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Steroid receptor coactivators (SRCs) exert profound effects on
animal development and physiology. Genetic ablation experiments
indicate that various SRC proteins might have differential
physiological roles; however, clear evidence of functional speci-
ficity has not yet been shown at the molecular level. Here we
report the identification of a new SRC1 interacting protein,
glutamate-rich coactivator interacting with SRC1 (GAS), which
contains a central glutamate-rich region and has transactivation
activity. Interestingly, GAS interacts only with SRC1, and not with
glucocorticoid receptor interacting protein 1 (GRIP1) or amplified
in breast cancer 1 (AIB1), the other two members of the SRC
family. It interacts with oestrogen receptor-a (ERa) and partici-
pates in both oestrogen receptor-regulated gene transcription and
oestrogen-stimulated G1/S cell-cycle transition. Our data thus
indicate that GAS is a new transcription cofactor and that different
SRCs are associated with distinct secondary cofactors.
Keywords: coactivator; oestrogen receptor; transcription;
breast cancer
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INTRODUCTION
Transcriptional activation is caused by transcription factors acting
together with various coactivators and coregulators. The steroid
receptor coactivators (SRCs or p160 coactivators) were initially
described as transcription coactivators for nuclear receptors;
however, they have since been found to also coregulate
transcription initiated by other transcription factors such as AP1
(activator protein 1), STATs (signal transducers and activators of
transcription), ETS (E26 transformation-specific factor), p53, E2F
(E2 promoter binding factor) and NF-kB (Lonard & O’Malley,
2006, 2007). Many—if not most—animal genomes contain a set

of three paralogous SRC genes that are highly conserved across
species. In humans, the three SRC genes have been given the
official names nuclear receptor coactivator 1 (NCOA1; also known
as SRC1), NCOA2 (GRIP1, TIF2 or SRC2) and NCOA3 (AIB1, SRC3,
pCIP, ACTR, RAC3 or TRAM1; Glass & Rosenfeld, 2000).

Two factors contribute to the ability of SRC proteins to function
as transcriptional coactivators: an intrinsic histone acetyltrans-
ferase (HAT) activity (Spencer et al, 1997) and, more importantly, an
ability to recruit multiple secondary or downstream cofactors into
functional complexes (Lonard & O’Malley, 2007). Structurally, the
three human SRC proteins share 40% identity in primary sequence
and contain several signature domains important for their
biological functions. The amino-terminal basic helix–loop–helix/
Per-Arnt-Sim (bHLH-PAS) domain is important for DNA-binding
specificity and for recruiting secondary coactivators such as
GAC63, CoCoA and Fli-I (Kim et al, 2003; Lee et al, 2004; Chen
et al, 2005). Additional domains include the central nuclear
receptor-binding motifs (LXXLL, where L is leucine and X is any
amino acid) and the two carboxy-terminal activation domains
(ADs) (Heery et al, 1997; Sheppard et al, 2001). AD1 recruits
proteins with strong HAT activity (such as CBP and p300), and
AD2 interacts with the histone arginine methyltransferases
CARM1 and PRMT1 (The Breast Cancer Linkage Consortium,
1999; Chen et al, 1999; Leo et al, 2000).

The physiological functions and pathological potentials of the
SRC proteins, both during development and in adult life, have been
studied extensively. Significantly, different SRC knockouts lead to
distinct phenotypes (Xu et al, 1998, 2000; Wang et al, 2000; Gehin
et al, 2002; Picard et al, 2002); however, little is known about the
specific biological activities of individual SRC proteins at the
molecular level. Most in vitro studies and transfection experiments
indicate that each member of the SRC family is able to interact with
several nuclear receptors and that a particular nuclear receptor can
interact with all three members of the SRC family, leaving open the
question of whether distinct intracellular SRC partnerships might
specify particular phenotypic behaviours.

Here, we used genome-wide screening to search for proteins
that preferentially interact with specific members of the SRC
family, hoping to uncover specific biological activities for such
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partnerships. We identified a new protein, glutamate-rich
coactivator interacting with SRC1 (GAS), which preferentially
interacts with SRC1 but not with the other two SRC proteins.
We show that GAS behaves as a transcription coactivator and
participates in oestrogen receptor (ER) functions.

