genes than specific TFs;
thus the topological and functional hierarchies of the regulatory
network are closely linked. The two classes of TFs also differ in
several other ways (Supplemental Fig. 1):

1. General TFs display higher mRNA expression levels than spe-
cific TFs when we examine data from Affymetrix GeneChips
(PMann-Whitney = 5.6 � 10�5). This reflects the fact that cells
require larger absolute quantities of general TFs since they
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have to bind many more targets
(Lozada-Chavez et al. 2008). For ex-
ample, it is well known that CRP,
which targets the entire carbohydrate
metabolism system, is present in
1400–6600 copies per cell (Ishizuka et
al. 1993), compared with LacI, which
controls only lactose degradation and
is present in only 10–20 copies per
cell (Gilbert and Muller-Hill 1966).

2. In line with previous observations
(Menchaca-Mendez et al. 2005), we
also observe that the genes of specific
TFs tend to be encoded much closer
to their target binding sites, in con-
trast to general TFs (PMann-Whitney <
2.2 � 10�16). In prokaryotes, tran-
scription and translation are tightly
coupled, ensuring that the protein
product is generally produced close to
the encoding gene on the chromo-
some. As specific TFs are expressed in
small quantities and have compar-
atively few targets, they would locate
binding sites more efficiently if their
genes were proximal on the chromo-
some (Janga et al. 2007; Kolesov et al.
2007).

3. Finally, small molecules that regulate
the activity of specific TFs tend to be
closer in the metabolic network to
the target enzymes of these TFs, com-
pared with those that bind general
TFs (see Local regulation of metabolic
enzymes and Methods). This indi-
cates that the feedback loop involv-
ing specific TFs is more local in na-
ture.

Catabolism, anabolism, and central energy
metabolism are regulated differently

Next, we investigated whether distinct
regulatory principles operate in different
metabolic subsystems (Table 1): (1) the
catabolic subsystem assimilates diverse
nutrients from the environment, and
feeds these products into energy-
generating pathways; (2) the anabolic
subsystem synthesizes a wide range of
small-molecule products from a limited
set of precursor molecules; and (3) the
central/energy subsystem is situated be-
tween catabolic and anabolic pathways,
generating ATP and biosynthetic precur-
sors. We studied this by testing for dif-
ferences in the numbers of TFs that regu-
late genes from these metabolic func-
tions and also for differences in the TF
classes involved.

As shown in Figure 2A, each sub-
system is regulated differently. Anabolic
pathways are controlled by few TFs, with

Figure 1. Regulatory targets of general and specific TFs. Schematic representation of transcriptional
regulation of E. coli small-molecule metabolism displaying general TFs (red circles), specific TFs (blue),
and target enzyme genes (black). TFs are labeled with gene names, and enzymes are grouped ac-
cording to their COG annotations. Regulatory interactions are shown as lines directed from general TF
to functionally enriched target (red), general TF to non-enriched function (gray), and specific TF to
target (blue).
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67% of enzymes targeted by a single regulator each. In contrast,
central energy metabolism is heavily regulated: >75% of enzymes
are controlled by at least three TFs each. Catabolic enzymes lie
between the two extremes.

The subsystems also differ in the balance of general and
specific TFs (Fig. 2B,C). Catabolic enzymes tend to be regulated
by a combination of both TF types (e.g., CRP and LacI), and the
need for multiple regulators is illustrated by the control of car-
bohydrate-processing pathways. Under normal circumstances,
E. coli favors glucose as the main carbon source. However, in the
absence of glucose and the presence of an alternative sugar (e.g.,
arabinose), CRP, a general regulator for many catabolic systems,
and a specific TF (e.g., AraC) jointly activate the appropriate
pathways. This ensures that alternative carbon sources are not
used when glucose is available in the medium.

In contrast, anabolic enzymes are usually targeted by a lone
regulator, with no preference for general or specific TF type. As
discussed above, many of these TFs bind small molecules that are
related to the pathways they control (e.g., substrate or product of
the regulated pathway), thus creating extensive feedback be-
tween enzyme expression and cellular demands for the anabolic
product. A general regulator that demonstrates this principle is
Lrp, which binds leucine and preferentially targets a large group
of amino acid biosynthetic pathways. An example of a specific
regulator is BirA, which binds biotin-5-AMP and controls biotin
biosynthesis. By varying a given TFs binding affinity to different
target promoters, a single input regulation facilitates a program
of “just-in-time” transcription in which enzymes at the begin-
ning of pathways are expressed earlier than those at the end
(Zaslaver et al. 2004). This form of control is most likely to ben-
efit anabolic pathways as they tend to involve more reactions
than catabolic pathways (Supplemental Fig. 2), and metabolites
take longer to process.

Finally, central energy metabolism is almost exclusively
controlled by combinations of general TFs. This subsystem is a
hub to which nutrients assimilate and from which anabolic path-
ways radiate out. This means that these enzymes need to respond
to numerous environmental conditions, which is best achieved
through control by general TFs expressed under multiple condi-
tions (Martínez-Antonio and Collado-Vides 2003).

