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Abstract
This paper identifies several serious problems with the widespread use of ANOVAs for the analysis
of categorical outcome variables such as forced-choice variables, question-answer accuracy, choice
in production (e.g. in syntactic priming research), et cetera. I show that even after applying the
arcsine-square-root transformation to proportional data, ANOVA can yield spurious results. I discuss
conceptual issues underlying these problems and alternatives provided by modern statistics.
Specifically, I introduce ordinary logit models (i.e. logistic regression), which are well-suited to
analyze categorical data and offer many advantages over ANOVA. Unfortunately, ordinary logit
models do not include random effect modeling. To address this issue, I describe mixed logit models
(Generalized Linear Mixed Models for binomially distributed outcomes, Breslow & Clayton,
1993), which combine the advantages of ordinary logit models with the ability to account for random
subject and item effects in one step of analysis. Throughout the paper, I use a psycholinguistic data
set to compare the different statistical methods.

In the psychological sciences, training in the statistical analysis of continuous outcomes (i.e.
responses or independent variables) is a fundamental part of our education. The same cannot
be said about categorical data analysis (Agresti, 2002; henceforth CDA), the analysis of
outcomes that are either inherently categorical (e.g. the response to a yes/no question) or
measured in a way that results in categorical grouping (e.g. grouping neurons into different
bins based on their firing rates). CDA is common in all behavioral sciences. For example, much
research on language production has investigated influences on speakers’ choice between two
or more possible structures (see e.g. research on syntactic persistence, Bock, 1986; Pickering
and Branigan, 1998; among many others; or in research on speech errors). For language
comprehension, examples of research on categorical outcomes include eye-tracking
experiments (first fixations), picture identification tasks to test semantic understanding, and,
of course, comprehension questions. More generally, any kind of forced-choice task, such as
multiple-choice questions, and any count data constitute categorical data.

Despite this preponderance of categorical data, the use of statistical analyses that have long
been known to be questionable for CDA (such as analysis of variance, ANOVA) is still
commonplace in our field. While there are powerful modern methods designed for CDA (e.g.
ordinary and mixed logit models; see below), they are considered too complicated or simply
unnecessary. There is a widely-held belief that categorical outcomes can safely be analyzed
using ANOVA, if the arcsine-square-root transformation (Cochran, 1940; Rao, 1960; Winer
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et al., 1971) is applied. This belief is misleading: even ANOVAs over arcsine-square-root
transformed proportions of categorical outcomes (see below) can lead to spurious null results
and spurious significances. These spurious results go beyond the normal chance of Type I and
Type II errors. The arcsine-square-root and other transformations (e.g. by using the empirical
logit transformation, Haldane, 1955; Cox, 1970) are simply approximations that were primarily
intended to reduce costly computation time. In an age of cheap computing at everyone’s
fingertips, we can abandon ANOVA for CDA. Modern statistics provide us with alternatives
that are in many ways superior.

This paper provides an informal introduction to one such method: generalized linear mixed
models with a logit link function, henceforth mixed logit models(Bates & DebRoy, 2004; Bates
& Sarkar, 2007; Breslow & Clayton, 1993; see also conditional logistic regression, Dixon, this
issue; for an overview of other methods, see Agresti, 2002). Mixed logit models are a
generalization of logistic regression. Like ordinary logistic regression (Cox, 1958, 1970; Dyke
& Patterson, 1952; henceforth ordinary logit models), they are well-suited for the analysis of
categorical outcomes. Going beyond ordinary logit models, however, mixed logit models
include random effects, such as subject and item effects. I introduce both ordinary and mixed
logit models and compare them to ANOVA over untransformed and arcsine-square-root
transformed proportions using data from a psycholinguistics study (Arnon, 2006, submitted).
All analyses were performed using the statistics software package R (R Development Core
Team, 2006). The R code is available from the author.

The inadequacy of ANOVA over categorical outcomes
Issues with ANOVAs and, more generally, linear models over categorical data have been
known for a long time (e.g. Cochran, 1940; Rao, 1960; Winer et al., 1971; for summaries, see
Agresti, 2002: 120; Hogg & Craig, 1995). I discuss problems with the interpretability of
ANOVAs over categorical data and then show that these problems stem from conceptual issues.

Interpretability of ANOVA over categorical outcomes
ANOVA compares the means of different experimental conditions and determines whether to
reject the hypothesis that the conditions have the same population means given the observed
sample variances within and between the conditions. For continuous outcomes, the means,
variances, and the confidence intervals have straightforward interpretations. But what happens
if the outcome is categorical? For example, we may be interested in whether subjects answer
a question correctly depending on the experimental condition. So, we may observe that of the
10 elicited answers, 8 are correct and 2 are incorrect. What is the mean and variance of 8
correct answers and 2 incorrect answers? We can code one of the outcomes, e.g. correct
answers, as 1 and the other outcome, e.g. wrong answers, as 0. In that case, we can calculate
a mean (here 0.8) and variance (here 0.18). The mean is apparently straightforwardly
interpreted as the mean proportion of correct answers (or percentages of correct answers if
multiplied by 100).

