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Abstract
Marginal structural models (MSM) are an important class of models in causal inference. Given a
longitudinal data structure observed on a sample of n independent and identically distributed
experimental units, MSM model the counterfactual outcome distribution corresponding with a static
treatment intervention, conditional on user-supplied baseline covariates. Identification of a static
treatment regimen-specific outcome distribution based on observational data requires, beyond the
standard sequential randomization assumption, the assumption that each experimental unit has
positive probability of following the static treatment regimen. The latter assumption is called the
experimental treatment assignment (ETA) assumption, and is parameter-specific. In many studies
the ETA is violated because some of the static treatment interventions to be compared cannot be
followed by all experimental units, due either to baseline characteristics or to the occurrence of certain
events over time. For example, the development of adverse effects or contraindications can force a
subject to stop an assigned treatment regimen.

In this article we propose causal effect models for a user-supplied set of realistic individualized
treatment rules. Realistic individualized treatment rules are defined as treatment rules which always
map into the set of possible treatment options. Thus, causal effect models for realistic treatment rules
do not rely on the ETA assumption and are fully identifiable from the data. Further, these models
can be chosen to generalize marginal structural models for static treatment interventions. The
estimating function methodology of Robins and Rotnitzky (1992) (analogue to its application in
Murphy, et. al. (2001) for a single treatment rule) provides us with the corresponding locally efficient
double robust inverse probability of treatment weighted estimator.

In addition, we define causal effect models for “intention-to-treat” regimens. The proposed intention-
to-treat interventions enforce a static intervention until the time point at which the next treatment
does not belong to the set of possible treatment options, at which point the intervention is stopped.
We provide locally efficient estimators of such intention-to-treat causal effects.
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1 Introduction
A wide range of statistical tools are available to estimate the causal effects of static treatment
interventions. The identifiability of such effects relies on the assumption that treatment
assignment in the observed data is not based deterministically on a subject's past (the
assumption of experimental treatment assignment, or ETA). However, in practical applications
the full set of treatment options is often not available to all individuals. Moreover, when the
treatment of interest is assigned longitudinally over time, subjects for whom a given treatment
regimen was initially possible may develop conditions that reduce their set of future treatment
options. Common occurrences such as these result in violation of the ETA assumption,
potentially causing considerable bias in estimators of the causal treatment effect.

In this article we introduce two new classes of causal models that address this pressing
challenge to practical data analysis. These classes of causal models are indexed by the following
two types of intervention: 1) realistic treatment rules; and 2) intention-to-treat interventions.
By definition, both types of intervention assign treatment at each time point only from among
those treatments which are possible given a subject's past. We further introduce two types of
causal models indexed by realistic individualized treatment rules. The first type estimates the
causal effects of a user-supplied set of individualized treatment rules (or dynamic treatment
regimes), and can thus be used to identify the optimal rule from among this user-supplied set.
The second type estimates the causal effects of realistic rules indexed by static treatment
regimens; the parameter estimated is the causal effect of remaining on a static treatment
regimen for only as long as such a static regimen is possible. Similarly, causal models for
intention-to-treat interventions estimate the effect of remaining on a static treatment regimen
only to the extent possible given a subject's covariates. As we explain below, the difference
between intention-to-treat and realistic rules lies in the type of intervention that is assigned
after the initial static regimen becomes impossible.

By defining a specific type of treatment intervention, the causal parameters indexed by both
realistic treatment rules and intention-to-treat interventions avoid violation of the ETA
assumption. As a result, the causal effects discussed in this article are fully identifiable based
on the data. The article provides a detailed interpretation of the causal effects indexed these
different types of interventions, using both the formal counterfactual framework and an
example drawn from the treatment of HIV. The article further develops inverse probability
weighted, likelihood-based, and double robust estimators of these causal effects. The
estimation of causal effects indexed by a user-supplied set of realistic treatment rules is
illustrated using a data analysis based on the HIV example.

This introduction begins by defining the data structure that underlies the causal parameters and
corresponding estimators developed in the article. The causal effect of a static treatment and
its relation to the ETA assumption is then reviewed. Next, we introduce our first class of causal
models, indexed by realistic treatment rules. We then introduce the intention-to-treat
intervention and corresponding causal effect. These three types of causal effect (ie. indexed
by a static intervention, realistic rule, and intention-to-treat intervention) are compared using
the HIV example. We provide a general road map to the rest of the article, and review the
relevant literature.

1.1 Data structure
Consider a data generating experiment in which the experimental unit results in the following
time-ordered sequential data structure
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where A(j) denotes a treatment assignment at time j, L(j) denotes all variables measured on the
experimental unit after A(j−1) and before A(j), and T+1 is a fixed or random end-point such as
a survival time. We assume that T+1 ≤ τ+1 with probability 1 for a fixed τ. Suppose we observe
n independently and identically distributed copies O1, …, On of O. For simplicity, throughout
this article, we will treat all random variables as discrete, but all formulas have natural
continuous analogues.

We let R(t) ≡ I(T ≤ t) be a component of L(t), and we truncate the A and L process at T so that
A(t) = A(min(t, T)), L(t) = L(min(t, T + 1)). In this manner, we can now also represent the
observed longitudinal data structure O on the experimental unit as a vector of fixed length,

where we remind the reader that after time T + 1 the data structure becomes degenerate in the
sense that A(T + j) = A(T), and L(T + 1 + j) = L(T + 1) for j = 1, 2, ….

Let Y be a real-valued function of L, which will denote the outcome of interest. For example,
Y = T + 1 might be the survival time T + 1, or it might be an outcome Y(τ + 1) of a time-
dependent process Y(·) measured at a fixed time τ + 1. We use the notation L ̄(t) ≡ (L(0), …, L
(t)), but the complete covariate/outcome and treatment process are also denoted with L = L ̄(τ
+ 1) and A = Ā(τ).

The time-dependent treatment options process—Let (t) be the support of the
marginal random variable Ā(t) ≡ (A(0), …, A(t)), t = 0, …, τ. Let (t) represent a set of possible
treatment options for A(t), given an experimental unit with history Ā(t − 1), L ̄(t), in the sense
that

It is assumed that (t) is a function of L(t): e.g., (t) could be one of the components of L(t).

1.2 The causal effect of a static treatment intervention
The current literature on causal inference provides models and corresponding methods for the
estimation of static treatment effects. Typically, the data of interest are based on sampling
subjects from a particular population and recording the treatment assignments, co-variables,
and outcomes of interest for these subjects over time. Marginal structural models (MSM),
introduced by Robins (e.g., Robins (1999), Robins (2000)), provide a powerful tool for causal
inference in the context of such longitudinal data structures, and address many of the limitations
of the traditional regression approach. MSM model the dependence of the distribution of
treatment regimen-specific counterfactual outcomes (or outcome processes) on the treatment
regimen. In other words, MSM model the population distribution of the outcome process that
would be observed if all members of the population were to follow a particular static treatment
regimen. The causal effect of a change in treatment is estimated as the difference in the
population distribution of the outcome under the two treatment regimens being compared. For
example, marginal structural models model as a function of ā(t) the mean outcome under an
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intervention setting Ā(t) = ā(t) with probability 1, possibly conditional on user-supplied
baseline covariates. Inverse Probability of Treatment Weighted (IPTW) estimators, locally
efficient double robust IPTW (DR-IPTW) estimators, and likelihood-based estimators have
been proposed by Robins and co-authors for the unknown causal parameters in the marginal
structural model. van der Laan and Robins (2003) provide a comprehensive overview of the
development of these methods, together with a review of the relevant literature.

Identification of the causal effects of static treatment interventions based on observational data
relies on the standard sequential randomization assumption (SRA) on the treatment
mechanism, otherwise known as the assumption that there are no unmeasured confounders. In
addition, because these methods aim to produce the results of a trial in which static treatment
interventions are randomly assigned and each subject is forced to fully comply with the
assigned intervention, they further require that treatment in the observed data not be
deterministically assigned at any time point based on a subject's observed past; this latter
assumption is called the experimental treatment assignment (ETA) assumption. In most studies
all static treatment interventions cannot be followed by all sampled subjects, due either to
baseline characteristics or to the occurrence of certain events over time. For example, clinical
progression may force a clinician to initiate treatment before an assigned time, or the
development of serious adverse effects or a contraindication, such as pregnancy, may force a
clinician to stop an assigned treatment regimen. In practice, the ETA assumption can be
somewhat weakened, to say that treatment cannot be deterministically assigned in response to
that subset of a subject's observed past which is sufficient for the SRA to hold; thus the
development of a condition that forces a subject to stop an assigned therapy need not lead to
an ETA violation if it is causally unrelated to the outcome of interest.

Violation of the ETA assumption, whether theoretical (i.e. due to the occurrence of events
which make a given treatment impossible) or practical (i.e. due to finite sample size), is known
to result in potentially extreme bias in the IPTW estimators of marginal structural model
parameters. Further, when ETA is violated, both likelihood-based estimators and DR-IPTW
estimators rely fully on model assumptions (beyond the SRA) which cannot be tested from the
data (Neugebauer and van der Laan (2005b)). The use of stabilizing weights (Robins (1999))
can somewhat mitigate the problem of ETA violations, by weakening the assumption from the
requirement that

to the requirement that

where g0(a(t)|Ā(t − 1), L ̄) = P(A(t) = a(t)|Ā(t − 1), L ̄(t)) is the true treatment mechanism, and
V denotes any baseline covariates of interest included in the marginal structural model. In many
applications, however, violation of the ETA assumption remains a significant problem.

In addition to the potentially serious bias in effect estimates caused by ETA violations, the fact
that models for static treatment interventions and their corresponding estimates aim to
reproduce the results of typically unrealistic randomized trials has been a source of
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philosophical criticism. Finally, even in settings where ETA violations of static treatment
interventions do not occur, it is frequently of interest to estimate the causal effect of a dynamic
rather than static treatment regimen. In other words, the researcher may be interested in the
difference in mean outcome that would be observed between individuals randomized to receive
different treatment strategies (or individualized treatment rules, in which treatment is changed
in response to patient evolution), rather than different static regimens. In this article we propose
a set of causal models and corresponding estimators that address these challenges.

1.3 Realistic individualized treatment rules
Lack of identifiability of the counterfactual distribution of the data under a static treatment
intervention results from a non-zero probability of sampling an experimental unit for which
the static intervention cannot occur. In this article we define realistic individualized treatment
rules as rules which always assign treatments (in response to observed history) that fall in the
set of possible treatment options. Causal effects comparing realistic individualized treatment
rules are now identifiable from the observed data distribution.