Local regulation of metabolic enzymes

Connectivity of enzyme pairs in the metabolic network

Having studied how the metabolic network and its subsystems
are controlled on a global scale, we now examine the regulatory
properties of individual enzymes at a local level. For this we clas-
sified pairs of neighboring enzymes by their relative positioning
in the metabolic network (Fig. 3).

“Flow” reactions describe enzyme pairs arranged in a se-

quential manner so that metabolites proceed from one reaction
to the next. These can occur in linear sections of the metabolic
system, or at junctions; for the latter, enzyme pairs can be in
divergent or convergent configurations. “Non-flow” reactions
occur only at junctions, and represent enzyme pairs that are po-
sitioned nonsequentially. These can once again be convergent
(both reactions feed into a common product) or divergent (both
enzymes emerge from a common reactant). In total, we identify
9798 enzyme pairs in these configurations, of which nearly a
third have known regulators for both reactions (Table 2). Note

Figure 2. Numbers of TFs controlling metabolic enzymes. (A) Histo-
gram of numbers of TFs regulating all, catabolic, anabolic, and central
energy enzymes. (*) Overrepresented groups; (§) underrepresented
groups. (B) Box plots of numbers of general and specific TFs targeting
different classes of enzymes. (C) Histogram of numbers of enzymes regu-
lated by general TFs only, specific TFs only, and combinations of general
and specific TFs.

Table 1. Metabolic subfunctions

Metabolism
type

Number
of reactions

Number
of enzymes

Number
of TFsAll Regulated All Regulated

All 788 371 781 388 112
Catabolism only 168 113 186 128 64
Anabolism only 370 130 339 110 37
Central and

energy metabolism
53 33 109 74 32
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that these arrangements are not exclusive, and enzymes can be-
long to more than one configuration.

Linear-flow reactions are strongly co-regulated

We assess the extent to which enzyme pairs are co-regulated (Fig.
4A; Table 2); that is, targeted by identical sets of TFs. Simple
linear stretches of the metabolic network are tightly co-regulated,
as 75% of linear-flow reactions are targeted by the same TFs. An
example of such regulation is that of purB and purC in purine
biosynthesis by the TF PurR. We note that a substantial propor-
tion (58%) of co-regulated enzyme pairs reside in the same op-

eron; thus genomic organization of enzyme genes is a major driv-
ing force for coordinated regulation. However, nearly half of co-
regulated enzymes belong to different operons, and it is clear that
transcriptional control extends well beyond the confines of op-
eron structure.

We confirm the observations made from the transcriptional
network by testing the coexpression of enzyme pairs (Fig. 4B).
Here, we measure coexpression of gene pairs by calculating the
Pearson correlation coefficient of their expression profiles across
221 Affymetrix hybridizations (Faith et al. 2007). Although this
calculation is independent of information from the transcrip-
tional regulatory network, enzyme pairs in linear-flow configu-
rations display higher levels of coexpression than other pairs
(PMann-Whitney < 2.2 � 10�16).

Pathway junctions are intricately regulated

At first glance, the amount of co-regulation appears much lower
at pathway junctions (8% for flow and 10% for non-flow) (Fig.
4A). This is partly because most junctions have numerous incom-
ing and outgoing reactions resulting in a large number of pair-
wise comparisons. In fact, more than half of junctions (52%)
contain at least one pair of co-regulated flow reactions (i.e., one
incoming and one outgoing reaction), but fewer than a third
(30%) contain a pair of co-regulated non-flow reactions (i.e., both
incoming or outgoing). This is also reflected by the microarray
data in which co-regulated reactions display significantly higher
levels of coexpression compared with other enzymes (Supple-
mental Fig. 3). In addition, many reactions connected at junc-
tions have at least one TF in common (51% of all flow pairs, 36%
of non-flow pairs) (Supplemental Fig. 4); in 95% of these cases, a
general TF acts as the overlapping regulator.

An example of such co-regulation occurs at a junction cen-
tered on the L-ribulose-5-phosphate. This metabolite is produced
by AraB and consumed by AraD of the arabinose pathway, and by
UlaE and UlaF of the ascorbate utilization pathway. The first pair
is targeted by the TFs CRP and AraC, and the second pair by CRP,
IHF, and UlaR. Thus, distinct but overlapping sets of regulators
ensure a coherent flow of metabolites through two complemen-
tary pathways in the junction.

These observations demonstrate that there is an intricate
system of control at pathway junctions. General TFs determine
the overall activity of junctions by targeting all connecting reac-
tions. Specific TFs are then used to fine-tune the expression of
individual reactions. In many cases, one or more pairs of reac-
tions—commonly an incoming and outgoing pair—are con-
trolled by identical sets of TFs to provide a major thoroughfare
for the flow of metabolites. Alternative or additional reactions are

Table 2. Transcriptional co-regulation in local metabolic network patterns

Flow/Non-flow Configuration
Number of

reaction pairs

Number of enzyme pairs

Median
expression correlationAll Regulated

Identical
regulators

Overlapping
regulatorsa

Distinct
regulators

Flow Linear 136 205 81 61 (75%) 7 (9%) 13 (16%) 0.48
All junctions 2839 4633 1490 121 (8%) 696 (47%) 673 (45%) 0.14
Divergent junctions 2564 4042 1208 59 (5%) 502 (42%) 647 (54%) 0.13
Convergent junctions 275 628 295 50 (17%) 202 (68%) 43 (15%) 0.35

Non-flow All junctions 3423 4908 1457 90 (6%) 497 (34%) 870 (60%) 0.15
Divergent junctions 1723 2833 933 76 (8%) 319 (34%) 538 (58%) 0.11
Convergent junctions 1700 2127 566 72 (13%) 177 (31%) 317 (56%) 0.16

aThe number of enzymes with overlapping TFs does not include those with identical TFs.