The current standard for CDA in psychology follows the aforementioned logic. Categorical
outcomes are analyzed using subject and item ANOVAs (F1 and F2) over proportions or
percentages. The approach is seemingly intuitive and, by now, so widespread that it is hard to
imagine that there is any problem with it. Unfortunately, that is not the case. ANOVAs over
proportions can lead to hard-to-interpret results because confidence intervals can extend
beyond the interpretable values between 0 and 1. For the above example, a 95% confidence
interval would range from 0.52 to 1.08 (= 0.8 +/− 0.275), rendering an interpretation of the
outcome variable as a proportion of correct answers impossible (proportions above 1 are not
defined). One way to think about the problem of interpretability is that ANOVAs attribute
probability mass to events that can never occur, thereby likely underestimating the probability
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mass over events that actually can occur. This intuition points at the most crucial problem with
ANOVAs over proportions of categorical outcomes. ANOVA over proportions easily leads to
spurious results.

Categorical outcomes violate ANOVA’s assumption
The inappropriateness of ANOVAs over categorical data can be derived on theoretical grounds.
Assume a binary outcome (e.g. correct or incorrect answers to yes/no-questions) that is
binomially distributed; that is, for every trial there is a probability p that the answer will be
correct. Then the probability of k correct answers in n trials is given by the following function:

(1)

The population mean and variance of a binomially distributed variable X are given in (2) and
(3).

(2)

(3)

The expected sample proportion P over n trials is given by dividing μX by the number of trials
n, and hence is p. Similarly, the variance of the sample proportion is a function of p:

(4)

From (4) it follows that the variance of the sample proportions will be highest for p= 0.5 (the
product of n numbers x that add up to 1 is highest if x1 = … = xn) and will decrease symmetrically
as we approach 0 or 1. This is illustrated in Figure 1. Note that the shape of the curve and the
location of its maximum are determined by p alone.

Now assume that we have two samples elicited under different conditions. In one condition,
the probability that a trial will yield a correct answer is p1, in the other condition it is p2. For
example, if p1 = 0.45 and p2 = 0.8, then:

(5)

In other words, if the probability of a binomially distributed outcome differs between two
conditions, the variances will only be identical if p1 and p2 are equally distant from 0.5 (e.g.
p1 = 0.4 and p2 = 0.6). The bigger the difference in distance from 0.5 between the conditions,
the less similar the variances will be. Also, as can be see in Figure 1, differences close to 0.5
will matter less than differences closer to 0 or 1. Even if p1 and p2 are unequally distant from
0.5, as long as they are close to 0.5, the variances of the sample proportions will be similar.
Sample proportions between 0.3 and 0.7 are considered close enough to 0.5 to assume
homogeneous variances (e.g. Agresti, 2002: 120). Within this interval, p(1 – p) ranges from
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0.21 for p= 0.3 or 0.7 to 0.25 for p= 0.5. Unfortunately, we usually cannot determine a
priori the range of sample proportions in our experiment (see also Dixon, this issue). Also, in
general, variances in two binomially distributed conditions will not be homogeneous – contrary
to the assumption of ANOVA.

The inappropriateness of ANOVA for CDA was recognized as early as Cochran (1940, referred
to in Agresti, 2002: 596). Before I discuss the most commonly used method for CDA using
ANOVA over transformed proportions, I introduce logistic regression, which is an alternative
to ANOVA that was designed for the analysis of binomially distributed categorical data.

An alternative: Ordinary logit models (logistic regression)
Logistic regression, also called ordinary logit models, was first used by Dyke and Patterson
(1952), but was most widely introduced by Cox (1958, 1970; see Agresti, 2002: Ch. 16). For
extensive formal introductions to logistic regression, I refer to Agresti (2002: Ch. 5), Chatterjee
and colleagues (2000: Ch. 12), and Harrell (2001). For a concise formal introduction written
for language researchers, I recommend Manning (2003: Ch. 5.7).

Logit models can be seen to be a specific instance of a generalization of ANOVA. To see this
link between logit models and ANOVA, it helps to know that ANOVA can be understood as
linear regression (cf. Chatterjee, 2000: Ch. 5). Linear regression describes outcome y as a linear
combination of the independent variables x1 … xn (also called predictors) plus some random
error ε (and optionally an intercept β0). Equation (6) provides two common descriptions of
linear models. The first equation describes the value of y. The second equation describes the
expected value of y. Note that categorical predictors have to be recoded into numerical values
for (6) to make sense (treatment-coding being a common coding in the regression literature).

(6)

We can further abbreviate (6) using vector notation E(y) = x′β (boldface for vectors), where x
′ is a transposed vector consisting of 1 for the intercept, and all predictor values x1 … xn, and
β is a vector of coefficients β0 … βn. The coefficients β0 … βn have to be estimated. This is
done in such a way that the resulting model fits the data ‘optimally’. Usually, the model is
considered optimal if it is the model for which the actually observed data are most likely to be
observed (the maximum likelihood model; for an informal introduction, see Baayen et al., this
issue).