Such a class of realistic individualized treatment rules can be user-defined. This approach is
comparable to designing a randomized trial to compare realistic individualized treatment rules
of interest. For example, the researcher may specify a priori a set of interesting rules which
assign treatment over time by responding to patient covariates in a clinically realistic way, thus
avoiding violations of the ETA assumption. Modeling the mean outcome for such a user-
supplied class of realistic individualized treatment rules also yields a model for the optimal
rule among the user-supplied class (i.e. by selecting the rule which maximizes or minimizes
the mean outcome). The causal models for realistic treatment rules presented in this paper thus
provide an alternative method for modelling and estimation of optimal dynamic treatment
regimes from among a user-supplied set, based on a generalization of structural nested models
(Robins (1989),Robins (1998), Robins (1999), Robins (1994)), as developed in (Murphy
(2003), Robins (2003)).

It may not always be straightforward to propose such an interesting set of realistic
individualized treatment rules. For example, the set of possible treatment options, given a
subject's covariates ( (t)) may not be known or collected as part of the study. In such a case,
then we propose to define the set of possible treatment rules by employing a stabilized version
of the treatment mechanism:

for some α, and if the treatment mechanism g0 is unknown, then one estimates this set by
substitution of an estimator gn of g0.

In addition, it may be the case that the researcher is in fact interested in the effect of a static
(rather than dynamic) treatment regimen, to the extent that subjects are realistically able to
follow it. One option is to map a static treatment intervention into a corresponding realistic
individualized treatment rule, in which the subject follows the assigned static treatment
intervention for only as long as the assigned intervention remains possible. When the assigned
regimen no longer falls within the set of possible treatment options for the subject (as a result
of the subject's covariate history), then the subject is assigned a particular alternative treatment
in the set of remaining treatment options (e.g., the one “closest” to the treatment assigned by
the static intervention). Again, this new static regimen is applied until the subject is forced to
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switch again, and so on. In this manner, these individualized treatment rules are indexed by
static treatment regimens, and provide natural realistic approximations of the intended static
treatment intervention. Such rules correspond to randomized controlled trials that incorporate
explicit rules for altering patients' randomized static treatment assignment in order, for
example, to protect patient health.

Note that if the ETA assumption holds, so that the set of possible treatment options at time t
can be chosen to be equal to the set of all marginally possible treatments at time t, then the
realistic individualized treatment rules indexed by static interventions reduce to the class of
static treatment interventions, and thus the causal model for such realistic rules reduces to a
standard marginal structural model for static treatments. As a consequence, the realistic causal
models introduced in this article generalize causal effect models for static treatment
interventions (MSM's) that rely on the ETA assumption to causal effect models for
individualized treatment rules, indexed by static interventions, that also apply when the ETA
assumption is violated.

1.4 Intention-to-treat interventions
The previous section introduced a new class of causal models for realistic individualized
treatment rules. These rules assign a treatment at each time point, based on a subject's current
covariates, that always falls within the set of possible treatment options for that subject; the
rules may be, but are not necessarily, indexed by static treatment regimens. In this section we
introduce a related class of causal models that estimate the effects of “intention-to-treat”
interventions indexed by static treatment regimens. As with realistic treatment rules indexed
by static regimens, intention-to-treat interventions enforce the assigned static intervention up
till the time point t at which the next prescribed treatment does not fall in the set of possible
treatment options (t + 1). If a realistic treatment rule were being applied, at this point a pre-
specified alternative regimen would be assigned. In contrast, in an intention-to-treat
intervention, when the assigned regimen is no longer possible then all intervention on that
subject is stopped.

The name “intention-to-treat” is based on the loose association of this type of intervention with
the practice of analyzing the results of randomized controlled trials based on treatment
assignment, rather than on the treatment that subjects were observed to follow. In other words,
even though in practice some individuals may find it impossible to follow the treatment arm
to which they are randomly assigned, conventional clinical trial analysis treats these individuals
as if they had followed their assigned treatment. A key difference between this classic definition
of “intention-to-treat” and the intention-to-treat parameter described in this paper is that the
latter assumes that the set of possible treatment options for a subject is fully determined given
a subject's past, whereas in the context of a controlled trial, failure to adhere to assigned
treatment may occur even in the absence of conditions which make the assigned treatment
impossible.

The causal effects of these intention-to-treat interventions indexed by static treatment regimens
are now fully identifiable from the data. As a consequence, as with realistic treatment rules,
we can develop locally efficient estimators of these causal effects without the need to assume
the often unrealistic ETA assumption. As with realistic treatment rules, this model for intention-
to-treat interventions indexed by static treatments generalizes marginal structural models for
static interventions, which depend on the ETA assumption, to causal models for corresponding
intention-to-treat interventions that reduce to marginal structural models if the ETA assumption
holds.
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1.5 Example
Suppose that we sample subjects from an HIV-infected population receiving antiretroviral
therapy, who at time 0 experience a persistent rebound in plasma HIV RNA level as a result
of viral resistance to their prescribed drug regimens. Suppose that Y (8) is the CD4 T cell count
measured 8 months after rebound and that the measurements L(t), t = 0, …, 8 include plasma
HIV RNA level (viral load), CD4 T cell count, and other time-dependent characteristics of
interest. Let (A(t), t = 0, …, 7) be the indicator process which equals 1 up till the time point at
which a subject modifies his or her antiretroviral regimen, and then jumps to 0. One might now
be interested in estimation of the causal effect of time until treatment modification on CD4 T
cell count at 8 months, based on this sample of patients experiencing a rebound of the virus at
time 0. Specifically, we refer to Petersen et al. (2005) for a description of the SCOPE cohort
of HIV-infected patients, and of the interest and relevance of the “when to switch?” question
in the HIV-AIDS research community, with relevant references. In particular, it has been
observed that a drug can still have a significant beneficial effect on a resistant virus by making
it less lethal and/or fit, so that an increase in viral load does not necessarily imply a decrease
in CD4 T cell count.

Consideration of hypothetical randomized trials can be used to illustrate how the three types
of causal parameters described in this article compare with the effect of a static treatment
regimen as typically estimated using marginal structural models.

Estimating the effect of a static modification time—First, consider a trial in which
each subject is randomly assigned a time at which to modify treatment. Note that this is a
randomized trial of a static intervention, in that subjects are assigned a modification time at
baseline and this time is not altered in response to the condition of the patient or virus. In order
to estimate the mean outcome in the trial arm assigned to modify treatment at time t, one would
need that every subject in this group (or at least a representative subgroup of these subjects) is
able to fully comply with the assigned modification time t. However, suppose that some
subjects in the population develop an opportunistic infection or adverse drug effects before
time t, and as a result are unable to remain on their baseline regimen. Such patients cannot
comply with the assigned modification time. Assuming that the measurement of such
deterministic events is necessary to ensure sequential randomization, or put another way,
assuming that individuals who are unable to comply with their assigned modification time t
are not representative of all subjects assigned to modify at time t with respect to their
counterfactual outcome, the causal effect of time until treatment modification is not identifiable
from the data. As a consequence, any of the candidate estimators of a marginal structural model
modeling the causal effect of time until treatment modification on mean CD4 T cell count at
8 months suffer from potentially serious bias. Further, one might argue that such a causal effect
is not in fact of primary interest, as it corresponds with an intervention that would never be
employed in practice.

Estimating the effect of a realistic rule/intention-to-treat intervention indexed by
a static modification time—Alternatively, consider a trial in which each subject is assigned
a realistic treatment rule indexed by a random modification time t. A subject in such a trial
remains on his or her original therapy until the minimum of time t and the first time point at
which an event occurs which forces him or her to modify therapy. Under ETA (i.e. the absence
of deterministic events that force treatment modification), these realistic treatment rules are
identical to the static modification regimens described in the prior example. However, unlike
the effects of the static modification regimens, the causal effects of the realistic rules are still
interpretable and identifiable if ETA is violated. In this case, the realistic treatment rule indexed
by the static modification time t is identical to the “intention-to-modify at time t” intervention,
due to the fact that the treatment process A(t) is binary.
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Estimating the effect of a user-supplied set of realistic rules for modifying
therapy—The prior example describes estimation of the effect of realistic treatment rules
indexed by static modification times. In clinical practice, however, the effects of a set of
dynamic strategies, which assign a patient a rule for when to modify therapy based on (e.g.)
the evolution of CD4 T cell count over time, are likely to be of greater clinical interest than
the effects of set modification times assigned at baseline (even if such static modification times
are allowed to be changed if they become impossible). With this motivation, consider a third
clinical trial, in which subjects are assigned to modify treatment only when their CD4 T cell
count falls below a certain randomly assigned threshold θ. Again, such a user-supplied set of
treatment rules should be realistic. This implies that either any patient characteristics that make
the assigned threshold impossible to comply with must not be required for the SRA to hold,
or such covariates should be incorporated into the treatment rules considered. For example, we
could now define the following user-supplied set of realistic individualized treatment rules
indexed by a threshold θ: “modify therapy if CD4 T cell count drops below θ or if an event
occurs that forces modification”.

1.6 Organization
This article introduces causal models for realistic individualized treatment rules and intention-
to-treat interventions, and develops corresponding estimators. In Section 2 the causal model
for realistic (and thereby identifiable) individualized treatment rules is presented, and the
corresponding locally efficient double robust inverse probability of treatment weighted
estimator is derived. This model and methodology for the special (but common) case in which
the treatment is assigned at a single point in time in response to baseline covariates is provided
in Appendix A. In Section 3 we present a data analysis, based on the example presented above,
that illustrates this model and methodology. In the analysis we estimate the causal effect of a
user-supplied set of realistic rules for modifying antiretroviral therapy, based on a subject's
current and baseline CD4 T cell counts.

The remainder of the article focuses on causal effect models for intention-to-treat regimens.
Specifically, in Section 4 we define a causal inference framework which allows us to define
the causal effects of a range of interventions on the data generating distribution of the data
structure O, and, in particular, allows us to define our wished non-parametric identifiable
intention-to-treat causal effect parameter. This framework represents a set of assumptions
which do not put any restrictions on the data generating distribution, but are essential for the
definition and identification of the wished causal effect of an intention-to-treat regimen from
the data generating distribution. Given the causal inference framework, we define the intention-
to-treat counterfactual processes, and corresponding models for the conditional mean of the
intention-to-treat counterfactual outcome.