Figure 3. Configurations for neighboring enzymatic reactions. Ex-
ample reactions are given for each configuration.
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then activated to divert metabolic flow depending on the cellular
conditions.

Regulation is decoupled at divergent junctions

We can examine the control of junctions by dividing them into
those that are convergent and divergent (Figs. 3 and 4; Table 2).
Here, we find that flow reaction pairs are more likely to be co-
regulated if they traverse convergent junctions (17% with iden-
tical TFs, 85% with overlapping TFs) than divergent junctions
(5% and 47%, respectively).

The difference in level of control is also reflected in the
expression data. As previously described by Kharchenko et al.
(2005), coexpression tends to fall with increasing distance be-
tween enzyme pairs in the metabolic network (measured as the
number of separating metabolites). However, the pattern of co-
expression depends on the nature of separation between the en-
zymes (Fig. 5). Reactions uninterrupted by any junctions retain
relatively high levels of coexpression (Fig. 5A). Introduction of a
convergent junction causes a slight drop in coexpression, and the
signal is not affected substantially beyond this point (Fig. 5B). In
contrast, a single divergent junction is sufficient to abolish all
coexpression (Fig. 5C).

Notebaart et al. (2008) recently reported that enzymes with
coupled metabolic fluxes—where a nonzero metabolic flux for

one enzyme implies a nonzero flux for the other and vice versa—
tend to show similar expression profiles (Supplemental Fig. 5). In
fact, there are fewer divergent junctions between flux-coupled
enzymes than expected by chance. Moreover, these junctions
appear to provide natural boundaries for the definition of path-
ways: 62% of reaction pairs connected at convergent junctions
share the same EcoCyc pathway, but only 11% of pairs linked at
divergent junctions do so (PFisher-test < 2.2 � 10�16) (Supplemen-
tal Fig. 6). Thus, we suggest that the topology of the metabolic
network is an important determinant of flux coupling, as well as
co-regulation.

A possible underlying reason for the unique behavior of di-
vergent junctions is that they are decision points in the network;
that is, metabolic flow is dependent on the choice of one reaction
over another. In comparison, convergent arrangements are not
decision-making as flux can flow only in one direction out of the
junctions. Therefore, by decoupling the regulation of connecting
reactions at divergent junctions, incoming metabolic flux can be
directed toward the required product according to independent
cellular signals.

Isozymes are partially co-regulated

Isozymes are two or more enzymes that differ in amino acid
sequence but catalyze the same reaction. There are several pos-
sible ways in which they could be beneficial to the organism.
First, through selective utilization under different conditions,
isozymes could permit fine-tuning of a metabolic pathway, as
they often display differing kinetics. Next, the use of dedicated
isozymes in distinct pathways containing a common reaction
could help reduce cross-talk. Finally, isozymes could imply in-
creased metabolic flow through a reaction and also provide re-
dundancy to compensate against mutations.

The E. coli network contains 97 reactions that are mediated
by 196 isozymes. Although only 7% of isozyme pairs are co-
regulated by identical TFs, >65% have overlapping TFs, indicat-
ing substantial regulatory coordination (Supplemental Fig. 7).
For example, the E. coli genome encodes for two acetylornithine
transaminases, ArgD and AstC; the general TF ArgR controls
both, but another TF, GlnG, targets only argD.

In the yeast metabolic network, Ihmels et al. (2004) de-
scribed a special type of coordinated regulation termed a “linear
switch” that operates at divergent junctions, in which different
incoming isozyme reactions are coexpressed with alternative out-
going branches. Such an arrangement could modulate the direc-
tion of metabolic flow in a condition-specific manner. We
searched for similar patterns of regulation in E. coli using the
expression data (Supplemental Fig. 8A). However, out of 68 iso-
zyme pairs occurring at junctions (i.e., including both conver-
gent and divergent), we could find only eight cases of linear
switches. Instead, 47 isozyme pairs are coexpressed with the same
upstream or downstream reaction in the junction.