Now imagine that we want to fit a linear regression to proportions of a categorical outcome
variable y. So, we could define the following model of expected proportions:

(7)

Such a linear model, also called linear probability model (Agresti, 2002: 120; not to be confused
with a probit model), has many of the problems mentioned above for ANOVAs over
proportions. But, what if we transformed proportions into a space that is not bounded by 0 and
1 and that captures the fact that, in real binomially distributed data, a change in proportions
around 0.5 usually corresponds to a smaller change in the predictors than the same change in
proportions close to 0 or 1 (i.e. the relation between the predictors and proportions is nonlinear;
cf. Agresti, 2002: 122)? Consider odds. They are easily derived from probabilities (and vice
versa):
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(8)

Thus, odds increase with increasing probabilities, with odds ranging from 0 to positive infinity
and odds of 1 corresponding to a proportion of 0.5. Differences in odds are usually described
multiplicatively (i.e. in terms of x-fold increases or decreases). For example, the odds of being
on a plane with a drunken pilot are reported to be “1 to 117” (http://www.funny2.com/). In the
notation used here, this corresponds to odds of 1 / 117 ≈ 0.0086. Unfortunately, these odds are
860 times higher than the odds of dating a supermodel (≈ 0.00001). Thus, we can describe the
odds of an outcome as a product of coefficients raised to the respective predictor values
(assuming treatment-coding, predictor values are either 0 or 1):

(9)

By simply taking the natural logarithm of odds instead of plain odds, we can turn the model
back into a linear combination, which has many desirable properties:

(10)

The natural logarithm of odds is called the logit (or log-odds). The logit is centered around 0
(i.e. logit( p) = −logit(1 – p) ), corresponding to a probability of 0.5, and ranges from negative
to positive infinity. The ln β0 … ln βn in (10) are constants, so we can substitute β… βn for them
(or any other arbitrary variable name). This yields (11):

(11)

In other words, we can think of ordinary logit models as linear regression in log-odds space!
The logit function defines a transformation that maps points in probability space into points in
log-odds space. In probability space, the linear relationship that we see in logit space is gone.
This is apparent in (12), describing the same model as in (11), but transformed into probability
space:

(12)

Logit models capture the fact that differences in probabilities around p= 0.5 matter less than
the same changes close to 0 or 1. This is illustrated in Figure 2, where the left panel shows a
hypothetical linear effect of a predictor x in logit space ( y= −3+0.2x ), and the right panel
shows the same effect in probability space. As can be seen in the right panel, small changes
on the x-axis around p= 0.5 (i.e. x= 15 since 0= −3+0.2*15 = logit(0.5) ) lead to large decreases
or increases in probabilities compared to the same change on the x-axis closer to 0 or 1.

Thus logit models, unlike ANOVA, are well-suited for the analysis of binomially distributed
categorical outcomes (i.e. any event that occurs with the same probability at each trial). Logit
models have additional advantages over ANOVA. Logit models scale to categorical dependent
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variables with more than two outcomes (in which case we call the model a multinomial
model; for an introduction, see Agresti, 2002). Among other things, this can help avoid
confounds due to data exclusion. For example, in priming studies where researchers are
interested in speakers’ choice between two structures, subject sometimes produce neither of
those two. If non-randomly distributed, such “errors” can confound the analysis because what
appears to be an effect on the choice between two outcomes may, in reality, be an effect on the
chance of an error. Consider a scenario in which, for condition X, participants produce 50%
outcome 1, 45% outcome 2, and 5% errors, but, for condition Y, they produce 50% outcome
1, 30% outcome 2, and 20% errors. If an analysis was conducted after errors are excluded, we
may conclude, given small enough standard errors, that there is a main effect of condition (in
condition X, the proportion of outcome 1 would be 50/95 = 0.53; in condition Y, 50/80 = 0.63).
This conclusion would be misleading, since what really happens is that there is an effect on
the probability of an error. We would find a spurious main effect on outcome 1 vs. 2. The
problem is not only limited to errors. It also includes any case in which “other” categories are
excluded from the analysis (e.g. when speakers in a production experiment produce structures
that we are not interested in). Multinomial models make such exclusion unnecessary and allow
us to test which of all possible outcomes a given predictor affects. For the above example, we
could test whether the condition affects the probability of outcome 1 or outcome 2, or the
probability of an error.

Logit models also inherit a variety of advantages from regression analyses. They provide
researchers with more information on the directionality and size of an effect than the standard
ANOVA output (this will become apparent below). They can deal with imbalanced data,
thereby freeing researchers from all too restrictive designs that affect the naturalness of the
object of their study (see Jaeger, 2006 for more details). Like other regressions, ordinary logit
models also force us to be explicit in the specification of assumed model structure. At the same
time, regression models make it easier to add and remove additional post-hoc control in the
analysis, thereby giving researchers more flexibility and better post-hoc control. Another nice
feature that logit models inherit from regressions is that they can include continuous predictors.
Modern implementations of logit models come with a variety of tools to investigate linearity
assumptions for continuous predictors (e.g. rcs for restricted cubic splines in R’s Designlibrary;
Harrell, 2005). Ordinary logit models do, however, have a major drawback compared to
ANOVA: they do not model random subject and item effects. Later I describe how mixed logit
models overcome this problem. First I present a case study that exemplifies the problems of
ANOVA over proportions using a real psycholinguistic data set. The case study illustrates that
these problems persist even if arcsine-square-root transformed proportions are used in the
ANOVA.