In Section 5 we present the intention-to-treat causal effect model for the point treatment data
structure (W = L(0), A, Y). We further present the corresponding efficient Double Robust
Inverse Probability of Treatment Weighted (DR-IPTW) estimating function and the locally
efficient double robust estimator. The latter estimator (derived in Appendix B) is locally
efficient in the sense that its consistency (and asymptotic linearity) relies on either correct
specification of the treatment mechanism P(A = a | W) or the regression E(Y | A, W), and it is
efficient if both are correctly specified. We also present the likelihood-based estimator and the
simpler IPTW estimator, which is a special case of the DR-IPTW estimator. The presentation
of the estimating function-based estimators of the intention-to-treat causal parameter for the
general longitudinal data structure is deferred to Appendices C-D, since this work happens to
be quite involved.

Section 6 is devoted to a discussion.
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1.7 Some immediately relevant literature
Based on personal communication we became aware of completely independent unpublished
work on individualized treatment rules by Andrea Rotnitzky, who presented similar/
overlapping ideas in a November 2005 NIH grant proposal titled “Methods for Analysis with
Missing and/or Censored Data and for Causal Inference”. Specifically, in the aforementioned
grant, Rotnitzky proposed the consideration of parametric and semiparametric models for the
marginal means of counterfactual variables under a class of dynamic treatment regimes as a
device for estimating the optimal treatment regime in the class. She also indicated how doubly-
robust locally efficient Inverse Probability Weighted estimators of the model parameters can
be constructed. These estimators essentially agree with those derived at the end of Section 2
of the present paper. Finally, she also noted that an important application of the methodology
was to estimate the optimal CD4 T cell count level at which to either start or switch
antiretroviral therapies, much along the lines of the example presented in Section 3 here. We
were not aware of this work, but certainly wish to acknowledge her independent and
overlapping original work in this area of research.

The method of inverse probability of treatment weighting in order to compare dynamic
treatment regimens and their corresponding double robust estimators was presented in Murphy
et al. (2001), and Hernan et al. (2006), and, as a method, goes back to the general Inverse
Probability of Censoring Weighting as presented in Robins and Rotnitzky (1992) and Robins
(1993). Murphy et al. (2001) proposes a model for a single dynamic treatment regimen
conditional on baseline covariates, while the current article generalizes that to a model for a
user-supplied class of dynamic treatment regimens. The introduction of dynamic treatment
regimens, and the notion and idea of (what we call) realistic individualized treatment rules goes
back to Robins (1986) who discusses such regimens in the context of a study aiming to estimate
the effects of exposure of chemicals on employees, noting that static regimens cannot be
identified since the subjects can only be exposed if at work. Finally, we also wish to point out
the relation between the statistical framework/assumptions as we presented for defining and
identifying the causal effects of the intention-to-treat regimens and the work in Robins
(1986) (specifically, pages 1422-1423 in Robins (1986)).

2 Causal effect models for realistic individualized treatment rules
In this section we present a causal effect model for realistic individualized treatment
interventions, and present the corresponding locally efficient double robust inverse probability
of treatment weighted estimator following the general estimating function methodology of
Robins and Rotnitzky (1992) and van der Laan and Robins (2003).

2.1 The counterfactual framework for realistic individualized treatment rules
We use the statistical framework of counterfactuals on which marginal structural models are
based. This framework was introduced in Neyman (1990), extended to causal effects of time-
independent treatments by Rubin (1978), and further extended to a formal theory of causal
inference for direct and indirect effects of time-varying treatments from experimental and
observational longitudinal studies by Robins (1986, 1987). This causal framework for
treatment interventions ā assumes the existence of counterfactuals indexed by static treatment
interventions ā, the corresponding link between the observed data and these counterfactuals
(i.e., consistency assumption), and the sequential randomization assumption (SRA). By
applying the result in (Gill and Robins (2001), Yu and van der Laan (2002)), it follows that,
by construction, assuming the consistency and randomization assumptions puts no restriction
on the data generating distribution. These assumptions do, however, allow us to define the
causal parameter of interest as a parameter of the data generating distribution.
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As defined in Robins (1986), an individualized treatment rule d is a function (d(0), …, d(τ)),
where the j-th function, (Ā(j − 1), L ̄(j)) → d(j)(Ā(j − 1), L ̄(j)), maps the history at time j into a
treatment choice for A(j), j = 0, …, τ.

Consistency assumption—We define the full data as the collection X = (Lā : ā ∈ ) of
counterfactual processes Lā indexed by static treatment interventions varying over the support
of the marginal distribution of Ā = (A(0), …, A(τ)). We also assume the temporal ordering
assumption, Lā(j) = Lā(j − 1)(j), and the consistency assumption stating that O = (Ā, LĀ) or, as
a chronological data structure:

Dynamic treatment counterfactuals—Given this standard consistency assumption, for
any rule d, the counterfactual Ld indexed by a dynamic treatment d can be defined as Lā with
ā = ā(X, d) defined as the following function of X and the rule d: a(0) = d(0)(L(0)), a(1) = d
(1)(a(0), L ̄a(0)(1)), and, in general, a(j) = d(j)(ā(j − 1), L ̄ā(j − 1)(j)), j = 0, …, τ. Thus, given the
existence of the random variable X defined as the collection of static treatment-specific
counterfactuals, one can also define the dynamic treatment regimen-specific counterfactuals
Ld ≡ Lā(X,d) as a measurable function of X and the rule d. We recall that the treatment options
process t → (t) is included in the t → L(t) process, so that d denotes the d-specific treatment
options process for the experimental unit.

It is also of interest to note that, for each experimental unit, the rule d maps into a unique
treatment regimen ā(d, X). However, a static treatment intervention ā can correspond with
various individualized treatment rules d: e.g. Lā = Ld1 = Ld2 for two different rules d1 and d2
in a set of dynamic regimens *. If an experimental unit follows rule d starting at time 0, then
it follows that dj is, in fact, only a function of L ̄d(j). For the sake of notational convenience, in
that case we will use the notation L ̄d(j) → d(j) L ̄d(j)).

Sequential randomization assumption—We will assume the (strong) sequential
randomization assumption: i.e., for each j = 0, …, τ, A(j) is independent of X, given L ̄(j), Ā(j −
1). The data generating distribution of O will be denoted with P0 = PFX0,g0, and is indexed by
the distribution FX0 of X and the conditional probability distribution, g0(· | X), of Ā, given X.

Realistic dynamic treatment assumption—Let * be a set of dynamic treatment
regimens so that for any d ∈ * we have

(1)

That is, for each possible history at time j under a dynamic treatment regimen d ∈ *, the next
treatment assigned by this individualized treatment rule d at time j + 1 is an element of the set

d(j + 1) of possible treatment options. This condition on the rule d guarantees that the
distribution of Ld is identifiable by the G-computation formula (Robins (1999), Gill and Robins
(2001), Yu and van der Laan (2002)):
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where we defined d̄(j)(l) ≡ (d(1)(l(0)), …, d(j − 1)(l̄(j − 1)).

Realistic individualized treatment rules indexed by static treatment regimens—
Let Cā be the counterfactual stopping time defined as

Given a static treatment regimen ā, one can define a dynamic treatment regimen as one which
follows the static treatment regimen ā until time point t = Cā at which a(t + 1) ∉ (t + 1) or t
= τ, and subsequently one proceeds assigning treatments in the set of treatment options
according to a particular user-supplied rule.

For example, the following construction describes such a set of dynamic treatment regimens
indexed by static treatment interventions ā. Suppose that the maximal set of treatment options
is  in the sense that (j) ⊂  for all j = 0, …, τ, with probability 1. In addition, define a
dissimilarity measure between any pair of elements in  so that for each s ∈ , we can identify
the element in (j) closest to s. We could now define the following individualized treatment
rule indexed by a static treatment regimen ā: 1) follow static treatment regimen ā until time
point t = Cā at which a(t + 1) ∉ (t + 1) or t = τ; 2) if t < τ (that is, it was not possible to fully
comply with the static regimen ā), then set the next treatment equal to the element in (t + 1)
closest to a(t + 1); 3) keep this treatment constant until the time point at which the treatment
is not an element of the set of treatment options so that a switch of treatment is required, or
until the endpoint τ; 4) if the treatment needs to be switched before τ, then switch again to the
element in the set of treatment options closest to the current treatment; 4) continue in this
manner until one reaches the end point τ. Notice that this defines an individualized treatment
rule as a deterministic function of a static intervention ā. Therefore, we can denote this set of
dynamic treatment rules with dā, ā ∈ .

2.2 Causal effects of realistic individualized treatment rules
The above standard causal inference assumptions put no restrictions on the data generating
distribution and thereby cannot be tested based on the data. In particular, the model for the
distribution of the data implied by the above assumptions is still unspecified/nonparametric.

We define the parameter of interest on this nonparametric model as the conditional mean of
Yd, given a subset V of the baseline covariates L(0), for all d ∈ *. In order to deal with the
curse of dimensionality, one can choose between two approaches. Firstly, one can assume a
model

(2)

for some parametrization (d, V) → m(d, V | β) indexed by a finite dimensional Euclidean
parameter β. In this model β(FX) is the parameter of interest, and β0 = β(FX0) is the true value
of this parameter. For example, if d = dā is a deterministic function of a static treatment
intervention, as in our example above, then we would have
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Alternatively, if one believes that the model assumed on E(Yd | V) is not realistic, then it might
be sensible to define the parameter of interest as

If model (2) holds, then β0h = β0 for all h. One can map β(FX0) into a corresponding optimal
individualized treatment rule within each strata V:

Note that the parameters β(FX) and βh(FX) are parameters of FX. As a consequence, we can
apply the general estimating function methodology of Robins and Rotnitzky (1992) and van
der Laan and Robins (2003), to obtain the class of all estimating functions, including the optimal
DR-IPTW estimating function, which equals the efficient influence curve when evaluated at
the true parameter values. This general estimating function methodology involves three steps:
1) identify the class of all full data estimating functions (formally, the space spanned by the
gradients of the path-wise derivative of the parameter of interest, also called the orthogonal
complement of the nuisance tangent space); 2) construct an inverse probability of treatment
weighted class of estimating functions which are such that the conditional expectation, given
X, maps into the class of full data estimating functions; and, 3) map this class of IPTW
estimating functions into the double robust IPTW estimating functions by subtracting the
projection on the tangent space spanned by all scores of the treatment mechanism under the
sole model assumption SRA. For details, we refer to the original paper Robins and Rotnitzky
(1992) which laid out this general approach for censored data models and to Chapters 1 and 2
of van der Laan and Robins (2003).