Both the regulatory network and gene expression data in-
dicate a high level of co-regulation of isozymes, thus ruling out
the first two possibilities above. Instead, the primary effect of
isozymes appears to be that of redundancy against mutations
(Supplemental Fig. 8B). Isozyme reactions are not preferentially
present in particular COG functional categories. However, in
general, they tend to be connected with larger numbers of sub-
strate and product metabolites compared with other enzymes
(PMann-Whitney = 3.6 � 10�5). In addition, a higher proportion of
isozyme reactions (28 out of 97 reactions; 29%) are involved in

Figure 4. Co-regulation and coexpression of metabolic enzyme pairs.
(A) Histogram of numbers of pairs of enzymes that are co-regulated by
identical sets of TFs in the regulatory network. (B) Box plot of distributions
of Pearson correlation coefficients for gene expression profiles of enzyme
pairs. The horizontal dashed line displays the median correlation for all
pairs of enzymes in the metabolic network.
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multiple metabolic pathways compared with other reactions
(13%; PFisher-test = 7.8 � 10�6). Therefore, isozymes appear to be
enriched in highly connected reactions that would have a great
impact on the organism should they break down.

Global and local patterns of enzyme evolution

Having examined the patterns of transcriptional regulation of
enzymes, we now study how these regulatory properties relate to
the evolution of the metabolic system. For this, we identified the
ortholog of the E. coli metabolic enzymes in our data set across
380 bacterial and archaeal genome sequences. Every enzyme was
then assigned a phylogenetic profile represented by a series of
binary values indicating the presence or absence of orthologs in
each genome.

Conservation of catabolic, anabolic, and central metabolic pathways

First, we assessed the conservation of different types of metabolic
pathways by comparing the percentage of genomes in which an
enzyme has a detectable ortholog (Fig. 6A). Catabolic enzymes
are the least conserved, whereas anabolic enzymes are the most
conserved. Members of the central metabolic pathways lie be-
tween the two.

In general, pathways that are exposed to long-term extracel-
lular changes tend to be less conserved than internal pathways;
this underlines the importance of the environment in driving
bacterial evolution (Borenstein et al. 2008; Kreimer et al. 2008).
Catabolism is poorly conserved because the presence or absence
of specific pathways is governed by the organisms’ habitat and
the access to different sources of nutrients. It should be noted
that the reference organism, E. coli, is metabolically versatile and
therefore contains a large complement of catabolic enzymes
compared with most other organisms. In contrast, anabolism is
highly conserved because similar metabolic products—including
amino acids, nucleotides, and lipids—are required for macromo-
lecular synthesis regardless of the organisms’ lifestyle. The only
exceptions occur in species that are auxotrophic for some mol-
ecules. This difference in conservation of catabolism and anabo-
lism has also been observed in eukaryotes (Lopez-Bigas et al.
2008).

Central energy metabolism displays intermediate conserva-
tion because organisms encode for either the TCA cycle or fer-

mentative pathways, or both, depending on their lifestyles. E. coli
contains both sets of enzymes, reflecting its capacity to perform
aerobic and anaerobic respiration. In general, organisms classi-
fied as being aerobic or facultative (i.e., both aerobic and anaero-
bic, like E. coli) encode for aerobic respiration genes more often
than anaerobic species (P < 3.6 � 10�5) (Supplemental Fig. 9).
However, we do not observe a similar trend for fermentative
genes and anaerobic species; this could be because different sub-
strates can be used for these pathways.

Coexpressed genes also coevolve

Next, we examined how enzyme pairs in different types of flow
and non-flow configurations evolve. For this, we calculate the
correlation between the phylogenetic profiles of each enzyme
pair. All the trends observed for co-regulation are reproduced
here (Supplemental Fig. 8). We find that (1) enzyme pairs co-
evolve most frequently when they occur at linear flow reactions;
(2) of pairs at junctions, those in nonconvergent reactions dis-
play greater coevolution compared with divergent forks; (3) en-
zymes in continuous sections of nondivergent flow reactions
show high levels of coevolution, but this trend is decoupled by
divergent junctions; and (4) enzyme pairs with coupled fluxes
tend to coevolve.

These observations can be explained by the clear agreement
between the correlations in expression and phylogenetic profiles
of enzyme pairs (Fig. 6B, mutual information = 0.09; P < 0.001).
Coevolving enzymes tend to be coexpressed (Fig. 6B, first quad-
rant), and to a lesser extent inversely coexpressed also (second
quadrant). However, there is little evidence for enzyme pairs to
coevolve negatively (third and fourth quadrants).

These observations indicate a strong evolutionary pressure
to preserve the co-regulation of enzymes that coevolve. The tran-
scriptional regulatory network is known to evolve rapidly in bac-
teria (Lozada-Chavez et al. 2006; Madan Babu et al. 2006; Price et
al. 2007). Therefore, the repertoire of TFs and the details of regu-
latory interactions probably differ substantially between species
but the gene expression program dictated by the regulatory sys-
tem is maintained. An important contribution to this trend is
undoubtedly the strong evolutionary pressure to maintain simi-
lar chromosomal organization of genes, especially in cases in
which entire pathways are encoded within the same operon
(Supplemental Fig. 11).

