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Brief Communications

Monoamine Oxidase A Genotype Predicts Human Serotonin
1A Receptor Availability In Vivo
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"Molecular and Behavioral Neuroscience Institute and 2Department of Psychiatry, University of Michigan, Ann Arbor, Michigan 48109-0720, and
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The serotonergic system, including the serotonin 1A (5-HT,,) receptor, has been implicated in the pathophysiology of a number of
neuropsychiatric disorders. Current data show substantial interindividual variation in the regional concentration of this receptor site, the
source of which is unclear. Monoamine oxidase A (MAO-A) is a key regulator of serotonin metabolism, and polymorphic variation in the
X-linked MAO-A gene influences its expression. We hypothesized that polymorphism in the MAO-A gene would be associated with
sex-specific variation in 5-HT , receptor expression. We used positron emission tomography and [ ''C]WAY-100635 to quantify 5-HT, ,
receptorsinagroup of 31 healthy and unmedicated depressed individuals. The same individuals were genotyped for an upstream variable
number tandem repeat polymorphism in the promoter of the MAO-A gene. ANOVA of 5-HT, , receptor availability demonstrated a
significant effect of MAO-A genotype in the raphe nuclei, medial and inferior temporal cortex, insula, medial prefrontal cortex, and
anterior cingulate ( p < 0.05). The effect persisted when age, race, body mass index, and diagnosis were included in the model. Genotypes
with greater putative MAO-A activity were associated with greater 5-HT,, receptor availability in women, but not in men. Genotype
predicted a substantial 42-74% of the variance in receptor availability in women, depending on the brain region ( p < 0.05). Depression
diagnosis was not associated with MAO-A genotype or 5-HT, , receptor availability in these regions. These results demonstrate a sex-
specific interaction between two key molecules of the human serotonergic system, and suggest a neurobiological basis for sexual dimor-
phism in serotonin-modulated phenotypes.
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Introduction

The serotonergic system regulates a wide range of brain func-
tions. Two relatively well-studied components of this system are
the serotonin 1A (5-HT,,) receptor and monoamine oxidase A
(MAO-A). The 5-HT, , receptor is a G-protein-coupled receptor
thatis expressed on the cell bodies and dendrites of neurons in the
raphe nuclei, which contain the majority of serotonergic neurons
in the brain (Aghajanian et al., 1990; Hensler, 2006). These brain-
stem serotonergic neurons send projections to widespread fore-
brain regions, where the targeted postsynaptic neurons also ex-
press 5-HT, , receptors (Aghajanian et al., 1990; Hensler, 2006).
After acting at its receptor, serotonin is metabolized by MAO-A.
This enzyme is distributed widely throughout the brain, and it is
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thought to provide the major pathway for serotonin metabolism
(Saura et al., 1996; Shih et al., 1999).

Positron emission tomography (PET) studies of 5-HT,, re-
ceptors commonly find significant interindividual variability in
binding potential. Some of this variation has been linked to sex
(Cidis Meltzer et al., 2001; Parsey et al., 2002), depression diag-
nosis (Drevets et al., 1999; Sargent et al., 2000; Parsey et al.,
2006b), and antidepressant treatment response (Parsey et al.,
2006a; Moses-Kolko et al., 2007). Other studies have investigated
whether variation in 5-HT,, receptor expression is genetically
mediated. A variable number tandem repeat (VNTR) polymor-
phism in the promoter of the serotonin transporter gene
(SLC6A4, s allele) has been associated with lower 5-HT, , recep-
tor availability in healthy subjects (David et al., 2005). An associ-
ation with the —1018(C—G) single-nucleotide polymorphism
in the 5-HT, , receptor gene was demonstrated in one study (Par-
sey et al., 2006b), but this was not independently replicated
(David et al., 2005). The discovery of further genetic and envi-
ronmental factors that contribute to variation in 5-HT, , receptor
availability is crucial for understanding serotonergic function in
normal and diseased states, and for advancing individualized di-
agnosis and treatment of a number of conditions modulated by
this neurotransmitter system.

