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Predicting response to hepatitis C therapy
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Current treatment for chronic hepatitis C is expensive, is often accompa-
nied by burdensome side effects, and, sadly, fails in almost half of cases. The 
ability to predict such failures prior to treatment could save a great deal of 
pain and expense for the patient with HCV. In this issue of the JCI, Aurora 
and colleagues describe the development of genetic markers predictive of 
treatment response based on a study of viral sequence variation (see the 
related article beginning on page 225). Genome-wide covariation analyses 
of pretreatment virus sequences from 94 patients showed distinct patterns 
of mutations strongly associated with the ultimate success or failure of treat-
ment. Such analyses suggest markers predictive of response to therapy and 
may lead to new insights into the underlying biology of hepatitis C.

An estimated 130 million people worldwide 
(1) and nearly 4 million in the United States 
are chronically infected with HCV, leading 
to liver damage and increased risk of hepa-
tocellular carcinoma. In the United States, 
10,000 deaths each year are attributed to 
chronic HCV infection (2). The current 
treatment regime, pegylated IFN-α and riba-
virin, is long and difficult, requiring months 
of weekly injections, with serious side effects 
ranging from flu-like symptoms to depres-
sion and autoimmune disorders. Success of 
treatment is far from guaranteed: in HCV 
genotype 1 infections, which account for 
the majority of cases in the US, only about 
half of patients display the long-term sup-
pression of virus indicative of cure.

Numerous studies in recent years have 
proposed markers for predicting HCV 
patient response to therapy. Markers may 
be based on viral factors, such as viral 
sequence variation (3); host factors, such 
as gene expression profiles (4) or poly-
morphisms in specific host genes (5); or 
combinations thereof (6, 7). Interestingly, 
very different types of biomarkers can give 
similar results, indicative of the intimate 
interactions between the manifold host 
and viral players in virus replication and 
disease progression.

In this issue of the JCI, Aurora et al. 
define a set of biomarkers predictive of 
the response to HCV therapy (8). These 
markers are purely viral factors, com-

posed of sets of varying residues in the 
HCV amino acid sequence identified by 
covariation analysis.

Covariation analysis reveals 
functional relationships
A statistical measure, covariance quantifies 
the degree of linkage between 2 variables; 
variables that are completely independent 
have a low covariance, whereas variables that 
vary synchronously have a high covariance.

Covariance between residues in a protein 
or set of proteins can be estimated from the 
variation observed in a population. An align-
ment of multiple HCV sequences shows both 
conserved and varying residues. The varying 
positions are compared in pairwise fash-
ion; for each pair of positions, the linkage 
between the 2 residues will affect the pattern 
of variation observed. For a pair of positions 
with a 10% mutation frequency at each site, 
both mutations would be shared by 1% of 
sequences if they are perfectly independent 
and 10% if they are perfectly covariant.

Because covariation implies a relation 
between 2 residues in a sequence, it has been 
used to infer information about direct inter-
actions in the 3-dimensional structure of a 
protein (9) and to identify protein-protein 
interactions (10). However, covariance aris-
es from all functional interactions between 
residues, both direct and indirect, as well as 
from phylogenetic relationships (Figure 1). 
Distinguishing between the many sources of 
covariance is a continuing challenge for any-
one wishing to use this technique (11, 12).

Covariation patterns are highly 
correlated with treatment outcome
The Viral Resistance to Antiviral Therapy 
of Chronic Hepatitis C (Virahep-C) clinical 

study (13) evaluated the efficacy of treat-
ment in HCV genotype 1a and 1b patients. 
The complete HCV coding sequence was 
determined for pretreatment isolates from 
each of 94 patients, who were followed dur-
ing and after treatment to determine the 
final outcome of therapy.