Figure 5. Coexpression of enzyme pairs at different levels of separation in the metabolic network. Box plots of Pearson correlation coefficients for gene
expression profiles between enzyme pairs separated by different numbers of (A) linear metabolites, (B) convergent junctions, and (C) divergent junctions.
There is an upper limit of three intermediate convergent junctions in the metabolic network. The horizontal dashed line displays the median correlation
for all pairs of enzymes.
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Conclusions

Summary of results

In this study, we presented a genome-scale study of the transcrip-
tional regulation and evolution of the metabolic system of a fac-
ultative model bacterium that is capable of assimilating a large
variety of nutrients.

At the global level, regulators operate in a two-tier hierarchy
of general and specific TFs that control differing ranges of meta-
bolic functions. The two types of regulators also differ in other

characteristics such as expression level and chromosomal dis-
tance between genes encoding the TF and target gene. We also
show that catabolic, anabolic, and central metabolic pathways
operate under different regulatory regimes. Catabolic pathways
tend to be regulated by a combination of general and specific TFs.
Such an arrangement allows the system to respond to a combi-
nation of several environmental inputs, one of which is more
dominant than others. This is exemplified by the role of the
general TF CRP in carbohydrate metabolism, which represses all
alternative sugar assimilation pathways in the presence of glu-
cose. In fact, the expression of even a single additional pathway
can adversely affect the organism’s fitness (Dekel and Alon 2005).
Anabolic pathways are mostly targeted by a single TF, which
permits a “just-in-time” regulatory output as presented by Alon
and colleagues (Zaslaver et al. 2004). As anabolism tends to in-
volve the longest pathways in the network, this type of organi-
zation is advantageous in allowing enzymes at the end of path-
ways to be expressed later. Finally, central metabolism is a hub
whose activity should respond to diverse conditions, and accord-
ingly these are regulated by multiple TFs, among which, the gen-
eral TFs are known to be expressed under many conditions (Mar-
tínez-Antonio and Collado-Vides 2003).

At the local level, we examined the principles of co-regulation
of neighboring reactions. Here, in common with S. cerevisiae,
there is a strong tendency to coexpress enzymes that are arranged
sequentially. Interestingly, divergent junctions have gained a
special status in the metabolic network, as they play an impor-
tant role in decoupling the regulation of connecting pathways.
Through the introduction of this modularity, divergent junc-
tions allow pathways and their regulation to evolve indepen-
dently of each other.

It is important to note that although we do find a strong
general relationship between the regulation and expression of
enzymes (i.e., genes with identical TFs display similar expression
profiles), a recent high-resolution study shows that the precise
kinetics of target gene expression can differ substantially even
when identical regulatory architectures are involved (Kaplan et
al. 2008). Therefore, detailed understanding of how specific TF
combinations will produce particular outputs will only be pos-
sible once we consider the structure of the promoter and the
nature of upstream regulatory circuitry (such as the presence of
feedback and feed-forward loops).

Lastly, we show that enzymes controlled by the same TFs
display a strong tendency to coevolve, suggesting a significant
constraint to maintain similar regulatory regimes during evolu-
tion. In particular, differences in the evolution of catabolic, ana-
bolic, and central metabolic genes across the prokaryotic king-
dom clearly illustrate the role of the environment in dictating
bacterial evolution. By incorporating information about this
dependency, it may be possible to fine-tune predictions of an
organism’s habitat given its enzyme gene content, or more
ambitiously vice versa (Borenstein et al. 2008; Kreimer et al.
2008).

Comparison to other genome-scale studies of metabolic regulation

This study complements and expands on earlier genome-scale
studies of metabolic regulation, most notably that of Ihmels et al.
(2004). By using a large compendium of yeast gene expression
data, the investigators established that the transcriptional regu-
lation of the metabolic system in S. cerevisiae drives flux toward
linearity. Even at junctions, there is a tendency for a single pair

Figure 6. Conservation and coexpression of metabolic enzymes across
380 bacterial genomes. (A) Box plot of proportion of genomes containing
orthologs of catabolic, anabolic, and central energy enzymes. (B) Scat-
terplot between the Pearson correlation coefficients measuring coexpres-
sion and Phi correlation measuring coevolution of enzyme pairs. Data
points are shaded according to a normalized proportion of observations
in the data set, with darker shades representing higher proportions. (In-
set) The density distribution displays the mutual information between the
two sets of correlations for the actual data and random expectation from
1000 simulations.
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of incoming and outgoing reactions to be coexpressed, thus pri-
oritizing the flow of metabolites through selected pathways.

The major findings for S. cerevisiae also apply to E. coli: There
is very high co-regulation of linear-flow reactions, and junctions
preferentially target a single pair of flow-connected enzymes.
However, in contrast to the above study, we do not see differen-
tial regulation of isozymes at pathway junctions. Much of this
difference may be due to the contrasting accuracy in assigning
isozymes to pathways (see Methods).

A study by Kharchenko et al. (2005) showed that coexpres-
sion decreases with increased separation between enzyme pairs
in the metabolic network. Most recently, Notebaart et al. (2008)
reasoned that the level of enzyme coexpression is best predicted
by looking at the correlation of their metabolic fluxes. In fact, we
demonstrate that both observations can be explained by consid-
ering the nature of the separation between enzymes; we suggest
that the presence of a divergent junction serves to decouple both
the transcriptional regulation and metabolic flux of enzymes.