One potential contributor to variation in 5-HT,, receptor
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Table 1. Demographic and genotype characteristics of the study sample

Healthy Depressed

Number of subjects 17 14
Sex (% female) 47 64
Age (mean == SD) 34 *=12 3811
Race (% Caucasian) 53 64
Body mass index (mean == SD) 26+ 4 28+4
MAO-A genotype (number of subjects per geno-

type group)

L 5 2

H 4 3

LL 3 2

L/H 3 2

H/H 2 5
L, Low; H, high.

availability is the MAO-A gene. MAO-A knock-out mouse mod-
els show increased extracellular serotonin levels and decreased
5-HT, , receptor sensitivity and concentrations (Evrard et al.,
2002; Owesson et al., 2002; Lanoir et al., 2006). The reduced
expression of 5-HT, , receptors has been explained as compensa-
tory downregulation resulting from excess extracellular seroto-
nin levels in animals that lack functional MAO-A enzyme (Evrard
etal., 2002; Owesson et al., 2002; Lanoir et al., 2006). The human
MAO-A gene has a putatively functional VNTR polymorphism
in its promoter region (Sabol et al., 1998). The 3.5- and 4-repeat
alleles are associated with higher MAO-A expression than other
alleles in vitro (Sabol et al., 1998; Deckert et al., 1999). Because the
gene is X-linked, males are hemizygous at this locus. Females are
homozygous or heterozygous and alleles are subject to X inacti-
vation. Functional polymorphism at the MAO-A locus is thus
expected to manifest in a sex-specific manner.

We hypothesized that low-activity MAO-A genotypes would
be associated with lower 5-HT, , receptor concentrations in hu-
mans, in a manner consistent with findings in animal models,
and furthermore that the effects of genotype would differ be-
tween men and women. To test this hypothesis, we used PET to
quantify 5-HT, , receptors in a group of healthy and depressed
individuals, and genotyped the same individuals for the MAO-A
promoter polymorphism.

Materials and Methods

Subjects. Seventeen healthy subjects and 14 unmedicated, treatment-
seeking, depressed volunteers were recruited by advertisement for a study
of major depression. All subjects were free of psychotropic medications.
Ten of the depressed subjects had never taken antidepressant medication
and the other four had been off medication for 6—60 months. Demo-
graphic information is given in Table 1. Eighteen subjects were Cauca-
sian, six were African-American, and seven had another self-described
race (Asian, Pacific Islander, Native American, or mixed). Depressed
subjects were diagnosed with moderate-to-severe major depressive dis-
order (17 item Hamilton Depression Rating Scale mean 18.9, SD 2.6),
and healthy controls were determined never mentally ill, using the Struc-
tured Clinical Interview for DSM-IV. Subjects with other major health
problems or substance abuse (including tobacco use) were excluded.
Written informed consent was obtained from each volunteer. The study
was approved by the Institutional Review Board and the Radiation Drug
Research Committee at the University of Michigan.

Imaging. PET procedures were similar to those described previously
(Zubieta et al., 2002). PET images were acquired with a Siemens/CTI
HR+ scanner in three-dimensional mode with septa retracted. Volun-
teers were positioned in the scanner gantry, an antecubital intravenous
line was placed, and a light forehead restraint was applied to reduce head
movement. [carbonyl- "' CIWAY-100635, a specific 5-HT, , receptor an-
tagonist, was synthesized at high specific activity (Zhuang et al., 1994;
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Figure1.
Mid-sagittal PET image of the brainstem, averaged across subjects, showing three 10 mm-
diameter spherical ROIs in the midbrain, rostral pons, and rostral medulla. B, T1-weighted MRI
coregistered to A. C, Coronal image aty = —10 mm showing several forebrain regions signif-
icant by statistical parametric mapping. Colors represent Z scores (threshold, p = 0.001). D,
Sagittal image at x = 2 mm showing significant variation of binding potential in left dorsal
anterior cingulate and ventromedial prefrontal cortex. Colors represent Z scores.