RESULTS AND DISCUSSION
The three members of the SRC family—SRC1, GRIP1 and AIB1—
contain several important functional domains, which often act as
scaffold elements in the formation of higher-order regulatory
complexes. In an effort to identify proteins that interact with
specific members of the SRC family and thereby define their
unique biological activities, we performed yeast two-hybrid
experiments using the N-terminal fragments of the SRC proteins
as bait to screen against a human mammary cDNA library (Zhang
et al, 2006, 2007; Fig 1A). A clone match to the 30 end (bases

259–780) of an open reading frame of gene C16orf53 (GenBank
accession number NM_024516) was recovered using SRC1-N
bait. Back-hybridization experiments confirmed an interaction
between this clone and SRC1, but not between GRIP1 and AIB1
(data not shown). We cloned the entire open reading frame of the
C16orf53 gene and named the protein ‘glutamate-rich coactivator
associated with SRC1 (GAS), as it contains a central glutamate-
rich region (GAS) (Fig 1B). GAS is evolutionarily conserved across
species (Fig 1C,D), and ubiquitously expressed in several human
tissues and cell lines (Fig 2A and supplementary Fig 1A–C online).
Immunostaining of endogenous GAS in MCF-7 cells revealed that
the protein is largely localized to the nucleus, whereas over-
expressed GAS is localized to both the cytoplasm and nucleus
(supplementary Fig 1D online).

The direct interaction between GAS and SRC1 was confirmed
by both in vivo immunoprecipitation (Fig 2B,C; note that the
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Fig 1 | Cloning and characterization of glutamate-rich coactivator interacting with SRC1. (A) Schematic representation of the structure and deletions of

steroid receptor coactivator (SRC) 1. (B) Schematic representation of the protein structure of GAS. (C) Amino-acid sequence alignment of GAS from

different species. The shaded area represents the conserved region and the LXXLL motif is boxed. (D) Phylogenetic analysis of the evolutionary

relationships among GAS proteins from different species. AD, activation domain; bHLH, basic helix–loop–helix; C, carboxyl terminus; GAS, glutamate-

rich coactivator interacting with SRC1; N, amino terminus; NR, nuclear receptor; PAS, Per-Arnt-Sim.
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endogenous co-immunoprecipitation assay in Fig 2C was carried
out in ECC-1 cells due to higher levels of SRC1 in these cells) and
in vitro glutathione S-transferase (GST) pull-down assays (Fig 2D).
Consistent with our original yeast two-hybrid results, the region
responsible for binding in SRC1 was located in the N-terminal and
not in the C-terminal (Fig 2E,F). Interestingly, when we examined
whether GAS would also interact with GRIP1 or AIB1, we found
that, although 3 mg of GST-GAS pulled down SRC1 effectively, as
much as 10mg of GST-GAS failed to pull down any detectable
AIB1 or GRIP1 (Fig 2D). Furthermore, GST-GAS was also unable
to pull down the N-terminal part of AIB1 or GRIP1 (Fig 2F). This
corroborates the results of our yeast two-hybrid experiments and
again supports the observation that GAS preferentially binds to
SRC1 but not the other two SRC proteins.

Many intracellular SRC partners, including human MMS19
(methyl methanesulfonate-sensitive 19; Wu et al, 2001), TIF1a
(transcriptional intermediary factor 1; Teyssier et al, 2006), Fli-I
(Flightless I; Lee et al, 2004) and GAC63 (GRIP1-associated
coactivator 63; Chen et al, 2005), can interact with nuclear
receptors. A specific binding of ERa to GAS both in vivo and
in vitro was detected by immunoprecipitation (Fig 3A) and GST

pull-down assays (Fig 3B). Similar to other nuclear receptors, ERa
contains several characteristic domains: an N-terminal ligand-
independent activation domain (AF1), a DNA-binding domain,
a hinge region, and C-terminal ligand-binding (LBD) and
activation (AF2) domains (Fig 3C). GAS was shown to bind to
the N-terminal AB region of ERa (AF1 domain, Fig 3C), which is
consistent with the ligand-independent characteristic observed in
our immunoprecipitation and GST pull-down assays. GAS does
not interact with RARa (retinoic acid receptor a), another nuclear
receptor (supplementary Fig 2B online), suggesting that the
interaction between GAS and ERa is relatively specific. By making
systematic GAS deletion mutants, we mapped the region in GAS
responsible for binding to ERa or SRC1 (Fig 3D). The C-terminal
part (from 161 to 254 aa) of GAS is sufficient to bind to ERa,
whereas the GAS middle region (from 116 to 160 aa), including
the LXXLL motif, is responsible for its interaction with SRC1. It is
interesting that the LXXLL motif (LYELL) in GAS is not crucial for
binding to ERa, but seems be important in binding to SRC1 (Fig 3D
middle-right panel, compare GST-GAS Del-5 and GST-GAS Del-6).