In the present study, Aurora et al. analyzed 
the 94 HCV sequences obtained during the 
Virahep-C study for amino acid covariance 
in each of the genotype 1 subtypes as well as 
stratified within each subtype by treatment 
response (8). From this analysis they made 
an important, and perhaps surprising, 
observation: the sets of covariant pairs were 
markedly different between the responsive 
and nonresponsive patient groups. In the 
HCV genotype 1a sequences, about 2,000 
covariant residue pairs were identified; 
three-quarters of the covariant pairs found 
in the responsive genomes did not appear 
in the nonresponsive sequence set, and vice 
versa. The results of the HCV genotype 1b 
sequence analysis was even more striking: 
90% of the residue pairs identified as being 
covariant in one response group were inde-
pendent in the other group.

The strong correlation between covari-
ance sets and therapeutic outcome imme-
diately suggests the possibility of finding a 
reliable predictor for response to therapy in 
the pretreatment HCV sequence. However, 
there is a still an additional step that must 
be made; a patient coming in for treatment 
generally harbors a range of closely related 
viral sequences. Covariance, on the other 
hand, is an aggregate property determined 
from a sequence alignment of an entire 
group of responders or nonresponders. The 
covariance sets reported by Aurora et al. 
showed a clear difference between groups 
of sequences depending on response to 
therapy (8), but a biomarker must be able 
to place a single sequence of unknown 
response into the correct group. In order to 
bridge this gap, the authors looked to the 
interconnected nature of the covariance 
sets they had generated.

Covariance networks
Each covariation analysis performed by 
Aurora et al. identified on the order of 
2,000 pairs of correlated residues (8). How-

Conflict of interest: The authors have declared that no 
conflict of interest exists.

Nonstandard abbreviations used: Virahep-C, Viral 
Resistance to Antiviral Therapy of Chronic Hepatitis 
C [study].

Citation for this article: J. Clin. Invest. 119:5–7 (2009). 
doi:10.1172/JCI38069.



commentaries

�	 The Journal of Clinical Investigation      http://www.jci.org      Volume 119      Number 1      January 2009

ever, this set of 2,000 pairs is composed of 
only about 200 unique residues. Clearly a 
residue may appear multiple times; in fact, 
each residue in the set was connected to 
anywhere between 1 and 100 other resi-
dues. The resulting networks are shown in 
detail in ref. 8.

Because covariant pairs by definition 
vary, any one pair will appear in only a frac-
tion of sequences. Similarly, a combination 
of residues correlated with one outcome 
can appear in a sequence of the opposite 
outcome, not because the residues are 
functionally linked, but simply by chance. 
For this reason, the authors searched for 
small collections of interconnected pairs, 
or subnetworks, which were correlated with 
outcome. By means of exhaustive search, 
they identified several hundred such sub-
networks, which appeared in greater than 

95% of sequences of one therapeutic out-
come and never appeared in sequences of 
the opposite outcome (8).

The attentive reader will note — and the 
authors are quick to point out — that the 
sequences for which the markers are evalu-
ated are the same sequences used to gen-
erate the markers. This is attributed to the 
unavailability of other sequence sets for 
which the treatment outcome is known. 
Nevertheless, the authors provide evidence 
that the differences observed in the cova-
riance networks are real and will translate 
into markers that will hold up outside 
the initial data set. First, the difference in 
the covariance sets between the 2 possible 
outcomes is quite large, as much as 90%. 
Second, the subnetwork analysis yielded 
not a handful of potential markers, but 
hundreds of subnetworks with 100% corre-

lation to treatment outcome. Finally, and 
most interestingly, the chemical makeup 
of the covariant pairs is significantly differ-
ent; the nonresponsive sequences contain 
3 times as many hydrophobic covariant 
amino acid pairs as the responsive sequenc-
es. This unexpected result implies that the 
differences in the covariance networks are 
directly reflective of an underlying physical 
phenomenon. The authors suggest that the 
higher fraction of correlated hydrophobic 
residues is evidence for more stable protein-
protein complexes in the nonresponsive 
strains. This could be envisioned to result 
in viral replication complexes that are more 
resistant to antiviral effectors, or even to 
alter interactions of immunomodulatory 
HCV proteins with their target host fac-
tors. Analysis of covariance networks may 
therefore not only reveal biomarkers for 