Of the above studies (Ihmels et al. 2004; Kharchenko et al.
2005; Notebaart et al. 2008), only Notebaart et al. made use of
available transcriptional regulatory data, whereas the other two
inferred patterns of co-regulation from gene expression data.
Here, we incorporated regulatory interaction data in addition to
gene expression information, and both data sets support all our
observations, confirming the robustness of the results. More im-
portantly, the use of direct interaction data allows us to gain
insights that are inaccessible from gene expression alone, includ-
ing the hierarchical classification of general and specific TFs; dif-
ferences in regulation of catabolic, anabolic, and central meta-
bolic pathways; and combined use of overlapping and distinct
TFs at pathway junctions.

Impact of perturbations on metabolic regulation

Given the observed precision of the metabolic regulatory appa-
ratus, it is surprising that the few TF-knockout experiments that
have been performed—even those involving major regulators—
generally do not cause lethality in E. coli (Covert et al. 2004;
Perrenoud and Sauer 2005; Blot et al. 2006; Bradley et al. 2007).
Mutant strains lacking FNR, Fis, and ArcA display the expected
gene expression changes (i.e., the pathways that are under direct
regulation), but show only slight differences in growth rate.
Moreover, a recent study has shown that E. coli tolerates substan-
tial artificial rewiring of the regulatory network through the in-
troduction of new binding sites to promoters (Isalan et al. 2008).
We anticipate that the modularity imposed by divergent junc-
tions is a major underlying reason for this robustness, as they
ensure that detrimental regulatory perturbations do not spill over
into neighboring pathways. Indeed, the metabolic system ap-
pears to maintain stable small-molecule concentrations by re-
cruiting alternative pathways, even when central metabolic en-
zymes are deleted (Ishii et al. 2007). These responses are likely to
impose a cost on the organism: Most knockouts are tested in isola-
tion, but significant growth defects may become apparent if they
are grown in competition with the wild-type strain in the appro-
priate condition. Although deletions of general regulators are not
lethal to the cell, it has been shown, using systematic genome-
scale gene deletion data sets in yeast, that these TFs tend to have
a greater impact on cell growth than specific TFs (Yu et al. 2004).
It would be interesting to test if this is true in E. coli using similar
genome-scale experimental studies and computational analysis.

These observations suggest that transcriptional regulators of

metabolic processes are probably not good targets for future an-
tibiotic design. Instead, it may be more fruitful to target the en-
zymes themselves. We propose that isozymes make good candi-
dates, as they are generally coexpressed at highly connected junc-
tions. By targeting isozyme pairs at strategic locations, it should
be possible to choke an organism’s metabolic system.

Our findings also have implications for the synthetic intro-
duction of new metabolic enzymes into a bacterium. A major
challenge when synthetic pathways overlap with the indigenous
cellular metabolic network is the prevention of potentially dis-
ruptive interference between pathways. This could be minimized
by ensuring that enzymes are incorporated close to divergent
junctions in the existing network so that there is no cross-talk.

Future work to complete the metabolic regulatory network

Our work here has benefited from the availability of large, ge-
nome-scale descriptions of the metabolic and regulatory systems,
and the results are robust to gaps and errors in the underlying
data. However, it is clear that we still do not have a complete
picture of metabolic regulation. There is an uneven distribution
of information, as more is known about regulators of catabolic
pathways than anabolic ones. And, as highlighted by Figure 1,
certain functions such as energy production, sugar, and amino
acid metabolism are better represented. In fact, we lack regula-
tory data for more than half the enzymes in the metabolic net-
work; in particular, little is known about the control of lipid
metabolism, secondary metabolite metabolism, and cell wall bio-
synthesis, which are critical for cell survival. An important area of
future experimental work in microbiology will be to build a com-
plete network of bacterial transcriptional regulation.

Finally, many of the results presented here have also been
observed for S. cerevisiae (Ihmels et al. 2004). This is remarkable
because of the enormous divergence between the regulatory ma-
chineries of E. coli and yeast. Given this, we propose that the
patterns of transcriptional control that we report might apply to
many prokaryotic systems and, perhaps, even to some eukaryotic
organisms.

Methods

Data sources

Metabolic network
Metabolite, enzyme, reaction, and pathway information were ob-
tained from EcoCyc 9.0 (Keseler et al. 2005). We used EcoCyc
pathway annotations as they are manually curated by human
experts and have been shown to be functionally coherent (Green
and Karp 2006).

We removed transport (reaction type TR* or ABC* in EcoCyc)
and tRNA charging reactions. We also excluded interactions me-
diated by the following compounds: ATP, ADP, AMP, Pi, NAD,
NADH, NADP, NADPH, FAD, FADH2, NH3, NH4

+, CO2, H2O2, O2,
H2, CoA, H2O, and any other metabolite labeled as “non-
metabolic-compounds,” “anions,” “cations,” “coenzymes,” or
“coenzyme-groups.”

This gives a data set of 628 metabolites, 781 enzymes, 788
reactions, and 158 pathways.