The presence of the central acidic (glutamate-rich) region
suggests that GAS could be involved in transcription activation
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Fig 2 | The expression of glutamate-rich coactivator interacting with SRC1 (GAS) in human tissues, and the direct interaction between GAS and steroid

receptor coactivator 1 (SRC1). (A) Northern blot analysis of GAS expression in human tissues. Using the entire coding sequence as a probe, Northern

blotting showed a principal transcript of around 1.8 kb. The heart, liver and skeletal muscle show comparatively high expression of the principal

transcript and, on the basis of results from these tissues, further (longer) isoforms also seem to exist. (B) MCF-7 cells were transfected with FLAG-GAS

and SRC1 constructs. At 48 h after transfection, cell lysates were collected and either control IgG (mouse) or monoclonal FLAG antibodies were used to

precipitate GAS-containing protein complexes. The precipitates were blotted with monoclonal SRC1 antibody. (C) 2� 107 ECC-1 cells (which express

a higher amount of SRC1 (Shang & Brown, 2002; Wu et al, 2005)) were used to detect the interaction between endogenous GAS and SRC1. Six

micrograms of either control IgG (rabbit) or affinity-purified polyclonal GAS antibodies were used to precipitate endogenous GAS-containing protein

complexes. (D) Glutathione S-transferase (GST) pull-down assays show that GAS interacts directly with SRC1 in vitro. The top panel shows a GST pull-

down assay carried out with in vitro translated SRC1 and purified GST protein or GST-GAS protein. The two other panels show similar assays carried

out with in vitro translated AIB1 or GRIP1. Three milligrams of GST-GAS protein was used in the upper panel, whereas 10 mg GST-GAS protein was

used in the lower two panels. (E) GST pull-down assays confirm that GAS interacts strongly with the N-terminal region of SRC1. As the polyclonal

SRC1 antibody used for the N-terminal region of SRC1 recognizes a nonspecific band of GST-GAS, which runs at almost the same position as SRC1-N,

we used two deletion mutants of GST-GAS (Del-5 and Del-1, as in Fig 3D) to avoid the interference. (F) GAS does not interact with the C-terminal

region of SRC1, or the N-terminal regions of GRIP1 or AIB1. SRC1-C was detected by a monoclonal SRC1 antibody, and GRIP1-N or AIB1-N were

detected by a monoclonal Myc antibody IB, immunoblotting; IP, Immunoprecipitation.
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(Kim et al, 2006; Titz et al, 2006; Zhao et al, 2006). This possibility
was first confirmed in a GAL4 reporter assay system. Compared
with the control GAL4-DBD (DBD for DNA binding domain), the
expression of GAS-GAL4-DBD resulted in an increase in GAL4-
TK-luciferase reporter gene transcription, indicating that GAS can
enhance gene transcription when it is arbitrarily recruited to target

promoter (Fig 4A). The direct interaction between GAS and ERa,
and between GAS and SRC1, prompted us to examine further
whether GAS is involved in oestrogen receptor-mediated
transcriptional regulation. Overexpression of GAS in MCF-7 cells
is indeed associated with an increase in oestrogen receptor-
responsive element luciferase reporter activity (Fig 4B), whereas
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knockdown of GAS expression by RNA-mediated interference
resulted in considerable inhibition of reporter activity (Fig 4C).
Collectively, these experiments suggest that GAS enhances
oestrogen receptor-regulated gene transcription.