Regional variation of 5-HT, , receptor binding potential with MAO-A genotype. 4,

Hwang et al., 1999). The tracer was administered as a bolus followed by
continuous infusion to more rapidly achieve steady-state conditions.
Eighteen scans of increasing duration (0.5-10 min) were acquired over a
period of 90 min. Raw PET images were coregistered and smoothed with
a Gaussian filter (4 mm full-width at half-maximum). Smoothed images
were transformed voxel-by-voxel into parametric maps of tracer trans-
port (K, ratio) and specific binding [distribution volume ratio (DVR)]
using a modified Logan graphical analysis, with bilateral cerebellar hemi-
spheres (excluding the vermis) as the reference region (Logan et al.,
1996). Binding potential [(BP) i.e., receptor availability] was then de-
fined as DVR-1, or k,B,,,./Ky, where B, is the total receptor concen-
tration, K is the dissociation constant, and k, is the extracellular concen-
tration of tracer (assumed to be a small, constant value). Two additional
individuals showed anomalously low whole-brain binding potential
(2.4-3.0 SDs below the mean) and visible binding in the cerebellar hemi-
spheres, and were therefore excluded. Magnetic resonance imaging
(MRI) scans were obtained on a 3-T General Electric Signa scanner using
axial spoiled gradient-recalled acquisition. PET images were coregistered
with MRI images to allow anatomical localization of PET data. Coregis-
tration was accomplished for each subject by alignment of K, images with
MRI images using rigid-body affine transformation and a mutual infor-
mation algorithm (Meyer et al., 1997). MRI data were subsequently
transformed into standardized coordinates (International Consortium
for Brain Mapping; Montreal Neurological Institute) by linear and non-
linear warping, and the resulting transformation matrix was applied to
parametric PET images. The accuracy of coregistration and nonlinear
warping was verified for each subject by visual inspection of PET and
MRI images.

Genetics. Genomic DNA was purified from blood using standard
methods. The MAOA promoter region that contains the upstream
VNTR polymorphism (Sabol et al., 1998) was amplified from 10 ng
genomic DNA using the primer sequences: Forward 5 CCCAGGCT-
GCTCCAGAAACATG 3’ and Reverse 5 GTTCGGGACCTGGG-
CAGTTGTG-3'. Because of the high GC content in the VNTR region,
amplification was performed using Invitrogen’s PlatinumTaq and PCRX
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Table 2. Influence of MAO-A genotype on 5-HT, , receptor binding potential across brain regions

ROl or cluster

Effect of genotype in

Region of analysis Brain region Coordinates x, y, z (mm)“ size (mm°) Zscore’ Effect of genotype; p, r* Effect of sex?; p, A women®; p, r*

Brainstem Midbrain 0,—28,—1 515 0.023,0.34 0.38,8 0.002, 0.53
Pons 0,—31,—25 515 0.069,0.28 0.044,16 0.112,0.27
Medulla 0,—37,—45 515 0.003, 0.44 0.41,7 <0.001,0.47

Forebrain Right MTL —30,2, —45 5520 1.7 0.003, 0.45 0.024,18 0.002, 0.51
Left MTL 27,0, —42 5620 7.0 0.001,0.50 0.032,17 0.001,0.55
Left FFG* 4,-23,-30 1750 6.1 0.008, 0.40 0.050, 17 0.003,0.42
Left ITC 55,—15,—33 119 5.1 0.010,0.39 0.21,13 0.013,0.53
Left dACC 2,10,31 246 49 <0.001, 0.61 0.065, 18 <0.001,0.74
Left vmPFC 2,28, —22 227 49 0.006, 0.42 0.088, 16 0.012,0.49
LeftITG 58, —9, —18 262 48 <<0.001,0.59 0.058, 14 <<0.001,0.71
Left alns 39,10, —2 187 4.7 0.009, 0.40 0.070,13 <0.001,0.48
Left pins 40, —8,—8 288 46 0.009,0.39 0.20, 11 <0.002,0.49

MTL, Medial/inferior temporal lobe; FFG, fusiform gyrus; ITC, inferior temporal cortex; dACC, dorsal anterior cingulate cortex; vmPFC, ventromedial prefrontal cortex; ITG, inferior temporal gyrus; alns, anterior insular cortex; plns, posterior

insular cortex; *cluster drops out when body mass index is included as a covariate.
“International Consortium for Brain Mapping coordinates.