Transcriptional regulatory network
Transcription factor to target gene regulatory interactions were
obtained from RegulonDB 5.0 (Salgado et al. 2006). Additional
regulatory interactions for CRP were included from ChIP-chip
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data (Grainger et al. 2005). From this we excluded target genes
that did not belong to the metabolic network above. This re-
sulted in a data set of 111 TFs, 388 targets, and 913 regulatory
interactions. Data regarding 43 TF-metabolite interactions were
obtained from EcoCyc.

Gene expression data
Raw .CEL files for 221 transcriptomic hybridizations to Af-
fymetrix E. coli Antisense v2 GeneChips were downloaded from
the M3D database (Faith et al. 2007).

Other data

1. Functional classifications for E. coli genes were obtained from
the Clusters of Orthologous Groups database (Tatusov et al.
2003);

2. information about the operon organization of E. coli genes
was obtained from RegulonDB 5.0;

3. the set for 2777 enzyme pairs with coupled fluxes was taken
from Notebaart et al. (2008);

4. protein sequences for ortholog identification were down-
loaded from the Kyoto Encyclopedia of Genes and Genomes
database (Kanehisa et al. 2006); and

5. organism phenotype data (aerobic, anaerobic, facultative)
were obtained from the NCBI microbial genomes database
(http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi).

Classification of catabolic, anabolic, and central energy
metabolic enzymes
Enzymes were classified as catabolic, anabolic, or central energy
metabolism according to EcoCyc annotations. All enzymes be-
longing to the glycolysis, TCA cycle, glyoxylate shunt, and pen-
tose phosphate pathways were classed as central energy metabo-
lism. Enzymes belonging to two or more categories (e.g., catabo-
lism and anabolism) were excluded from the relevant sections of
analysis.

Classification of general and specific TFs
TFs were classified according to the functional annotations of
target genes: specific if all targets belonged to the same EcoCyc
pathway or COG functional category; general if targets belonged
to more than one COG functional category. For general TFs, the
enrichment for functional categories was assessed using the
Fisher-test followed by False Discovery Rate correction for mul-
tiple testing (Benjamini and Hochberg 1995).

TF was classified as pathway (or COG) specific if all its tar-
gets shared a common EcoCyc pathway (or COG function) mem-
bership. General TFs were identified as follows: For each TF, en-
richment of a given COG function among its targets was assessed
using Fisher-test followed by FDR multiple testing. This proce-
dure has been applied to identification of enriched functional
categories in a given set of genes (Al-Shahrour et al. 2004). A TF
was flagged as general if at least one function was statistically
enriched (FDR � 0.01) and there were at least 10 targets belong-
ing to this function.

Derivation of enzyme pair configurations
We first defined a metabolic reaction network as a bipartite graph
with two types of edges: (1) leading from a metabolite to a reac-
tion that consumes the metabolite and (2) from a reaction to its
product. Directionality of reactions was derived based on path-
way annotations.

The above network was then used to identify enzyme pairs
connected in different configurations as given below:

Flow configurations
These are networks that represent metabolite flow from one re-
action to the next.

(1) Linear flow: E1 (enzyme 1) is connected to E2 (enzyme 2) if
the product of E1 is product of no other enzyme and is reac-
tant to only E2;

(2) Junction flow: E1 is connected to E2 if a product of E1 is sub-
strate to E2 and this edge is not part of the linear-flow net-
work. Here, any metabolite that is consumed by more than
one reaction is a divergent metabolite; all other metabolites
are convergent metabolites.

Non-flow configurations
These networks do not represent the direction of metabolite flow.

3. Convergent: E1 is connected to E2 if they share a common
product.

4. Divergent: E1 is connected to E2 if they share a common reac-
tant.

In the first stage, the networks were represented as pairs of
reactions represented by EcoCyc reaction IDs. Connectivity prop-
erties of reactions (not individual enzyme genes) were used to
derive the four network types. In the second step, reaction pairs
were converted to corresponding enzyme pairs; any reaction pair
might be represented by more than one enzyme pair because of
the involvement of several genes in catalyzing a single reaction.

In the above analysis, all isozymes are mapped to the same
reactions without any discrimination. A separate analysis was
done for isozymes in order to achieve a more complete compari-
son with the work of Ihmels et al. (2004). In EcoCyc, every reac-
tion ID is mapped to an enzymatic conversion. Each enzymatic
conversion is represented by an enzyme that might be composed
of one or more genes. Any reaction that is mapped to more than
one enzymatic conversion was taken to be regulated by isozymes.
Every pair of enzymatic conversions assigned to the same reac-
tion ID was then analyzed at the level of individual enzyme
genes.

In order to calculate the nature of regulation of isozymes at
junctions, we made a list of junctions involving reactions using
isozymes. If the reaction involving isozymes fed into the junc-
tion, then there should exist more than one outgoing reaction.
Similarly, if the reaction involving isozymes led out of the junc-
tion, then there should be more than one incoming reaction. The
nature of regulation was calculated for every quadruplet of en-
zymes: two isozymes for the same reaction and two enzymes that
operate immediately upstream or downstream of the isozymes-
involving reaction. Any pair of reactions was flagged as being
co-regulated if the coexpression correlation across 221 arrays was
�0.30.