Firstly, we need to determine the class of full data estimating functions one would obtain in
the full data model for X. It follows that this class of full data estimating functions is given by:

In the case that one defines the parameter of interest as

then the only full data estimating function is
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We now need to find an IPTW estimating function which has the property that its conditional
expectation, given X, maps into the class of full data estimating functions. As established in
the following result, we can use

where ā = d(L ̄) is defined as

Result 1 Assume that for all individualized treatment rules d ∈ *, we have

where ā(X, d) is the treatment regimen followed by the experimental unit with full data
counterfactuals X if the experimental unit follows rule d: a(0) = d(0)(L(0)), a(1) = d(1)
(L ̄a(0)(1)), and, in general, a(j) = d(j)(L ̄ā(j − 1)(j)), j = 0, …, τ.

We have for all h

As a consequence, if E(Yd | V) = m(d, V | β0), then

and, we always have for all h

Proof. Because g(ā(d, X) | X) > 0, the conditional expectation E(Dh,IPTW(g0, β0) | X) equals
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Now, we note that ā = d(L ̄ā) is equivalent with the unique solution a(0) = d(L(0)), a(j) = d
(L ̄ā(j−1)(j))(j), j = 1, …, τ. Thus, the inner Σā∈A reduces to the single term h(d, V)d/dβ0m(d, V
| β0)(Yd − m(d, V | β0)), so that the conditional expectation reduces to

which completes the proof.

Finally, we map this IPTW estimating function for βh into the efficient estimating function by
subtracting its projection on the tangent space of the treatment mechanism under SRA. The
following result describes this double robust IPTW estimating function, and thereby the
efficient influence curve. The proof of this result is a direct consequence of Theorem 1.3 and
Theorem 1.6 in van der Laan and Robins (2003).

Result 2 The efficient influence curve of βh in the (nonparametric) model for the data
generating distribution P0 at P0 is given by −c(βh0)−1 Dh,DR(O | g0, Q0, βh0), where

and . If E0(Yd | V) = m(d, V | β0), then for all h

In general, for all h,

Inverse probability of treatment weighted and double robust locally efficient
estimators—Given an estimator gn of the treatment mechanism g0, and a possibly data
dependent index hn, we define the IPTW estimator as the solution βhn,IPTW of

Similarly, given an estimator (gn, Qn) of the nuisance parameter (g0, Q0), and a possibly data
dependent index hn, we define the double robust locally efficient estimator as the solution
βhn,DR of
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Under regularity conditions, the estimator βhn,DR is consistent and asymptotically linear if
either gn converges to g0 or Qn converges to Q0, and, if both nuisance parameters are
consistently estimated, then βhn,DR is an asymptotically efficient estimator of βh0. Therefore
we call such an estimator βhn,DR locally efficient. In contrast, the consistency of βhn,IPTW
requires that gn converges to g0. For the formal statement for the asymptotics of the double
robust estimator with the required regularity conditions, we refer to Theorem 2.4 and 2.5 in
van der Laan and Robins (2003).

In order to avoid technicalities, for statistical inference we propose the bootstrap method which
is known to be asymptotically valid under the same conditions required to establish the
asymptotic linearity of the estimators βhn,IPTW and βhn,DR.

3 Data example: Realistic individualized rules for treatment modification in
HIV-infected patients experiencing viral rebound

In this section we present the results of a data analysis based on the example described in
subsection (1.5). Specifically, data drawn from the Study of the Consequences of the Protease
Inhibitor Era (SCOPE) were used to estimate counterfactual mean CD4 T cell count 8 months
after confirmed virologic rebound on an antiretroviral treatment regimen, under a set of user-
supplied realistic treatment rules. Specifically, we considered rules indexed by a range of CD4
T cell count thresholds θ. Thus, we aimed to replicate the results of a clinical trial in which
subjects were assigned to modify their initial failing regimen only when CD4 T cell count
reached a randomly assigned threshold.

Recall that Ā in this example is an indicator process that jumps only once, when a subject
modifies therapy for the first time; thus, treatment decisions are made only for those individuals
who have not yet modified their original antiretroviral regimen. We defined the following set
of realistic individualized treatment rules dθ, indexed by threshold CD4 T cell count θ:

This set of treatment rules uses a subject's current CD4 T cell count (CD4(t)) to assign a
treatment decision dθ(t) (modify treatment or not) at each time point t from baseline until a
subject modifies therapy. Note that for a given subject, dθ applied from baseline onwards
deterministically implies a static treatment regimen ā.

By calling this set of rules dθ “realistic”, we imply that, given the subset of a subject's covariates
necessary for the SRA to hold, the rule dθ does not assign, at any time point, a treatment action
that is impossible for that subject. Below, we discuss whether this realistic dynamic treatment
assumption is reasonable for the set of user-supplied rules considered in the current data
example.

We estimated the following parameter by assuming a model on the counterfactual mean future
CD4 T cell count under a realistic treatment rule indexed by dθ:
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Thus β was our parameter of interest, providing a summary of how the counterfactual outcome
varied depending on the threshold CD4 T cell count at which a subject modified his or her
virologically failing therapy. In particular, estimation of β implied estimation of an optimal
threshold θ at which to modify the failing antiretroviral regimen (i.e. the optimal threshold was
defined as the θ which maximized the expected counterfactual CD4 T cell count 8 months
later).

We further modelled this counterfactual dynamic mean conditional on baseline CD4 T cell
count. In other words, we estimated the following causal parameter:

where V ≡ CD4(0) denotes CD4 T cell count at time of confirmed virologic failure (baseline).
Estimation of this parameter allowed us to address the question of whether the optimal
threshold at which to modify therapy varied depending on a subject's baseline CD4 T cell count.

In defining θ and V, CD4 T cell count was categorized using 23 discrete levels (corresponding
to cell counts of 0-50 cells, 51-100 cells, etc…).

3.1 IPTW estimation
We assumed the following models on the causal parameter of interest.

and

As noted above, if one is uncomfortable with assuming these models, the causal parameter of
interest could alternatively be viewed as the projection of the true causal parameters onto
working models m(θ|β) and m(θ, V|β).

The parameter β was estimated using the IPTW estimating function

where we used h(dθ, V) ≡ 1. Under this estimating function, β was estimated using weighted
least squares regression, with each subject contributing one line of data for each threshold θ
consistent with the subject's observed treatment history, and using the following weights:
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Estimation of β thus required, for each possible threshold θ, determination of whether each
subject complied with the treatment rule implied by that threshold (I (Ā = dθ(CD ̄4)). This
determination was made according to the following algorithm:

• Among subjects who modified therapy at some time M before 8 months, we evaluated
whether CD4(t) > CD4(M) for t = 0, …, M − 1. If yes, the subject was considered to
have followed a treatment rule corresponding to θ = CD4(M). If no, the subject failed
to follow a rule for treatment modification based on any CD4 T cell count threshold,
and was assigned no value for θ.

• Subjects who did not modify therapy prior to measurement of the outcome were
considered to have followed multiple treatment rules, corresponding to each threshold
CD4 T cell category below the minimum CD4 T cell count category observed over
the course of follow-up.

In implementing the IPTW estimator, the treatment mechanism g(Ā|X) was estimated using
logistic regression of the probability of switching therapy at each time point given a subject's
observed past. The regression fits were estimated data-adaptively using the Deletion/
Substitution/Addition algorithm of Sinisi and van der Laan (2004), and 5-fold cross validation.
Potentially informative censoring was addressed by modeling the censoring mechanism and
employing inverse probability of censoring weights (as outlined in van der Laan and Robins
(2003)). Standard errors were estimated based on 100 bootstrap samples.

3.2 Results
One hundred thirty three subjects experienced 167 episodes of confirmed virologic failure
during SCOPE follow-up; of these, 33 subjects were censored before the outcome at 8 months
was obtained. For a full description of this sample, and the covariates measured on each subject
over time, see (Petersen et al. (2005)). Of the 100 subjects who failed an antiretroviral therapy
regimen and were not censored prior to measurement of the outcome, 56 subjects (57 episodes
of failure) had observed treatment histories that corresponding with following the rule dθ (as
defined above) for at least one threshold θ.

The estimated treatment mechanism is reported in Table (1). The resulting weights ranged from
1.01 to 53; in order to reduce variability, weights were truncated at 10, which resulted in
truncation for 8 of the subjects. Under the assumption that the treatment mechanism was
consistently estimated (as required for the consistency of the IPTW estimator), we further
considered the assumption that the rules dθ considered are in fact realistic. As a means of
partially examining the assumption that modification is not deterministically assigned given
time-dependent covariates, we assessed the stabilizing weights that would have been employed
in a standard marginal structural model estimating the effect of a static switch time; we

estimated  and . Given that a subject can only switch

regimens once,  was estimated as less than or equal to 1.27 × 7.1 = 25.4 ≪ ∞,
suggesting the absence of extreme ETA violations for static modification rules (i.e. those
assigning modification at a fixed time). We note, however, that this does not necessarily imply
that the dynamic rules dθ are realistic. Further investigation of possible ETA violations under
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these rules (for example, by applying a bootstrap simulation as described in Wang et al.
(2006) for the point treatment setting) seems sensible and necessary, but is not performed here.

Tables 2 and 3 show estimates of β for the models m(θ|β) and m(θ, V|β), respectively. Based
on the results in Table (2), Figure (1) illustrates how estimated mean counterfactual CD4 T
cell count varies as a function of modification threshold θ. The estimate βn of m(θ|β) suggests
that the optimal threshold for modification is a CD4 T cell count category higher than the
maximum CD4 T cell count category observed at baseline (θopt = 31.7, corresponding to >
1500 cells), suggesting that, on average, all subjects would benefit from modifying therapy
immediately following loss of suppression.

Figure (2) uses the estimated βn of m(θ, V|β0), reported in Table 3, to plot how the mean
counterfactual outcome varies as a function of modification threshold θ and baseline CD4 T
cell count, The results of Table 3, and Figure 2 suggest that, regardless of a subject's baseline
CD4 T cell count, the highest expected counterfactual CD4 T cell count 8 months later is
achieved by switching therapy immediately (i.e. at a threshold corresponding to the subject's
baseline CD4 T cell count).

While suggestive, it should be emphasized that these findings are preliminary, and are intended
as an example of the proposed methodology, rather than as a meaningful guide to clinical
practice. Significant limitations of the current data example include small sample size, and the
definition of treatment modification employed. Given small sample size, modification here
was defined broadly as interruption or addition of at least 1 drug to the patient's failing
antiretroviral regimen. Thus treatment simplification and interruption were included in the
definition of modification, while the real clinical question of interest focuses on when the
patient should be switched to a new combination regimen with the goal of re-suppressing the
virus. Analyses using several large HIV cohorts based on a refined definition of treatment
modification and consideration of alternative outcomes are currently underway, with the goal
of providing more clinically relevant results.