A case study: Spurious significance in ANOVA over proportions
Arnon (2006, submitted) investigated the source of children’s difficulty with object relative
clauses in production and comprehension. Arnon presents evidence that children are sensitive
to the same factors that affect adult language processing. I consider only parts of the
comprehension results of Arnon’s Study 2. In this 2 x 2 experiment, twenty-four Hebrew-
speaking children listened to Hebrew relative clauses (RCs). RCs were either subject or object
extracted. The noun phrase in the RC (the object for subject extracted RCs and the subject for
object extracted RCs) was either a first person pronoun or a lexical noun phrase (NP). An
example item in all four conditions is given in Table 1 (taken from Arnon, 2006), where the
manipulated NP is underlined.

Arnon hypothesized that, like adults (Warren & Gibson, 2003), children perform better on RCs
with pronoun NPs than on RCs with lexical NPs, and that they perform better on subject RCs
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than on object RCs. Table 2 summarizes the mean question-answer accuracy (i.e. the proportion
of correct answers) and standard errors across the four conditions.

Arnon (submitted) used mixed logit models to analyze her data which yielded two main effects
and no interaction. For the sake of argument, I demonstrate that using ANOVAs would have
resulted in a spurious interaction.

Note that, contrary to the assumption of the homogeneity of variances, but as expected for
binomially distributed outcomes, the standard errors (and hence the variances) are bigger the
closer the mean proportion of correct answers is to 50%. The results in Table 2 also suggest
that an ANOVA will find main effects of RC type and NP type as well as an interaction.
Question-answer accuracy is higher for subject RCs than for object RCs (92.7% vs. 76.6%)
and higher for pronoun NPs than for lexical NPs (90.0% vs. 79.3%). Furthermore, the effect
of NP type on the percentage of correct answers seems to be bigger for object RCs (68.9% vs.
84.3%) than for subject RCs (89.7% vs. 95.7%), suggesting that an ANOVA will find an
interaction.

ANOVA over untransformed proportions
Indeed, subject and item ANOVAs over the average percentages of correct answers return
significance for both main effects and the interaction.

As expected the interaction comes out as highly significant in the ANOVA. Now, are these
effects spurious or not? In the previous section, I discussed several theoretical issues with
ANOVAs over proportions. But do those issues affect the validity of these ANOVA results?
As I show next, the answer is yes, they do.

Ordinary logit model
Ordinary logit models are implemented in most modern statistics program. I use the function
lrm in R’s Designlibrary (Harrell, 2005). The model formula for the R function lrm is given
in (13).

(13)

The “1” specifies that an intercept should be included in the model (the default). Further
shortening the formula, I could have written Correct ~ RCtype*NPtype,which in R
implies inclusion of all combinations of the terms connected by “*” (I will use this notation
below).

For the ordinary logit model, the analyzed outcomes are the correct or incorrect answers. Thus,
all cases are entered into the regression (instead of averaging across subjects or items).
Significance of predictors in the fitted model is tested with likelihood ratio tests (Agresti,
2002: 12). Likelihood ratio tests compare the data likelihood of a subset model with the data
likelihood of a superset model that contains all of the subset model’s predictors and some more.
A model’s data likelihood is a measure of its quality or fit, describing the likelihood of the
sample given the model. The −2 * logarithm of the ratio between the likelihoods of the models
is asymptotically χ2-distributed with the difference in degrees of freedoms between the two
models. Thus a predictor’s significance in a model is tested by comparing that model against
a model without the predictor using a χ2-test.

Here I use the function anova.Design from R’s Designlibrary (Harrell, 2005). The function
automatically compares a model against all its subset models that are derived by removing
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exactly one predictor. For Arnon’s data, we find that a model without RC type has considerably
lower data likelihood (χ2(1)= 28.8, p< 0.001), as does a model without NP type (χ2(1)= 12.2,
p< 0.001). Thus RC and NP type contribute significant information to the model. The
interaction, however, does not (χ2(1)= 0.01, p> 0.9). The summary of the full model in Table
4 confirms this.

Note that the standard summary of a regression model provides information about the size and
directionality of effects (an ANOVA would require planned contrasts for this information).
The first column of Table 4 lists all the predictors entered into the regression. The second
column gives the estimate of the coefficient associated with the effect. The coefficients have
an intuitive geometrical interpretation: they describe the slope associated with an effect in log-
odds (or logit) space. For categorical predictors, the precise interpretation depends on what
numerical coding is used. Treatment-coding compares each level of a categorical predictor
against all other levels. This contrasts with effect-coding, which compares two levels against
each other. Here I have used treatment-coding, because it is the most common coding scheme
in the regression literature. For example, for the current data set, subject RCs are coded as 1
and compared against object RCs (which are taken as the baseline and coded as 0). So, the
coefficient associated with RC type tells us that the log-odds of a correct answer for subject
RCs are 1.35 log-odds higher than for object RCs. But what does this mean? Recall that log-
odds are simply the log of odds. So, the odds of a correct answer for subject RCs are e1.35 ≈
3.9 times higher than the odds for object RCs. Following the same logic, the odds for RCs with
pronouns are estimated to be e0.89 ≈ 2.4 times higher than the odds for RCs with lexical NPs.