Path lengths in metabolic networks
The distance between any two reactions was calculated using the
nonheuristic Breadth First Search algorithm. For these calcula-
tions, the union of the linear-flow and the junction-flow net-
works was used. The distance between a metabolite and a reac-
tion (used to measure the separation between a metabolite that
binds a TF and an enzyme regulated by the TF) was defined as
either (1) the number of reactions upstream of the metabolite
and downstream from the target reaction or (2) the number of
reactions downstream from the metabolite and upstream of the
target reaction along the shortest path separating one of the re-
actions directly involving the metabolite and the target reaction.
The shortest of the above two distances was used.
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Enzymes involved in the shortest paths between any two
enzymes were identified using the iGraph package implemented
in R.

Microarray data processing
Raw CEL files were processed using the RMA procedure (Irizarry
et al. 2003) implemented in Bioconductor (Reimers and Carey
2006), as it was previously shown to be the best procedure for this
data set (Faith et al. 2007). This results in a matrix of log-normalized
expression measures in which each row represents a gene and each
column an array. Pearson correlation coefficients between gene
expression profiles of every pair of enzymes across all arrays were
calculated from this expression matrix.

Identification of orthologs
Orthologs were identified using the standard approach of bidi-
rectional best-hit FASTA (Pearson and Lipman 1988). For this,
FASTA version 34 and an upper expectation cutoff of 10�4 were
used.

Statistical tests

Standard tests
Five statistical tests were used in this study: (1) a one-tailed
Mann-Whitney test, a nonparametric test, for comparing two
distributions; (2) a one-tailed Fisher exact test, followed by ap-
plication of FDR in which more than one P-value was computed,
for categorical data; (3) a Pearson correlation coefficient to assess
coexpression; (4) a Phi correlation coefficient for nominal vari-
ables to measure coevolution; and (5) a Mutual information score
for testing association between coexpression and coevolution
correlations. Details of where each of these tests was used are
presented in context in the Results section.

In our calculations of Pearson correlations, we found that
75% of all gene pairs with correlation P-value < 0.001 have cor-
relation coefficients greater than 0.30. This cut-off was used to
define co-regulation primarily in the analysis of isozymes be-
cause of a lack of relevant information in the transcriptional
regulatory network.

Random simulations for significance testing of the highest of n
coexpression correlations
For any given set of m metabolites, with any metabolite mediat-
ing connections between ni (1 � i � m) pairs of enzymes, a dis-
tribution (size = m) of highest expression correlations among all
ni pairs of enzymes was obtained. In addition, 1000 random dis-
tributions, each of size m, and each value being the highest co-
expression correlation among ni randomly chosen pairs of en-
zyme genes, were obtained. The actual distribution was com-
pared against each of the 1000 random distributions using the
Mann-Whitney test, and P-values (under the null hypothesis that
the actual distribution is less than or equal to the random distri-
bution) were derived. This was done for the junction-flow (where
each P-value was <2.2 � 10�16) and for the non-flow (P-values
ranging from 0.004 and 0.2) networks.

Random simulation for significance testing of the mutual information
between coexpression and coevolution
We obtained 1000 sets of 9798 random pairs of correlation coef-
ficients, one value representing coexpression and the other co-
evolution correlation, while maintaining the distributions of
each of the two coefficients. For each of the 1000 random sets,
mutual information between the two variables was calculated. A

Z-score for the actual mutual information value was derived us-
ing the formula:

Z =
MI − �R

�R

where MI is the actual mutual information score, µR is the mean,
and �R is the standard deviation of mutual information scores
calculated for the 1000 random data sets.

All these calculations were done using a combination of
Perl (http://www.perl.com) and the R environment (http://www.
r-project.org). Mutual information was calculated using the R
package supplied by Daub et al. (2004).

Normalization of coexpression versus coevolution correlations
In Figure 6B, we used the following normalization procedure to
obtain a measure of the overlap between coexpression and co-
evolution correlations corresponding to each bin.

If p is the number of bins for coexpression correlations and
q is that for coevolution correlations, and Ni,j represents the num-
ber of entries belonging to the intersection of the ith coexpres-
sion bin and the jth coevolution bin, then

V =
Ni,j

�
i=1

p

Ni,j + �
j=1

q

Ni,j

Robustness of results
In order to test the robustness of results obtained, we generated
transcriptional regulatory networks with deletion of or errors in
5%, 10%, 15%, 20%, 25%, and 30% of all edges. We then com-
pared the medians of the degree distributions obtained for cata-
bolic, anabolic, and central metabolic genes across these net-
works against the real network. We also used the percentage of
enzyme pairs with matching sets of regulators in the flow and the
non-flow metabolic configurations (local regulation) as a param-
eter to test the robustness of results. The effect on local regulation
of similar deletions and alterations in the various forms of the
metabolic network was also tested. In general, the results from
these calculations are qualitatively similar, suggesting that our
findings are unlikely to be affected by any incompleteness or
inaccuracies in the data set (Supplemental Fig. 12A,B).
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