4 Causal effect models for intention-to-treat interventions
4.1 The counterfactual framework for intention-to-treat causal models

The counterfactual causal inference framework for treatment interventions ā(t) up till time t
assumes the existence of counterfactuals indexed by static treatment interventions ā(t), the
corresponding link between the observed data and these counterfactuals (i.e., consistency
assumption), and the sequential randomization assumption (SRA). Our framework below
simply assumes the consistency and sequential randomization assumptions for all t. By
applying the result of Gill and Robins (2001) and Yu and van der Laan (2002) for all t, it follows
that, by construction, assuming these consistency and randomization assumptions for all t puts
no restrictions on the data generating distribution. However, these assumptions do allow us to
define the intention-to-treat causal parameter of interest as a parameter of the data generating
distribution.

Existence of t-specific static treatment counterfactuals—For each t and each
possible ā(t) ∈ (t), we define

as the data one would have observed on the experimental unit if it would have been assigned
Ā(t) = ā(t). Thus the first t + 1 components of Aā(t) are set at ā(t), but the subsequent treatment
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actions are random: Aā(t)(0) = a(0), …, Aā(t)(t) = a(t). It is assumed that for all t and ā(t) ∈ 
(t), we have

We define X(t) ≡ (Lā(t), Aā(t)) : ā(t) ∈ (t)) as the collection of treatment-specific processes
corresponding with setting the first t + 1 treatment actions, t = 0, …, τ. Thus, X(τ) = (Lā : ā)
denotes the collection of counterfactual processes Lā indexed by fully set static treatment
regimens ā = (a(0), …, a(τ)).

t-specific temporal ordering assumption—For each time point t, we assume the usual
temporal ordering assumption:

This states that the counterfactual data at time j is only affected by past interventions.

t-specific consistency assumption—It is assumed that for all t = 0, …, τ

That is, we can represent O as a missing data structure on the full data structure X(t) = {Oā(t) :
ā(t) ∈ (t)}, where the missingness variable is Ā(t), t = 0, …, τ. In particular, for t = τ, this
presents our observed longitudinal data structure as a missing data structure on a collection of
treatment regimen-specific processes X(τ):

t-specific sequential randomization assumption—For each t, we assume the
sequential randomization assumption: for all j = 0, …, t

(3)

We will refer to this as the strong sequential randomization assumption (SSRA). This implies,
in particular, the typical sequential randomization assumption (SRA): for all j = 0, …, τ

(4)

That is, at each time-point, conditional on the observed past, the treatment at this time-point is
conditionally independent of the full data X(τ). The latter sequential randomization assumption
implies (and is, in essence, equivalent with) the coarsening at random (CAR) assumption on
GĀ|X(τ) for the observed data O w.r.t. full data structure X(τ). In censored data structures, one
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frequently assumes coarsening at random (CAR) (Heitjan and Rubin (1991), Jacobsen and
Keiding (1995), Gill et al. (1997), in increasing generality).

Taking the τ-specific missing data representation of the observed data structure, it follows that
the data generating distribution PFX(τ)0,G0 of O is indexed by a distribution of X(τ) = (Lā : ā),
and the conditional probability distribution G0(· | X(τ)) of Ā, given X(τ). We will refer to the
latter as the treatment mechanism, and we denote its probability density with g0(· | X(τ)). By
the chronological ordering, and our conventions above, the τ-specific missing data structure
assumption is equivalent with

By our missing data representations for all t, we have A = AĀ, but also A = Aā(t) for any ā(t) =
Ā(t), and, as a consequence, LĀ = Lā(t) for any ā(t) = Ā(t).

Identifiability results for static treatment interventions under the experimental
treatment assignment (ETA) assumption—Under the SRA and the experimental
treatment assignment assumption (ETA), it is possible to identify the treatment-specific
counterfactual distributions from the observed data partial likelihood, through the G-
computation formula (Robins (1999), Gill and Robins (2001), Yu and van der Laan (2002)).
That is, under the assumption that g(ā | X(τ)) > 0, the SRA allows us to identify the marginal
distribution of Lā, while the SSRA allows us to also identify the marginal distribution of
Oā(t) = (Aā(t), Lā(t)) for any t = 0, …, τ. Specifically, for each t, we have the following t-specific
factorization of the likelihood of O:

where

and

For t < τ, we define A̱(t) = (A(t), …, A(τ)) and Ḻ(t) = (L(t), …, L(τ + 1)). In addition,
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If we assume SSRA, and the ETA assumption g0(ā(t) | X(t)) > 0 a.e., then we have that the
probability distribution of Oā(t) is given by the following likelihood-based formula (G-
computation formula)

In other words, by setting Ā(t) = ā(t) in the likelihood factor Q0X(t),t, one obtains the density
of Oā(t). In many applications, as discussed in the introduction, this ā(t)-specific experimental
treatment assignment assumption Pr(g0(ā(t) | X(t)) > 0) = 1 does not hold for lots of static
treatment regimens ā(t). The intention-to-treat parameter developed here is identifiable without
the need to assume these typically unrealistic ETA-assumptions.

The observed data model implied by the causal inference assumptions—The
model for the observed data structure implied by the above consistency assumptions and the
strong SRA is nonparametric. As a consequence, the strong SRA and the consistency
assumptions cannot be tested, but these assumptions provide us with a set of assumptions which
provide the wished causal interpretation of our target parameters, defined below, of the data
generating distribution. Possible data generating distributions are the elements of the
nonparametric structural equation model corresponding with the causal graph implied by the
time-ordering: i.e., let L(j) = gj(L ̄(j − 1), Ā(j − 1), U), A(j) = fj(Ā(j − 1), L ̄(j), e(j)) for arbitrary
deterministic functions fj, gj, an arbitrary random variable U, and an exogenous random vector
e. This nonparametric structural equation model is indeed a saturated model, and, for all t ∈
{0, 1 …, τ}, it satisfies the consistency assumption and the SRA w.r.t. to the counterfactuals
X(t) implied by this structural equation model (see Pearl (2001), Gill and Robins (2001), Yu
and van der Laan (2002)).

4.2 The intention-to-treat causal parameter
This section formally defines “intention-to-treat” counterfactuals, indexed by static treatment
regimens. Specifically, for every ā ∈ , we define the individualized stopped treatment-
specific process

where Cā is a counterfactual stopping time defined as

That is, Xd(ā) is the process we would have observed on the subject if the subject had followed
the static treatment ā till the end τ, or till time Cā at which ā for the next time point corresponds
with a treatment outside the set of options a(C + 1). After the stopping time Cā, the
experimental unit is subjected to the data generating process applicable in the counterfactual
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world in which one has followed ā up till time Cā; that is, it follows its counterfactual treatment
process Aā(t) with t = Cā. In particular, Yd(ā) denotes the treatment-specific outcome of interest.
For example, Yd(ā) = Td(ā) + 1 might be the survival time under treatment regimen d(ā), or it
might be the counterfactual outcome Yd(ā)(τ + 1) of a time-dependent process Yd(ā)(·) measured
at a fixed time τ + 1.

Missing data structure on intention-to-treat treatment-specific counterfactuals
—It is of interest to understand the information the observed data provide about these intention-
to-treat counterfactuals. For any ā, we define the observed

Thus C(ā) is the amount of time the experimental unit has followed d(ā) (if it did not even
follow a(0), then it equals -1), where C(ā) ∈ {−1, 0, 1, …, τ}. Consider the indicator

(5)

We note that, if Δ(ā) = 1, then the experimental unit has followed the intention-to-treat
treatment regimen d(ā). Formally, we have the following link between the observed data
structure and the intention-to-treat treatment-specific counterfactuals:

Thus, one could represent the observed data structure O also as

That is, for each static treatment regimen ā, we observe if the experimental unit followed the
individualized stopped treatment regimen d(ā), and if it did, then we observe its corresponding
intention-to-treat counterfactual process.

Intention-to-treat causal effect parameter—Let V ⊂ L(0) be a user-supplied set of
baseline co-variables. Consider the model

(6)

for some parametrization β → m(· | β) and parameter value β0. Let β(PFX(τ),G) be the parameter
of interest defined on the model for the observed data structure O defined by the assumptions
above and the model (6), so that β0 = β(PFX(τ)0,G0) denotes the true parameter value
corresponding with the true data generating distribution P0.

We prefer not to assume the model m(· | β), but rather to use it as a working model to define a
smooth version of E0(Yd(ā) | V) (see Neugebauer and van der Laan (2005a)). Specifically,
following Neugebauer and van der Laan (2005a), we define our parameter of interest
nonparametrically as
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where the weight function h is user-supplied. Thus in this case, our model is still nonparametric,
but our parameter is defined by a working model m(· | β) and a weight function h. Note that,
if (6) holds at P, then βh(P) = β(P) for all h. It is also of interest to note that βh is a parameter
of both the full data distribution of X(τ) = (Lā : ā ∈ ) and the treatment mechanism GĀ|X.

Identifiability of intention-to-treat-specific distribution—We have the following
identifiability result providing the mapping from the likelihood of O to the distribution of the
intention-to-treat counterfactual data structure Od(ā) = (Ad(ā), Ld(ā)).

Result 3 We have the following identifiability result:

(7)

where ca(l) ≡ min {t ∈ {−1, …, τ} : a(t + 1) ∉ (l)(t + 1) or t = τ} is the realization of the
stopping time for treatment ā as identified by L = l and ā.

The above identifiability result can be used to define a likelihood-based estimator. The
consistency of this estimator will rely on correct estimation of the complete data generating
mechanism: i.e., both the treatment mechanism g0 and the Q0-factor of the density of O need
to be consistently estimated. Alternatively, estimating function-based estimators can be derived
that only rely on correct estimation of the treatment mechanism g0, or that are possibly double
robust w.r.t misspecification of g0, Q0. The inverse probability of treatment weighted and
(possibly) double robust estimating functions, and corresponding estimators, are presented for
the longitudinal data setting in Appendices C-D. Specifically, the efficient influence curve of
βh at P0 is derived for the general longitudinal data structure, and the corresponding locally
efficient estimating function and estimator are presented.

For pedagogical purposes, in the section that follows we provide a comprehensive analysis of
our intention-to-treat causal effect model for the much simpler point treatment data structure,
and present the corresponding likelihood-based, IPTW and DR-IPTW estimators of βh0 for a
given h. The corresponding class of IPTW and locally efficient estimators of β0 under the
assumption that m(· | β) is a correctly specified model is obtained by letting h be arbitrary.