©7 score from SPM analysis, corrected for multiple comparisons.

“One-way analysis of variance (df = 4,26), uncorrected for multiple comparisons.

Two-tailed, two-sample t test (df = 29), women compared to men, uncorrected for multiple comparisons; A, percentage increase of binding potential in women over men.

“One-way analysis of variance (df = 2,14), women only, uncorrected for multiple comparisons.

Enhancer System kits (Invitrogen), according to the manufacturer’s pro-
tocol with 5 um of each primer and 2.5 mm dNTPs in a total reaction
volume of 15 ul. Amplifications were performed on a Perkin-Elmer 9700
thermocycler (Applied Biosystems) with one cycle at 96°C for 10 min
followed by 35 cycles of 94°C for 15 s, 55°C for 15's, 72°C for 30 s, and a
final 3 min extension at 72°C. The forward primer was labeled with the
fluorescent dye 6-FAM, and amplicons were visualized on an ABI 3730
capillary Sequencer. Allele sizes (3-repeat, 213 bp; 3.5-repeat, 229 bp;
4-repeat, 243 bp; 5-repeat, 373 bp) were determined using Genotyper
4.0/software (Applied Biosystems).

Each subject was classified into one of five groups based on MAO-A
genotype. In vitro data suggest that 3.5- and 4-repeat alleles are associated
with greater gene expression than other alleles (Sabol et al., 1998; Deckert
et al., 1999). Allele frequencies in the sample were 44, 0, 54, and 2% for
the 3-, 3.5-, 4-, and 5-repeat alleles, respectively. For statistical analyses,
we designated the 3.5- and 4-repeat alleles as high-activity and the 3- and
5-repeat alleles as low-activity. Each male was therefore classified as low
or high, and each female as low/low, low/high, or high/high (i.e., each
subject fell into one of five groups). Genotype data are shown in Table 1.
The 5-repeat allele was found to be low-expressing in one study (Sabol et
al., 1998) but not a second study (Deckert et al., 1999); when we instead
classified the 5-repeat allele as high-activity, our results were not substan-
tially altered, because this merely resulted in reclassification of one fe-
male subject from low/low to low/high.

Analysis. We used region-of-interest (ROI) analysis for brainstem (ra-
phe) regions, because statistical parametric mapping (SPM) tends to be
less sensitive for the small nuclei in this structure. We identified three
brainstem ROIs in PET images. An average BP image across all subjects
was first created (Fig. 14,B). Inspection of this average image revealed
three distinct peaks on the midsagittal plane in the midbrain (coordi-
nates X, ¥, zin mm 0, —28, —11), pons (0, —31, —25), and medulla (0,
—37, —45). These coordinates were then used to guide the manual place-
ment of three ROIs (10 mm-diameter, three-dimensional spheres) on the
individual images of each subject, blind to the subject’s identity. The
primary analysis consisted of one-way ANOVA on each ROI with geno-
type group (low, high, low/low, low/high, or high/high) as the predictor
and BP values as the dependent variable. Statistics were performed with
SPSS 16.0 with a threshold of p = 0.05 for each ROL

To identify cortical regions in which binding potential varied by geno-
type, we used a modified version of Statistical Parametric Mapping
(SPM99; Wellcome Department of Cognitive Neurology, University
College London, London, UK) and Matlab (MathWorks) software, after
previously described methods (Zubieta et al., 2002). We used one-way
(ANOVA) with genotype group as the predictor. A statistical F map was
generated using the pooled variance across voxels (Worsley et al., 1992),

and p values were computed with correction for multiple comparisons
using the Euler characteristic (Worsley, 1994) based on the number of
voxels in the gray matter and image smoothness (Friston et al., 1991).
Data from significant clusters (F test, p < 0.05, corrected for multiple
comparisons, >10 voxels per cluster) were extracted.