The third column in Table 4 gives the estimate of the coefficients’ standard errors. The standard
errors are used to calculate Wald’s z-score (henceforth Wald’s Z, Wald, 1943) in the fourth
column by dividing the coefficient estimate by the estimate for its standard error. The absolute
value of Wald’s Z describes how distant the coefficient estimate is from zero in terms of its
standard error. The test returns significance if this standardized distance from zero is large
enough. Coefficients that are significantly smaller than zero decrease the log-odds (and hence
odds) of the outcome (here: a correct answer). Coefficients significantly larger than zero
increase the log-odds of the outcome. Unlike the likelihood ratio test, however, Wald’s z-test
is not robust in the presence of collinearity (Agresti, 2002: 12). Collinearity leads to inflated
estimates of the standard errors and changes coefficient estimates (although in an unbiased
way). The model presented here contains only very limited collinearity because all predictors
were centered (VIFs < 1.5).1 This makes it possible to use the coefficients to interpret the
direction and size of the effects in the model.

The main effects of RC type and NP type are highly significant. We can also interpret the
significant intercept. It means that, if the RC type is not ‘subject RC’ and the NP type is not
‘pronoun’, the chance of a correct answer in Arnon’s sample is significantly higher than 50%.
The odds are estimated at e0.8 ≈ 2.2, which means that the chance of a correct answer for object

RCs with a lexical NP is estimated as . Indeed, this is what we have seen in
Table 2. Similarly the predicted probability of a correct answer for subject RC with a pronoun
is calculated by adding all relevant log-odds, 0.8+1.35+0.89=3.04, which gives

 (compared to 95.7% given in Table 2).

1Collinearity is more of a concern in unbalanced data sets, but even in balanced data sets it can cause problems (for example, interactions
and their main effects are often collinear even in balanced data sets). R comes with several implemented measures of collinearity (e.g.
the function kappa as a measure of a model’s collinearity; or the function vif in the Design library, which gives variance inflation factors
– a measure of how much of one predictor is explained by the other predictors in the model). R also provides methods to remove collinearity
from a model: from simple centering and standardizing (see the functions scale) to the use of residuals or principal component analysis
(PCA, see the function princomp).
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The numbers do not quite match because we did not include the coefficient for the interaction.
However, notice that they almost match. This is the case because the interaction does not add
significant information to the model (Wald’s Z= 0.01, P> 0.9). The effects are illustrated in
Figure 3, showing the predicted means and confidence intervals for all combinations of RC
and NP type (the plot uses plot.Design from R’s Design library, Harrell, 2005 ):

In sum, there is no significant interaction because the effect of NP type for different levels of
RC type does not differ in odds (and hence neither does it differ in log-odds). Indeed, both the
change from 68.9% to 84.3% associated with NP type for object RCs and the change from
89.7% to 95.7% associated with NP type for subject RCs correspond to an approximate 2.5-
fold odds increase. So, unlike ANOVA, logistic regression returns a result that respects the
nature of the outcome variable.

The spurious interaction in the ANOVA should be of no further surprise given the before-
mentioned conceptual problems. Readers familiar with transformations for proportional data
may find the argument against ANOVA a straw man because they believe that ANOVAs will
correctly recognize the interaction as insignificant once the data is adequately transformed.
Next I describe why this assumption is wrong for at least the most commonly used
transformation.

The arcsine-square-root transformation and its failure
There are several problems with the reliance on transformation for ANOVA over proportional
data. To begin with there is also reason to doubt that transformations are applied correctly. The

most popular transformation, the arcsine-square-root transformation ( ; e.g.
Rao, 1960; Winer et al., 1971; henceforth arcsine transformation) requires further
modifications for small numbers of observations or proportions close to 0 or 1 (e.g. Bartlett,
1937: 168; for an overview, see Hogg & Craig, 1995). In practice these modifications are rarely
applied (Victor Ferreira, p.c.), although sample proportions close to 0 or 1 are common (e.g.
in research on speech errors or when analyzing comprehension accuracies). Even more
worrisome is the lack of any theoretical justification for the use of transformed proportions (cf.
Cochran, 1940: 346). Most importantly, however, even ANOVA over transformed proportions
can lead to spurious results. I use Arnon’s data to illustrate this point.

Spurious significance persists even after arcsine-square-root transformation
I focus on the subject analysis, where the insufficiency of the arcsine transformation is most
apparent. The two main effects are correctly recognized as significant (RC type: F1(1,23)=
28.5, P< 0.01; NP type: F1(1,23)= 17.3, P< 0.01). However, the interaction is still incorrectly
considered significant (F1(1,23)= 8.5; P< 0.01). This is the case because several children in
Arnon’s experiment performed close to ceiling (the proportions of correct answers are 1 or
close to 1). For such data, ANOVAs over arcsine transformed data are unreliable.