5 Intention-to-treat effects for point treatment
We observe the chronological data structure O = (W, A, Y), where W are baseline co-variables,
A is treatment, and Y is a final outcome. We assume the usual consistency assumption which
states that X = (W, (Ya : a ∈ )), and O = (W, A, YA) is a missing data structure on X. In addition,
we assume the randomization assumption which states that A is independent of X, given W:
g0(a | X) ≡ Pr(A = a | X) = g0(a | W) = Pr(A = a | W). Let  ⊂ W be a set of possible treatment
options in the sense that g0(a | W) > 0 for a ∈ .
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Intention to Treat Causal Effect—Let V ⊂ W be a user-supplied set of baseline co-
variables. Let Yd(a) ≡ YI(a ∉ ) + YaI(a ∈ ) and Ad(a) ≡ aI(a ∈ ) + AI(a ∉ ). Let (W,
Ad(a), Yd(a)) denote the data we would observe on the experimental unit if it followed the
intention-to-treat treatment d(a). The parameter of interest is ψ0(a, V) = Ψ(P0)(a, V) ≡
EP0(Yd(a) | V). Note that this parameter corresponds with the mean outcome one would observe
if one only intervenes (by setting A = a) on the experimental units for which a is a possible
treatment option in the sense that a ∈ . In order to deal with the curse of dimensionality, we
consider a working model {m(a, V | β) : β} for ψ0(a, V), indexed by a Euclidean parameter β.
For a user-supplied function h, let

(8)

Let βh0 = βh(PFX0,G0) be the true parameter value corresponding with the true data generating
distribution P0 = PFX0,G0. Note that βh is a parameter of both the full data distribution of X =
(W, (Ya : a ∈ )) and the treatment mechanism GA|X. We note that, if one is willing to assume
that the model m(· | β) is correctly specified, then βh(P) = β(P) does not depend on h, and each
estimator we present for βh in this section is a valid estimator for β.

For any a ∈ , consider the indicator

(9)

We note that, if Δ(a) = 1, then the experimental unit has followed treatment d(a). It is also
possible that A = a and a ∉ , except if  = {a : g0(a | W) > 0}. Formally, we have the following
representation of the observed data in terms of the intention-to-treat counterfactuals (W,
Ad(a), Yd(a)):

Thus, the observation O = (W, A, Y) is equivalent with 1) observing the baseline co-variables
W, and 2) for each a, observing if the experimental unit followed d(a), and if it did, then
observing (Ad(a), Yd(a)).

The model for the distribution of O is still nonparametric under the above assumptions. As a
consequence, in this model all regular asymptotically linear estimators of βh0 at P0 are efficient.
In the next three subsections we present three estimators of βh: likelihood-based estimator,
inverse probability of treatment weighted estimator, and the estimator based on the efficient
influence curve which we refer to as the double robust IPTW estimator, which is also locally
efficient.

5.1 Likelihood-based estimation
The parameter E(Yd(a) | V) is identifiable from the observed data distribution under the above
stated consistency assumption and randomization assumption. This is shown by the following
result.

Result 4 Consider a joint random variable (X, A) with X = (W, (Ya : a ∈ )), and assume that
g0(A | X) = g0(a | W). Let  ⊂ W be such that P(mina∈  g0(a | W) > 0) = 1. Let (W, A, Y) =
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(W, A, YA). Define the random variable Yd(a) ≡ YAI(a ∉ ) + Y(a)I(a ∈ ). For any V ⊂ W, we
have

In general, we have that the probability distribution of (W, Ad(a), Yd(a)) at w, a*, y is given by

One can generate the intention-to-treat counterfactuals (W, Ad(a), Yd(a)) straightforwardly.
Given the marginal distribution of W, the conditional distribution of A given W, and the
conditional distribution of Y given (A, W), one generates W, Ad(a), Yd(a) as follows: 1) generate
W from PW; 2) if a ∉ , then generate A from PA|W and set Ad(a) = A, else set A = Ad(a) = a; 3)
generate Y from PY|W, A(· | W, A) and set Yd(a) = Y.

By applying this data generating experiment to an estimate of the data generating distribution,
one obtains a large sample (Ŵb, Âd(a),b, Ŷd(a),b), b = 1, …, B for all a ∈ , which yields a
simulation-based estimate of the distribution of (W, Ad(a), Yd(a)). Such an estimate could now
also be mapped into an estimate of βh0 by regressing the simulated Ŷd(a),b on a, V̂b according
to the regression model {m(· | β) : β} using weights h(a, V̂b), a ∈ , b = 1,…, B.

If one is only concerned with estimation of the conditional mean E(Yd(a) | V), then it suffices
to directly estimate Q0(a, W) = E0(Y | A = a, W) with an estimator Qn, and regress

on a, V according to the model m(· | β). That is, the likelihood-based estimator of βh0 can be
defined as

5.2 Inverse probability of treatment weighted estimation
The proposed inverse probability of treatment weighted estimator of βh0 is based on the
following result.

Result 5 Let Δ(a) = I(A = a or a ∉ ). We have
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We also have for any set of baseline co-variables V ⊂ W

Proof: The first statement is trivial. Regarding the second statement we note that 
equals

The conditional expectation of the second term, given X, equals I(a ∈ ) Ya. Thus, the
conditional expectation, given W, of Y Δ(a)/g(a | X)I(a ∈ ) equals the conditional expectation
of I(a ∉ )YA + I(a ∈ )Yd(a), given W, which proves the second statement of the result.

IPTW loss-based learning of intention-to-treat causal effect—We note that ψ0(a,
V) ≡ E0(Yd(a) | V) can be estimated nonparametrically by using available machine learning/data
adaptive regression algorithms. The above result shows

Thus, for any user-supplied function h, we have

where the loss function is defined as

As a consequence, we can estimate ψ0 with the unified loss-based estimation methodology of
van der Laan and Dudoit (2003) with the loss function given by Lh(O, ψ | g) for any choice
h. For example, given an estimator gn of g0, one can estimate ψ0 by data-adaptively regressing
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Ygn,i(a) on a, Vi, with weights h(a, Vi), a ∈ , i = 1, …, n, using a machine learning algorithm
such as the cross-validated deletion/substitution/addition (CV-DSA) algorithm of Sinisi and
van der Laan (2004).

Similarly, we can apply the unified loss function-based learning approach to the inverse
probability of treatment weighted loss function

For example, given an estimator gn of g0, one can estimate ψ0 by data adaptively regressing
Yi on a, Vi, with weights h(a, Vi)Δi(a)/gn(a | Xi)I(a∈ i), a ∈ , i = 1, …, n, using a machine
learning algorithm.

IPTW estimation of the intention-to-treat causal effect—The above first loss function
implies the following estimator of βh0:

which is a standard weighted least squares regression of (Ygn,i(a) : a) on Vi for a repeated (over
a) measures type data set, where the weights are given by (h(a, Vi) : a). The second loss function
implies the following estimator of β0h:

This is now a standard weighted least squares regression of Yi on a, Vi for a repeated (across
a ∈ ) measures type data set, where the weights are given by h(a, Vi)Δi(a)/gn(a | Xi)I(a∈ i).

The latter weighted least squares regression estimator corresponds with the following IPTW
estimating function

By Result 5 we have that this IPTW estimating function is unbiased for βh0:
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Relation to IPTW estimating function for marginal structural model—We note that
in the special case that  =  with probability 1, we have that

reduces to the standard IPTW estimating function for a marginal structural model E(Ya | V) =
m(a, V | β), which is known to be unbiased if indeed the ETA assumption, infa∈ g(a | W) > 0,

or its stabilized version, , holds.

5.3 Locally efficient double robust estimation
The following result provides the optimal estimating function based on the efficient influence
curve of βh at P0. The proof and derivation of the corresponding influence curve is provided
in Appendix B.

Result 6 Consider the following estimating function:

If E(Yd(a) | V) = m(a, V | β0), then for all functions h

If βh0 = arg minβ E0Σa(E0(Yd(a) | V) − m(a, V | β))2h(a, V), then

The efficient influence curve of βh at P0 is given by −c(βh0)−1 Dh,DR(βh0, g0, Q0).

If P0 is such that E0(Yd(a) | V) = m(a, V | β0), then β0 does not depend on h so that Dh,DR yields
an estimating function for all functions h.

Locally efficient double robust IPTW estimator—Given an estimator gn, Qn of g0,
Q0, we can define the estimator βh,n,DR as the solution of the estimating equation
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If m(· | β) is linear in β, then this estimating equation is linear in β so that its solution exists in
closed form. This estimator is locally efficient under regularity conditions, in the sense that it
is consistent, asymptotically linear and efficient if both gn and Qn are consistent, and it remains
consistent and asymptotically linear if only one of these two nuisance parameters is incorrectly
estimated. In order to avoid technicalities, we propose the bootstrap method to obtain an
estimate of the sampling distribution of βhn,DR and to construct corresponding confidence
intervals.

6 Discussion
Violations of the ETA assumption have the potential to severely bias IPTW estimates of static
treatment effects. In particular, both data applications and simulation studies, such as
Neugebauer and van der Laan (2005b), have exposed the importance of “practical” violations
in the ETA assumption, which arise due to finite sample size. In recognition of the importance
of this issue, we developed a diagnostic tool, based on bootstrap simulation, that can be applied
to provide an estimate of ETA bias, in essence quantifying the lack of finite sample
identifiability for the causal effect of interest (Wang et al. (2006)).

Unfortunately, in many data sets the ETA bias of the IPTW estimator is a serious concern, and
having diagnosed the impact of ETA bias, one is left with the question of how to address it. In
the case that the parameter of interest is a causal effect of a treatment at a single point in time,
then the experimental units causing the ETA bias can be identified by their baseline covariates.
Therefore, it might seem a reasonable approach to only estimate the causal effect conditional
on the experimental unit having baseline covariates for which all treatments have positive
probability (e.g., larger than a user-supplied δ > 0). However, this seemingly sensible and
natural approach forces one to restrict to a sub-distribution which may not be the sub-
distribution of interest. In addition, it will require throwing away the observations not drawn
from this sub-distribution. Due to the resulting forced reduction in sample size, it does not
necessarily follow that the finite sample ETA bias shrinks. So, even in the point-treatment case,
there does not seem to be a simple manner to deal with the ETA bias.

If the treatment is time-dependent then such a sub-sampling approach fails to be valid because
the experimental units causing ETA bias are not known at baseline t = 0. Instead, the
experimental units causing the ETA bias make themselves known during the course of the
study by developing time-dependent covariates which change their set of treatment options.
As a consequence, if the parameter of interest is the causal effect of a static longitudinal
treatment intervention, then deleting the experimental units causing ETA bias corresponds with
adjusting for variables on the pathway between the treatment and outcome of interest, an
approach that is known to result in non-interpretable parameters.