Figure 1
Covariation in HCV. (A) In the study reported 
in this issue of the JCI by Aurora et al. (8), 
patients were grouped according to their 
treatment response. The sequences of the 
complete HCV open reading frame obtained 
from each group of patients prior to treatment 
were aligned and analyzed for covariance. 
An example covariant pair is shown in each 
alignment (red arrows). The set of all covari-
ant pairs forms a network in which each node 
is an amino acid position and each connect-
ing line represents covariance between 2 
positions. The networks differ by treatment 
response class and may be used to generate 
markers indicative of HCV treatment outcome. 
(B) Various causes of covariance in HCV (red 
arrows). (i) Phylogenetic covariance is an arti-
fact of a shared ancestry, but does not reflect 
any functional relationship. (ii) RNA second-
ary structure gives rise to nucleotide-level 
covariance. (iii) Protein-protein interaction 
residues covary. (iv) Intraprotein covariance 
may indicate direct residue contact or indirect 
interaction through the protein. (v) Variation 
in a shared interaction partner (host or viral) 
may result in coordinated variation in a pair of 
residues. (vi) MHC epitopes will covary across 
hosts with different HLA alleles.
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therapeutic outcome, but also shed light 
on the mechanistic bases for resistance to 
treatment and even identify novel targets 
for antiviral drugs.

Conclusions
Although it still remains for these markers 
to be validated, the early results presented 
in this study are promising (8). It is inter-
esting to speculate on the relationship 
between these markers and other markers, 
particularly those based on host character-
istics. The circulating virus is not an inde-
pendent entity, but is continually shaped 
by host selective pressures even as it in 
turn modulates its host environment. Viral 
sequences observed prior to treatment may 
very well represent the success or failure of 
the host in selecting against the most treat-
ment-resistant variants. Covariance net-
works may serve as an exciting new tool in 
further studies along this avenue; networks 
generated from viral sequences obtained 
during acute viral infection should be par-
ticularly informative.

With the sustained and rapid growth of 
both computational power and sequencing 
capabilities, we expect covariation analyses 
to become increasingly common as a tool 
to study different aspects of HCV biology 
(14). The high mutation rate of RNA virus-
es and the intense competition within the 

quasispecies makes them particularly ame-
nable to this technique. We look forward 
to seeing further application of covariance 
networks to questions ranging from pro-
tein structure and protein-protein inter-
actions to drug resistance, host selection 
pressures, and viral evolution.
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Idiopathic pulmonary fibrosis (IPF) is characterized by progressive 
(myo)fibroblast accumulation and collagen deposition. One possible source 
of (myo)fibroblasts is epithelial cells that undergo epithelial-mesenchymal 
transition (EMT), a process frequently mediated by TGF-β. In this issue of 
the JCI, Kim et al. report that epithelial cell–specific deletion of α3 integrin 
prevents EMT in mice, thereby protecting against bleomycin-induced fibro-
sis (see the related article beginning on page 213). The authors propose a 
novel mechanism linking TGF-β and β-catenin signaling in EMT through 
integrin-dependent association of tyrosine-phosphorylated β-catenin and 
pSmad2 and suggest targeted disruption of this interaction as a potential 
therapeutic approach.

Idiopathic pulmonary fibrosis (IPF) is a 
progressive disorder of unknown etiology 
characterized by fibroblast accumulation, 
collagen deposition, and ECM remodel-
ing leading to parenchymal destruction 
(1). Historically, inflammation has been 

viewed as central to the pathogenesis of 
IPF. A recent paradigm shift proposes a 
model in which injury to the epithelium 
initiates a proinflammatory and profi-
brotic cascade, resulting in fibroblast 
expansion and progressive fibrosis remi-
niscent of abnormal wound healing (2). 
Myofibroblasts (activated fibroblasts) are 
key effector cells in pulmonary fibrosis, 
being responsible for matrix deposition 
and structural remodeling. The source 
of myofibroblasts in IPF remains the 
subject of debate: in addition to arising 
from circulating progenitors and resident 
fibroblasts, myofibroblasts have recently 
been shown to be derived from alveolar 
epithelial cells (AECs) through epithelial-
mesenchymal transition (EMT) (3, 4).
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