One reason why the arcsine transformation is unreliable for such data becomes apparent once
we compare the plots of logit and arcsine transformed proportions. Figure 4 shows the slope
(1st derivative) and curvature (2nd derivative) of the two transformations. Both transformations
have a saddle point at p= 0.5, but for all p ≠ 0.5 the slope of the logit is always higher than the
slope of the arcsine-square-root. The absolute curvature (the change in the slope) is also larger.
In other words, as one moves away from p= 0.5, a change in probability p1 to p2 corresponds
to more of a change in log-odds than to a change in arcsine transformed probabilities. This
means that, compared to the logit, the arcsine transformation underestimates changes in
probability more the closer they are to 0 or 1.
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In other words, while the arcsine transformation makes for proportional data more similar to
logit transformed data, for proportions close to 0 or 1, even ANOVA over arcsine transformed
data can return spurious results. As mentioned earlier, this problem is not limited to spurious
significances. Imagine that in Arnon’s data the effect of NP type would be identical in
proportions for subject and object RCs (e.g. imagine Arnon’s data but with 74.9% correct
answers for object RCs with pronouns): in proportions there would seem to be no interaction,
but in logit space there would be one (granted sufficiently small standard errors).

At this point, one may ask whether there are any better transformations that would allow us to
continue to use ANOVA for CDA. Several such transformations have been proposed, the most
well-known being the empirical logit (first proposed by Haldane, 1955, but often attributed to
Cox, 1970). The idea behind such transformations is to stay as close as possible to the actual
logit transformation while avoiding its negative and positive infinity values for proportions of
0 and 1, respectively (for an empirical comparison of different logit estimates, see Gart and
Zweifel, 1967). Indeed, appropriate transformations combined with appropriate weighing of
cases mostly avoid the problems of ANOVA described above (for weighted linear regression
that deals with heterogeneous variances, see McCullagh and Nelder, 1989). However, it is
important to note that even these transformations are still ad-hoc in nature (which
transformation works best depends on the actual sample the researcher is investigating, Gart
& Zweifel, 1967). Transformations for categorical data were originally developed because they
provided a computationally cheap approximation of the more adequate logistic regression –
approximations that are no longer necessary.

This leaves one potential argument for the use of ANOVA (with transformations) for CDA:
the fact that ordinary logit models provide no direct way to model random subject and item
effects. The lack of random effect modeling is problematic as repeated measures on the subject
or item in our sample constitute violations of the assumption that all observations in our data
set are independent of one another. Data from the same subject or item is often referred to as
a cluster. Analyses that ignore clusters produce invalid standard errors and therefore lead to
unreliable results. Next I show that mixedlogit models address this problem (other methods
include separate logistic regressions for each subject/item, see Lorch and Meyers, 1990, or
bootstrap sampling with random cluster replacement, see Feng et al., 1996).

Mixed logit models
Mixed logit models are a type of Generalized Linear Mixed Model (Breslow & Clayton,
1993; Lindstrom & Bates, 1990; for a formal introduction, see Agresti, 2002). Mixed Models
with different link functions have been developed for a variety of underlying distributions.
Mixed logit models are designed for binomially distributed outcomes.

Generalized Linear Mixed Models (Breslow & Clayton, 1993; for an introduction, see Agresti,
2002: Chapter 12) describe an outcome as the linear combination of fixed effects (described
by x′β below) and conditional random effects associated with e.g. subjects and items (described
by z′b). Just as x′ contains the values of the explanatory variables for the fixed effects (the
predictors), z′ contains the values of the explanatory variables for the random effects (e.g. the
subject and item IDs). The random effect vector b can be thought of as the coefficients for the
random effects. It is characterized by a multivariate normal distribution, centered around 0 and
with the variance-covariance matrix Σ (for details, see Agresti, 2002: 492). A mixed logit model
then has the form (for linear mixed models, cf. Baayen et al., this issue):

(14)
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Just as for ordinary logit models, the parameters of mixed logit models are fit to the data in
such a way that the resulting model describes the data optimally. However, unlike for mixed
linear models, there are no known analytic solutions for the exact optimization of mixed logit
models’ data likelihood (Hausman & Harding, 2006:2; Bates, 2007: 29). Instead, either
numerical simulations, such as Monte Carlo simulations, or analytic optimization of
approximations of the true log likelihood, so called quasi-log-likelihoods, are used to find the
optimal parameters. For larger data sets, Monte Carlo simulations are computationally
unfeasible even for models with parameters. Optimization of quasi-log-likelihood is a
computationally efficient alternative (see Agresti, 2002: 523–524). R’s lmer function (lme4
library, Bates & Sakar, 2007) uses Laplace approximation to maximize quasi-log-likelihood
(Bates, 2007: 29). Laplace approximation “performs extremely well, both in terms of numerical
accuracy and computational time” (Hausman & Harding, 2006: 19).