To summarize, static treatment interventions are typically not realistic, and, as a consequence,
are typically either non-identifiable or extremely hard to estimate based on finite samples. It
is this issue which motivated the current article proposing two classes of causal effect models
which do not rely on the ETA assumption, but restrict attention to interventions for which the
data carries information.

In this article, we have introduced causal effect models for intention-to-treat interventions and
realistic treatment rules indexed by static treatment interventions. By choosing the realistic
individualized treatment rules appropriately, the proposed causal effects of realistic
individualized treatment rules generalize causal effects of static treatment interventions, are
always identifiable from the data while remaining interpretable, and are easier to learn based
on finite samples. Intention-to-treat interventions have similar advantages to realistic treatment
rules indexed by static treatments; however, in contrast to causal parameters indexed by
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realistic treatment rules, the intention-to-treat causal parameter is a function of the treatment
mechanism. As a result, a change in the way that treatment is assigned can change the causal
effect being estimated. Thus, in applications for which the treatment mechanism followed in
the observed cohort is considered a nuisance, causal effect models for realistic individualized
treatment rules are the preferred approach.

In addition, we have introduced models for realistic individualized treatment rules that allow
the user to supply his or her own set of realistic individualized treatment rules to be compared.
As illustrated in the data example, such models for realistic individualized treatment rules
identify the optimal individualized treatment rule among the user-supplied set of realistic
individualized treatment rules.

Both of our proposed causal effect models force the user to identify for each experimental unit
at each point in time a set of possible treatment options. We believe that this is actually a nice
feature since it forces the researcher to ask the very questions which are needed to be able to
obtain a collection of identifiable and realistic treatment regimens from data. Consultation
with subject matter experts must clearly play a central role in answering these questions. For
example, the researcher might need to determine which events correspond with a reduction of
treatment options for the patient. If such knowledge is not available, then we propose to learn
the treatment mechanism from the data and map the fitted treatment mechanism in a time-
dependent set of possible treatment options for each experimental unit.

Appendix A: Causal effect models for realistic point treatment rules
In order to illustrate causal effect models for realistic treatment rules we walk through the
special and simple case that treatment is assigned at a single point in time.

The observed data structure is O = (W, A, Y), where W is a vector of baseline covariates, A is
a subsequent treatment, and Y is a final outcome of interest.

Consistency assumption
We define the full data as the collection X = (W, (Y(a), a ∈ )) of counterfactual outcomes Y
(a) indexed by static treatment interventions varying over the support of the marginal
distribution of A. The consistency assumption states that O = (W, A, Y = Y(A)).

Dynamic treatment counterfactuals
Given this standard consistency assumption, for any rule d, Yd can be defined as Ya with a =
d(W). Thus, given the existence of the random variable X defined as the collection of static
treatment-specific counterfactuals, one can also define the dynamic treatment regimen-specific
counterfactuals Yd ≡ Yd(W) as a measurable function of X and the rule d.

Randomization assumption (RA)
We will assume the randomization assumption stating that A is independent of X, given W. The
data generating distribution of O will be denoted with P0 = PFX0,g0, and is indexed by the
distribution FX0 of X and the conditional probability distribution, g0(· | X), of A, given X, where
g0(A | X) = g0(A | W).

Realistic dynamic treatment assumption
Let * be a set of dynamic treatment regimens so that for any d ∈ * we have
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(10)

That is, for each possible baseline covariate W, the treatment assigned by this treatment rule
d is an element of the set  of possible treatment options. This condition on the rule d guarantees
that the distribution of (W, Yd) is identifiable by the G-computation formula (Robins (1999),
Gill and Robins (2001), Yu and van der Laan (2002)):

Realistic individualized treatment rules indexed by static treatment regimens
Given a static treatment a, one can define a dynamic treatment regimen as one which follows
the static treatment a if a ∈ , and if a ∉ , then one assigns treatment in the set of treatment
options according to a particular user-supplied rule. For example, the following construction
describes such a set of dynamic treatment regimens indexed by static treatment interventions
a. Suppose that the maximal set of treatment options is  in the sense that  ⊂  for all subjects
with probability 1. In addition, define a dissimilarity measure between any pair of elements in

 so that for each s ∈  we can identify the element in  closest to s. We could now define the
following individualized treatment rule indexed by a static treatment a: If a ∈ , then set A =
a, else set A equal to the element in  closest to a. Notice that this defines an individualized
treatment rule as a deterministic function of a static intervention A = a. Therefore, we can
denote this set of treatment options with da, a ∈ .

Causal effect model for realistic individualized treatment rules
The above standard causal inference assumptions put no restrictions on the data generating
distribution and thereby cannot be tested based on the data. In particular, the model for the
distribution of the data implied by the above assumptions is still unspecified/nonparametric.

We define the parameter of interest on this nonparametric model as the conditional mean of
Yd, given a subset V of the baseline covariates W, for all d ∈ *. In order to deal with the curse
of dimensionality, one can follow two types of approaches. Firstly, one could assume a model

(11)

for some parametrization (d, V) → m(d, V | β) indexed by a finite dimensional Euclidean
parameter β. In this model β(FX) is the parameter of interest, and β0 = β(FX0) is the true value
of this parameter. For example, if d = da is a deterministic function of a static treatment
intervention, as in our example above, then we would have

Alternatively, if one believes such a model is not realistic, then it might be sensible to define
the parameter of interest as
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If model (11) holds, then β0h = β0 for all h. One can map β(FX0) into a corresponding optimal
individualized treatment rule within each strata V:

Note that the parameters β(FX) and βh(FX) are parameters of FX. As a consequence, we can
apply the general estimating function methodology as presented in van der Laan and Robins
(2003) to obtain the class of all estimating functions, including the optimal double robust
inverse probability of treatment weighted estimating function, which equals the efficient
influence curve when evaluated at the true parameter values. The general methodology
involves three steps: 1) identify the class of all full data estimating functions (formally, the
space spanned by the gradients of the path-wise derivative of the parameter of interest, also
called the orthogonal complement of the nuisance tangent space), 2) construct an inverse
probability of treatment weighted class of estimating functions which are such that the
conditional expectation, given X, maps into the class of full data estimating functions, 3) map
this class of IPTW estimating functions in the so-called double robust IPTW estimating
functions by subtracting the projection on tangent space spanned by all scores of the treatment
mechanism under the sole model assumption RA. For details, we refer to the original paper
Robins and Rotnitzky (1992) which laid out this general approach for censored data models
or to Chapter 1 and 2 of van der Laan and Robins (2003).

Firstly, we need to determine the class of full data estimating functions one would obtain in
the full data model for X. It follows that this class of full data estimating functions is given by:

In the case that one defines the parameter of interest as

then the only full data estimating function is

We now need to find an IPTW-estimating function which has the property that its conditional
expectation, given X, maps into the class of full data estimating functions. We can use
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The following result establishes the wished result.

Result 7 Assume that for all individualized treatment rules d ∈ * we have

We have for all h

As a consequence, if E(Yd | V) = m(d, V | β0), then

and, we always have for all h

Finally, we map this IPTW estimating function for βh into the efficient estimating function by
subtracting its projection on the tangent space of the treatment mechanism under RA. The
following result describes this double robust IPTW estimating function, and thereby the
efficient influence curve. The proof of this result is a direct consequence of Theorem 1.3 and
Theorem 1.6 in van der Laan and Robins (2003).

Result 8 Let

where Q0(A, W) = E0(Y | A, W) and β0 = β(Q0). The efficient influence curve of βh in the
(nonparametric) model for the data generating distribution P0 at P0 is given by −c
(βh0)−1Dh,DR(O | g0, Q0, βh0), where
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and . If E0(Yd | V) = m(d, V | β0), then for all h

In general, for all h,

Double robust locally efficient estimator
Given an estimator (gn, Qn) of the nuisance parameter (g0, Q0), and a possibly data-dependent
index hn, we define the double robust locally efficient estimator as the solution βhn of

Under regularity conditions, the estimator βhn is consistent and asymptotically linear if either
gn converges to g0 or Qn converges to Q0, and, if both nuisance parameters are consistently
estimated, then βhn is an asymptotically efficient estimator of βh0. Therefore we call such an
estimator βhn locally efficient. For the formal statement for the asymptotics of this double
robust estimator with the required regularity conditions, we refer to Theorem 2.4 and 2.5 in
van der Laan and Robins (2003). In order to avoid technicalities, for statistical inference we
propose the bootstrap method which is known to be asymptotically valid under the same
conditions required to establish the asymptotic linearity of the double robust estimator
βhn,DR.

Appendix B: Proofs and derivations for point treatment intention-to-treat
causal effects

Proof of Result 6. We will first show the double robustness result for Dh,DR. Firstly, if g =
g0, then the first term has mean zero, and the second term has trivially mean zero. Consider
now the case that Q = Q0. Write the first terms as a sum of two terms Σa Δ(a)/g0 | W)I(a∈ )S
(O) = Σa∈  I(A = a)/g0S(O) + Σa∉D S(O) for some S, and write the second term as a difference
of two terms as well. This gives:

The expectation of the sum of the first and the third term equals zero. The second and fourth
term can be written as (use that Q0(a, W) = E(Ya | W))
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which has mean zero. This proves that E0Dh,DR(β0, g, Q0) = 0.

It remains to derive the efficient influence curve of the nonparametric parameter βh(P) and
show that it is indeed given by −c(β0)−1Dh,DR(β0, g0, Q0). Since our model for the observed
data structure O is non-parametric, we can use the following equivalent formulation of the
model and parameter of interest in terms of the distribution of the observed data. We observe
(W, A, Y) ∼ P0. Consider a working model {m(a, V | β) : β} for ψ0(a, V) = Ψ(P0) ≡ EP0
(EP0(Y | A = a, W)I(a ∈ ) + EP0(Y | A, W)I(a ∉ ) | V), indexed by a Euclidean parameter β.
Let

be the parameter of interest, and let the model for P0 be nonparametric. We have that βh is
exactly the same parameter (of the data generating distribution) as defined above in terms of
intention-to-treat counterfactuals. Therefore, the efficient influence curve of βh at P0 in this
nonparametric model is also the efficient influence curve in the model in which we assume the
additional non-identifiable non-testable consistency and randomization assumptions. Let βh0
= βh(P0) denote the true parameter value.

Consider the estimator

We will derive the influence curve of this estimator in the case that gn is a nonparametric
estimator. Because the influence curve of a regular asymptotically linear estimator in a
saturated model equals the efficient influence curve, this exercise will result in the wished
efficient influence curve.