GAS interacts with the N-terminal bHLH-PAS domain of SRC1,
similar to several so-called secondary coactivators such as GAC63

(Chen et al, 2005), CoCoA (Kim et al, 2003) and Fli-I (Lee et al,
2004). These proteins generally enhance oestrogen receptor-
mediated gene transcription in a manner that is strictly dependent
on interaction with SRCs. However, some of them—such as
GAC63 and Fli-I—also interact with ERa directly, although it is not
clear to which region in ERa they actually bind (Lee et al, 2004;

0

100

200

300

400

500

600

700

P
er

ce
nt

ag
e

Control si#1
GAS

20 nM

si#1
GAS

100 nM

si#6
GAS

20 nM

si#6
GAS

100 nM

siRNA
GAPDH
20 nM

siRNA
GAPDH
100 nM

–E2
+E2

–E2
+E2

0

1

2

3

4

5

6

7

8

AIB1

GAS

Fo
ld

 o
f i

nd
uc

tio
n

0
5

10
15
20
25
30
35
40
45

SRC1 – + + +

–

–

– –

+ + +

–GAS

–E2
+E2

Fo
ld

 o
f i

nd
uc

tio
n

∗
∗

0

0.5

1

1.5

2

2.5

3

3.5

ControlGal4DBD Gal4-GAS

0

0.5

1

1.5

2

2.5

3

3.5
Fo

ld
 o

f i
nd

uc
tio

n

Fo
ld

 o
f i

nd
uc

tio
n

–E2
+E2

∗∗

∗∗ ∗ ∗

GAS

Fig 4 | Glutamate-rich coactivator interacting with SRC1 has autonomous transactivation activity and is required for oestrogen receptor-mediated

transactivation. (A) The entire GAS open reading frame was cloned downstream from the DNA-binding domain of Gal4 (Gal4-DBD), and either the resulting

construct or a control vector (containing Gal4-DBD only) was cotransfected with 100 ng of a Gal4-TK-luciferase reporter construct into MCF-7 cells. Increasing

amounts of Gal4-DBD-GAS (100, 200 and 600 ng) or 600 ng Gal4-DBD constructs were used and total plasmid DNAs were made up to 800 ng with empty

pcDNA3.1 vectors. Cells were collected 24 h after transfection, and luciferase activity was measured and normalized to that of renilla. (B) MCF-7 cells were

grown in medium lacking oestrogen (E2) for 24 h and cotransfected with increasing amounts of pcDNA3.1-GAS construct (100, 200 and 400 ng) and 100 ng

6� ERE-TK-luciferase reporter construct; cells were allowed to continue growing for 24 h before adding (or not adding) 100 nM of E2. Cell lysates were

collected after 24 h of E2 treatment, and luciferase activity was measured and normalized to that of renilla. (C) Knockdown of GAS expression in MCF-7 cells

significantly affected the oestrogen receptor-mediated reporter gene activation. MCF-7 cells were deprived for E2 for 24 h and grown to about 30% confluence.

Cells were then transfected with synthesized short interfering RNAs (siRNAs) against GAS or GAPDH, together with 100 ng of 6� ERE-TK-luciferase reporter

vector. Cells were incubated for a further 24 h before E2 treatment as in (B). (D) CV-1 cells were transfected with 6� ERE-TK-luciferase reporter plasmid

(100 ng), pHE0 encoding human oestrogen receptor (2 ng), pcDNA3.1/steroid receptor coactivator (SRC) 1 (400 ng) and pcDNA3.1/GAS (100 or 200 ng) as

indicated, and grown in a medium containing or lacking E2. The results shown are representative of three independent experiments. The right panel was

done similarly, except that pcDNA3.1/AIB1 (400 ng) was used instead of the SRC1 construct. Student’s t-test was used for statistical analysis. *Po0.05 and

**Po0.001. ER, oestrogen receptor; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GAS, glutamate-rich coactivator interacting with SRC1.

GAS in oestrogen receptor function

J. Liang et al

&2009 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION EMBO reports VOL 10 | NO 1 | 2009

scientificreport

55



Chen et al, 2005). In a well-documented transcription synergy
testing system (Kim et al, 2003; Lee et al, 2004), GAS and SRC1
together produce an effect on reporter transcription that is at least
additive, whereas no synergy or additive effect was observed with
GAS and AIB1 (Fig 4D). A chromatin immunoprecipitation (ChIP)
assay showed that endogenous GAS is present in the promoter
region of pS2, a classic oestrogen receptor target gene (Fig 5A),
indicating that GAS is involved in the transcriptional regulation of
endogenous oestrogen receptor target genes. Consistent with the
above observations, depletion of GAS by short-interfering RNA in
MCF-7 cells cultured in normal conditions led to a reproducible
decrease in messenger RNA (Fig 5B) and protein levels (Fig 5C) of
three representative oestrogen receptor target genes: pS2, c-Myc