A case study using mixed logit models
The model formula is specified in (15), where the term in parentheses describes the random
subject effects for the intercept, the effects of RC and NP type, and their interaction. Random
effects are assumed to be normally distributed (in log-odds space) around a mean of zero. The
only parameter the model fits for the random effects is their variance (see also Baayen et al.,
this issue; for details on the implementation, see Bates & Sakar, 2007). The random intercept
captures potential differences in children’s base performance. The other random effects capture
potential differences between children in terms of how they are affected by the manipulations.

(15)

The estimated fixed effects are summarized in Table 5. The number of observations and the
quasi-log-likelihood of the model are given in the table’s caption. The estimated variances of
the random effects are summarized in Table 6.

In sum, a mixed logit model analysis of the data from Arnon (submitted) confirms the results
from the ordinary logit model presented above. Even after controlling for random subject
effects, the interaction between RC type and NP type is not significant. Note that the total
correlation between the random interaction and effect of NP type for subjects in Table 6
suggests that the model has been overparameterized (cf. Baayen et al., this issue) – one of the
two random effects is redundant. I get back to this shortly, when I show that we can further
simplify the model.

Additional advantages of mixed logit models
Mixed logit models combine all the advantages of ordinary logit models with the ability to
model random effects, but that’s not all. Mixed logit models do not make the frequently
unjustified assumption of the homogeneity of variances. Also, the R implementation of mixed
logit models used here (lmer) actually maximizes penalized quasi-log-likelihood (Bates,
2007: 29). Fitting a model that is optimal in terms of penalized likelihood rather than absolute
likelihoods reduces the chance that the model will be overfitted to the sample. Overfitting is a
potential problem for any statistical model (including ANOVA), because it makes a model less
likely to generalize to the entire population (Agresti, 2002: 524). Penalization is thus a welcome
feature of mixed logit models.

Another crucial advantage of mixed logit models over ANOVA for CDA is their greater power.
That is, mixed logit models are more likely to detect true effects. Simulations show that
lmer’s quasi-likelihood optimization outperforms ANOVA in terms of accurately estimating
effect sizes and standard errors (Dixon, this issue). The greater power of mixed logit models
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may in part depend on the method used to approximate quasi-likelihood (Dixon’s results are
based on Laplace approximation, implemented in lmer; even better approximations are under
development, Bates & Sakar, 2007).

Another advantage of mixed models is that they allow us to test rather than to stipulate whether
a hypothesized random effect should be included in the model. The question of whether or to
what extent random subject and items effects (especially the latter) are actually necessary has
been the target of an ongoing debate (Clark, 1974; Raaijmakers et al., 1999, a.o.). As Baayen
et al. (this issue) demonstrate, mixed models can be used to test a hypothesized random effect.
The test follows the same logic that was used above to test fixed effects: we simply compare
the likelihood of the model with and the model without the random effect. Before I illustrate
this for the mixed logit model from Table 5 and 6, a word of caution is in order. Comparisons
of models via quasi-log-likelihood can be problematic, since quasi-likelihood are
approximations (see above). This problem is likely to become less of an issue as the employed
approximations become better (for discussion, see Bates & Sakar, 2007). In any case, we can
use quasi-log-likelihood comparisons between models to get an idea of how much evidence
there is for a hypothesized random effect.

As mentioned above, the correlation between the random subject effects in Table 6 shows that
some of the random effects are redundant. Indeed, model comparisons suggest that neither the
random effect for the interaction nor the random effect for NP type is justified. The quasi-log-
likelihood decreases only minimally (from −256.8 to −258.5) when these two random effects
are removed. A revised mixed logit model without random effects for NP type and the
interaction is specified in (16). Table 7 and Table 8 give the updated results.

(16)

Note that most fixed effect coefficients have not changed much – neither compared to the full
mixed logit model in (15), nor compared to the ordinary logit model in (13). In all models the
main effects are significant but the interaction is not. Only the coefficient of RC type differs
between the current mixed logit model and the ordinary logit model: it is quite a bit larger in
the current model, but note that the standard error has also gone up. Wald’s Z for RC type does
not differ much between the two models. In summary, if there are random subject effects
associated with NP type or the interaction of RC and NP type (e.g. if children in the sample
differ in terms of how they react to NP type), they would seem to be subtle.

Finally, mixed logit models inherit yet another advantage from the fact that they are a type of
generalized linear mixed model. They allow us to conduct one combined analysis for many
independent random effects. For example, we could include random intercepts for both subjects
and items in the model:

(17)

If a fixed effect is significant in such a model, this means it is significant after the variance
associated with subject and items is simultaneously controlled for. In other words, mixed logit
models can combine F1 and F2 analysis (for more detail and further examples for linear mixed
models, see Baayen et al., this issue). Here only a random intercept (rather than random slopes
for RC type, etc.) is included for items, because all further random effects are highly correlated
with the random intercept (rs > 0.8) and hence unnecessary. The resulting model is summarized
in Table 9 and Table 10. The minimal change in the quasi-log-likelihood, and the small
estimates for the item variance, suggest that item differences do not account for much of the
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variance. Note that despite the fact that two items had missing cells and had to be excluded
from the ANOVA, the current model uses all 8 items and 24 subjects in Arnon’s data.