Derivation of influence curve of nonparametric estimator
Firstly, we note that βn is the solution of

where
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where we use the notation Pf ≡ ∫ f(o)dP(0). A standard M-estimator analysis shows that, in first
order, we have

where . So, it remains to determine the influence curve D1(P0) of the
latter term P0{Dh(β0, gn) − Dh(β0, g0)}. Then, the influence curve of βn is given by:

Derivation of the influence curve D1(P0)
We note that

Thus,

where we denote h* = hd/dβm. This can be written as:

We have
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where , p0(w) = Pr(W = w), , and p0(a,
w) = Pr(A = a, W = w). So − D1i is given by

Now, note that for a given function f PW0I(Wi = W)f(W)/p0(W) = Σw I(Wi = w)f(w) = f(Wi).
Thus,

We conclude that the efficient influence curve IC*(P0) of β(P) at P0 is given by:

This completes the proof of Result 6.

Appendix C: Inverse probability of treatment weighted estimation of
intention-to-treat causal effects of time-dependent treatments

The IPTW estimation methodology is based on the following identifiability result for the
intention-to-treat treatment-specific distributions.

Result 9 For any ā, we define the observed

Consider the indicator

(12)

We have
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where the latter product is defined as 1 if C(ā) = −1. We also have that, for any set of baseline
co-variables V ⊂ L(0),

Proof: Firstly, we note that

where, for simplicity, we define I(a(τ + 1) ∉ (τ + 1) =1. Here we noted that A(c + 1) =
ā(c)(c + 1), and I(c ≤ CĀ(ā)) = I(c ≤ Cā(c)(ā)). In addition, we noted that at most one of the

indicators in the sum can be equal to 1. Now, take the conditional expectation, given X(τ),
which gives

We have that for c < Cā(ā), a(c + 1) ∈ ā(c + 1), and for c > Cā(ā) the indicator is 0. Thus, the
latter sum equals

This proves the first statement in the result.

Regarding the second statement, firstly, we note that  equals

where g0(ā(c) | X(c)) is defined as 1 at c = −1. We also used that g0(· | X(c)) = g0(· | X(τ)). For
c = −1, the term equals Yd(ā)I(a(0) ∉ a(0), c ≤ Cā(ā)), and we will now show that for the terms
with c ≥ 0 the conditional expectation, given X(c), equals Yd(ā)I(a(c + 1) ∉ ā(c + 1), c ≤
Cā(ā)). Consider the c-specific term for c ≥ 0. We take the conditional expectation, given X
(c) (so that Yā(c) and g0(ā(c) | X(c)) is fixed), which yields

van der Laan and Petersen Page 38

Int J Biostat. Author manuscript; available in PMC 2009 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We have that for c < Cā(ā), a(c+1) ∈ ā (c+1) and for c > Cā(ā) the indicator is 0. Thus, the
sum over c ∈ {−1, …, τ} of the conditional expectations of the c-specific term, given X(c),
reduces to a single term corresponding with c = Cā given by

Finally, note that V ⊂ X(c) for all c ≥ 0. This proves the second statement of the result.

IPTW-estimating function for βh

We can estimate β0 with the following IPTW estimator

This estimator is now a standard weighted least squares regression of (Yi : ā) on Vi for a repeated
measures type data set, where the weights are given by h(ā, Vi)Δi(ā)/gn(Āi(Ci(ā)) | Xi(τ)), i =
1, …, n.

The latter weighted least squares regression corresponds with the following h-specific IPTW
estimating function:

By Result 9 we have that this estimating function is unbiased for β0 = βh0:

In order to implement the above mentioned IPTW estimators of βh0, or, ψ0 itself, one needs to
know the set {ā : Δ(ā) = 1} and the corresponding stopping times C(ā) for each observed O.

Algorithm for generating followed intention to treat treatments
Let 1 denote the set of treatment left over during the algorithm, and let  denote the wished
set of treatments with corresponding stopping times. We initiate 1 = , and initiate  at the
empty set.
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Given L(0), set  =  ∪ {(ā, −1) : a(0) ∉ (0)}: (thus, we add all ā ∈ 1 with a(0) ∉ (0),
and we set C(ā) = −1.

1 = 1/{ā ∈ 1 : a(0) ∉ (0)}: that is, we delete the selected treatments from 1.

Given L(0), A(0), L(1), set  =  ∪ {(ā, 0) : ā ∈ 1, a(0) = A(0), a(1) ∉ (1)}.

1 = 1/{ā ∈ 1 : a(0) = A(0), a(1) ∉ (1)}.

In general, for j = 0, …, given L(0), A(0), …, A(j − 1), L(j), set  =  ∪ {(ā, j − 1) : ā, j − 1) :
ā ∈ 1, ā(j − 1) = Ā(j − 1), a(j) ∉ (j)}.

1 = 1/{ā ∈ 1 : ā(j − 1), = Ā(j − 1), a(j) ∉ (j)}. Proceed till j = τ or 1 is empty.

Appendix D: The optimal estimating function and corresponding locally
efficient estimator for intention-to-treat causal effects of time-dependent
treatments

The following result presents the efficient influence curve for βh at P0, and its corresponding
optimal estimating function.

Result 10 Given a working model {m(ā, V | β) : β} for ψ0(ā, V) = Ψ(P0)(ā, V) ≡ EP0(Yd(ā) |
V) indexed by a Euclidean parameter β, our parameter of interest is defined on the
nonparametric model for P0 as

Let βh0 = βh(P0) denote the true parameter value. Consider the following class of estimating
functions:

where
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Here  and

.

We have that the efficient influence curve of βh at P0 is given by

If E(Yd(ā) | V) = m(ā, V | β0), then for all functions h

If βh0 = arg minβ E0Σa(E0(Yd(ā) | V) − m(ā, V | β))2h(ā, V), then

For the point treatment data structure O = (L(0), A(0), Y), we have the following double
robustness result:

We have not been able to establish the double robustness of Dh,DR for time-dependent treatment
processes, and suggest that the double robustness as stated for the point treatment data structure
might only hold for point treatment. However, a particular type of generalized double
robustness might be achievable, as defined in Robins and Rotnitzky (2001), but this remains
to be established in future work.

Given an estimator gn, Qn of g0, Q0, we can define the estimator βhn,DR as the solution of the
estimating equation

If m(· | β) is linear in β, then this estimating equation is linear in β so that its solution exists in
closed form. This estimator is locally efficient under regularity conditions, in the sense that it
is consistent, asymptotically linear and efficient if both gn and Qn are consistent, and it remains
consistent and asymptotically linear if g0 is consistently estimated. In order to avoid
technicalities, we propose the bootstrap method to obtain an estimate of the sampling
distribution of βhn,DR and to construct corresponding confidence intervals.

Proof of result 10. We will first show the robustness of the unbiasedness of the estimating
function w.r.t. miss-specification of Q: E0Dh,DR(β0, g0, Q) = 0 for all Q. Firstly, we have
E0Dh(β0, g0) = 0. In addition, we have Dh(β0, g0, Q) = Σt rt(Ā(t), L ̄(t)) − Eg0(rt | Ā(t − 1), L ̄(t))
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for  so that each t-specific term has conditional mean zero, given
Ā(t), L ̄(t) (for all functions r). This shows that E0Dh,DR(β0, g0, Q) = 0 for all Q.

Derivation of influence curve of nonparametric estimator
Consider the estimator

We will derive the influence curve of this estimator in the case that gn is a nonparametric
estimator. Because the influence curve of a regular asymptotically linear estimator in a
saturated model equals the efficient influence curve, this exercise will result in the wished
efficient influence curve. In the sequel, we will use the notation ≈ to indicate a first order
approximation: since all our random variables are discrete and finite, the claimed asymptotic
linearity of the estimator with corresponding influence curve can be fully formalized. Firstly,
we note that βn is the solution of

where

In first order we have

where . So, we need to determine the influence curve D1(P0) of the latter
term P0(Dh(β0, gn) − Dh(β0, g0)). Then, the influence curve of βn is given by:

We note that

where we remind the reader that this term equals zero if C(ā) = −1, even when Δ(ā) = 1, since
in that case Δ(ā)/g(C(ā) | X(τ)) ≡ 1 for both g = gn and g = g0.
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Thus,

where we denote h* = hd/dβm. Let

Then the latter expectation w.r.t. P0 can be rewritten as follows:

Define . Now, we note that

Substitution of this latter expression with c = C(ā) gives us now:

Let W(l) = (Ā(l − 1), L ̄(l)). We have

Where
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and

So we obtain

Thus we can represent −D1(O) as:

So,

Where
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We conclude that the efficient influence curve IC*(P0) of β(P) at P0 is given by:

This completes the proof of Result 10.
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Figure 1.
Mean counterfactual outcome under individualized rule where treatment modified at CD4 T
cell count threshold=θ
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Figure 2.
Mean counterfactual outcome under individualized rule where treatment modified at CD4 T
cell count threshold=θ, given baseline CD4 T cell count

van der Laan and Petersen Page 48

Int J Biostat. Author manuscript; available in PMC 2009 January 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

van der Laan and Petersen Page 49

Table 1
Odds ratios for switching treatment based on data-adaptive fit of treatment mechanism

Covariate Odds Ratio

Current diagnosis with an opportunistic disease 1.21

Number of protease inhibitor drugs experienced 1.11

Most recent HIV RNA level undetectable 0.44

Percent average adherence (per 10%) 0.92

Most recent CD4 T cell count (per 100 CD4 T cells) 0.92

Nadir CD4 T cell count (per 100 CD4 T cells) 1.06

Most recent HIV RNA level more than one month prior 0.90

Age (per 5 years) 0.80
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Table 2
Estimated mean counterfactual CD4 T cell count 8 months after virologic failure under treatment modification at CD4
threshold θ, based on model m(θ|β) = β0 + β1θ + β2θ2

Term Point Estimate 95% CI

β0 188.2 117.4, 258.9

β1 58.9 22.7, 95.2

β2 -0.9 -4.2, 2.3
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Table 3
Estimated mean counterfactual CD4 T cell count 8 months after virologic failure under treatment modification at CD4
threshold θ, given baseline CD4 T cell count, based on model m(θ, V|β) = β0 + β1θ + β2θ2 + β3θ × V + β4θ2 × V + β5V

Term Point Estimate 95% CI

β0 -40.8 -113.3, 31.7

β1 -1.1 -55.5, 53.4

β2 4.4 -1.8, 10.7

β3 -0.9 -6.1, 4.3

β4 -0.2 -0.7, 0.4

β5 50.1 41.0, 59.2
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