and cyclin D1. GAS (referred to as PA1) was recently found to be
associated with a SET1-like methyltransferase complex specific for
H3K4 methylation (Cho et al, 2007), which generally marks
transcription activation. Although it is possible that the coactivator
activity of GAS is related to H3K4 methylation status, knockdown
of GAS only slightly decreased H3K4 methylation in the pS2
promoter (supplementary Fig 4 online). Finally, as oestrogen is
normally required for the G1/S transition of MCF-7 cells
(Doisneau-Sixou et al, 2003; Shang, 2006; Shi et al, 2007),
fluorescence-activated cell sorting analysis indicated that knock-
down of GAS expression impeded the oestrogen-stimulated G1/S
transition (Fig 5D) in these cells, supporting a role for GAS in
oestrogen function at whole-cell level.
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Fig 5 | Glutamate-rich coactivator interacting with SRC1 is required for oestrogen function. (A) ChIP assay shows that endogenous GAS is recruited to the

promoter region of pS2 (�353 to �30 bp upstream from the transcription initiation site), a classic oestrogen receptor (ER) target gene. The primers for pS2

promoter region were described previously (Zhang et al, 2004). (B) Endogenous GAS expression in MCF-7 cells under normal culture conditions was knocked

down using 100 nM GAS short interfering RNA (siRNA) 6 (which was used for A, B and C), and endogenous levels of pS2, c-Myc and cyclin D1 were

analysed using real-time RT–PCR. The results shown here are the averages of at least three independent experiments. (C) Reduced amounts of GAS

expression led to reduced amounts of c-Myc and cyclin D1 protein, as shown by Western blotting. (D) A fluorescence-activated cell sorting analysis showing

that GAS-directed siRNA, but not scrambled siRNA, impairs normal cell-cycle progression through the G1/S transition in MCF-7 cells. The results shown here

are representative of three independent experiments. ChIP, chromatin immunoprecipitation; GAS, glutamate-rich coactivator interacting with SRC1.

GAS in oestrogen receptor function

J. Liang et al

EMBO reports VOL 10 | NO 1 | 2009 &2009 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION

scientificreport

56



In summary, our study suggests that GAS interacts directly with
SRC1 and ERa, and enhances ERa-related gene transcription
regulation. Together with SRC1, GAS might also participate in other
transcription pathways such as p53 (supplementary Fig 2A,C online);
the overall biological function of GAS remains to be investigated
further. Interestingly, despite the high degree of similarity among the
three SRC proteins, GAS seems to interact only with SRC1—not with
GRIP1 or AIB1. This specific binding between SRC1 and GAS is
possibly because of the potential unique post-translational modifica-
tions of SRC1 (supplementary Fig 3 online; SRC1-N has potential
unique serine phosphorylation sites). Differential post-translational
modifications might alter the three-dimensional structure of
individual SRC homologues, which further recruit their specific
intracellular partners. As most SRC partners studied so far have been
found to interact with all the three SRC proteins indiscriminately, the
preference of GAS for SRC1 might offer a new mechanism for cells
to fine-tune the expression of different SRC target genes.

METHODS
For the yeast two-hybrid experiments, the N-terminal fragment
(1–1896 bp) of SRC1 was fused to a BD (GAL4 DNA binding
domain) plasmid and used as bait, in screening a human mammary
gland cDNA library. The Matchmaker GAL4 Two-Hybrid System 3
(Clontech protocol PT3247-1) was used as described by Zhang
et al (2006, 2007). To clone the complete GAS open reading
frame, total RNA was extracted from human endometrial cancer
cell line Ishikawa cells for use as a template, and RT–PCR was
performed using GAS-specific primers. The resulting fragment was
cloned into pcDNA3.1(�) vectors and sequenced to confirm the
coding sequence. This sequence was found to match the CDS of
NM_024516 exactly. The conserved domains and motifs of GAS
were predicted from the database at www.expasy.ch/tools. Multi-
ple alignments were performed using ClustalW (version 1.60), and
phylogenetic analysis using the Jotun Hein method.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org)
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