Combining subject and item analyses into one unified model is efficient and conceptually
desirable (cf. Clark, 1973). Note that, in principle, mixed models are even compatible with
random effects beyond subject and item effects (e.g. if the children spoke different dialects and
we hypothesized that this matters, we could include a random effect for dialect).

Conclusions
I have summarized arguments against the use of ANOVA over proportions of categorical
outcomes. Such an analysis – regardless of whether the proportional data are arcsine-square-
root transformed – can lead to spurious results. With the advent of mixed logit models, the last
remaining valid excuse for ANOVA over categorical data (the inability of ordinary logit models
to model random effects) no longer applies. Mixed logit models combine the strengths of
logistic regression with random effects, while inheriting a variety of advantages from
regression models. Most crucially, mixed models avoid spurious effects and have more power
(Dixon, this issue). Finally, they form part of the generalized linear mixed model framework
that provides a common language for analysis of many different types of outcomes.
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Figure 1.
Variance of sample proportion depending on p (for n= 1)
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Figure 2.
Example effect of predictor x on categorical outcome y. The left panel displays the effect in

logit space with . The right panel displays the same effect in probability

space with 
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Figure 3.
Estimated effects of RC type and NP type on the log-odds of a correct answer.
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Figure 4.
Slope and curvature of the logit and arcsine-square-root transformation
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Table 1

Materials from Study 2 in Arnon (2006; Comprehension experiment)

Subject RC, Lexical NP Eize tzeva ha-naalaim shel ha-yalda she metzayeret et ha-axot?
Which color the-shoes of the-girl that draws the nurse-ACC
What color are the shoes of the girl that is drawing the nurse?

Object RC, Lexical NP Eize tzeva ha-naalaim shel ha-yalda she ha-axot metzayeret?
Which color the-shoes of the-girl that the nurse draws?
What color are the shoes of the girl that the nurse is drawing?

Subject RC, Pronoun Eize tzeva ha-naalaim shel ha-axot she metzayeret oti?
Which color the-shoes of the-nurse that draws me-ACC?
What color are the shoes of the nurse that is drawing me?

Object RC, Pronoun Eize tzeva ha-naalaim shel ha-axot she ani metzayeret?
Which color the-shoes of the-nurse that I-NOM draw?
What color are the shoes of the nurse that I am drawing?
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Table 2

Percentage of correct answers and standard errors by condition

Lexical NP Pronoun NP

Subject RC 89.7% (.02) 95.7% (.02)
Object RC 68.9% (.04) 84.3% (.03)
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Table 4

Summary of the ordinary logit model (N= 696; model Nagelkerke r2= 0.126)

Predictor Coefficient SE Wald Z P

Intercept 0.80 (0.167) 4.72 <0.001
RC type=subject RC 1.35 (0.295) 4.58 <0.001
NP type=pronoun 0.89 (0.272) 3.26 <0.001
Interaction=subject RC & pronoun 0.05 (0.511) 0.10 >0.9
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Table 5

Summary of the fixed effects in the mixed logit model (N= 696; log-likelihood= −256.2)

Predictor Coefficient SE Wald Z P

Intercept 0.84 (0.203) 4.17 <0.001
RC type=subject RC 1.82 (0.365) 4.97 <0.001
NP type=pronoun 1.05 (0.288) 3.66 <0.001
Interaction=subject RC & pronoun 0.59 (0.580) 1.02 >0.3
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Table 7

Summary of the fixed effects in the mixed logit model (N= 696; log-likelihood= −256.8)

Predictor Coefficient SE Wald Z P

Intercept 0.86 (0.212) 3.99 <0.001
RC type=subject RC 1.90 (0.380) 5.01 <0.001
NP type=pronoun 0.96 (0.278) 3.44 <0.001
Interaction=subject RC & pronoun 0.10 (0.544) 0.18 >0.8
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Table 8

Summary of random subject effects and correlations in the mixed logit model

Correlation with random effect for
Random subject effect s2 Intercept RC type NP type

Intercept 0.399
RC type=subject RC 0.744 0.629
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Table 9

Summary of the fixed effects in the mixed logit model (N= 696; log-likelihood= −256.0)

Predictor Coefficient SE Wald Z P

Intercept 0.85 (0.244) 3.49 <0.001
RC type=subject RC 1.97 (0.385) 5.11 <0.001
NP type=pronoun 0.99 (0.283) 3.49 <0.001
Interaction=subject RC & pronoun 0.07 (0.550) 0.13 >0.8

J Mem Lang. Author manuscript; available in PMC 2009 November 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Jaeger Page 28

Table 10

Summary of random subject and item effects and correlations in the mixed logit model

Correlation with random effect for
Random effect s2 Intercept RC type NP type

Subject intercept 0.420
Subject RC type=subject RC 0.770 0.620
Item intercept 0.086
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