Post hoc statistical analysis was performed on extracted mean binding
potential values from brainstem ROIs and significant forebrain clusters.
Potential confounding variables (diagnosis, Hamilton depression score,
age, race, and body mass index) were investigated by adding each as a
covariate for forebrain (SPM) and brainstem (SPSS) analyses.

Results

We first tested the hypothesis that 5-HT, , receptor binding po-
tential is influenced by MAO-A genotype. In the brainstem,
ANOVA demonstrated a significant effect of genotype in two of
the three ROIs (Fig. 1 A,B, Table 2). In the forebrain (SPM anal-
ysis) (Fig. 1C,D), nine forebrain regions were identified in which
binding potential was predicted by genotype group (p < 0.05,
corrected) (Table 2). These included the anterior cingulate cor-
tex, ventromedial frontal cortex, medial and inferior temporal
neocortex, hippocampus and amygdala (Table 2).

Post hoc analyses showed that the effect of MAO-A genotype
differed between women and men. When MAO-A genotype was
ignored, 5-HT,, receptor availability was 7-18% greater in
women compared with men across the regions above, and the
difference reached statistically significant thresholds (unpaired
two-tailed ¢ tests, p < 0.05) in three of those regions (Table 2).
Effects of genotype were then explored separately in women and
in men. Significant effects of genotype were obtained in women
in 11 of 12 regions, with 5-HT, , receptor BP generally increasing
with the number of high-activity MAO-A alleles carried (Table 2,
Fig. 2). In women, genotype accounted for 42-74% of the vari-
ance in BP values, depending on the brain region (r* = 0.42—
0.74) (Table 2). None of the regions identified in the voxel-by-
voxel analysis showed effects of genotype among men. One of the
ROIs, placed in the medulla, showed significant effects of geno-
type group in males (df = 1,12; F = 7.0; p = 0.02, r*> = 0.37), but
the direction of the effect was opposite that of women (higher BP
among those with the low-activity genotype).

The effect of genotype on 5-HT,, BP persisted even when
controlling for potential confounders. We found no effect of de-
pression diagnosis. When diagnosis or Hamilton depression
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of 5-HT,, receptor availability on geno-
type among men. The origin of this sex
difference is unclear. It is possible that
MAO-A genotype does not determine
brain levels of MAO-A in men, as sug-
gested by a recent PET study (Fowler et al.,
2007). The sex differences we observe mir-
ror those found in a study of monoamine
metabolite concentrations in CSF (Jon-
sson et al., 2000). Among women, the con-
centration of the major serotonin metabo-
lite, 5-hydroxyindoleacetic acid, was
greater in those with a high-activity geno-
type than in those with low-activity geno-
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Figure 2.

nine forebrain regions versus genotype. All regions are significant by ANOVA ( p << 0.05).

score was included in the primary model as a nuisance covariate,
the significance of brainstem and forebrain regions was un-
changed (data not shown). When depressed patients and healthy
controls were compared, the binding potential in each of the 12
identified brain regions did not differ between the two groups
(unpaired two-tailed ¢ tests, df = 29, p > 0.2). Furthermore, BP
varied similarly with genotype in the depressed and healthy
groups (data not shown). A similar lack of effects was obtained
when age or race were included in the model (data not shown).
When body mass index was included in the model, a large cluster
centered in the left fusiform cortex became nonsignificant, but
the results for other brainstem and forebrain regions were not
substantially changed (Table 2). No significant effects of plasma
levels of testosterone (in men), or estradiol or progesterone (in
women) on 5-HT, , BP were observed (data not shown).

Discussion

This study describes a substantial effect of MAO-A genotype in
women on brain regional 5-HT,, receptor BP, predicting 42—
74% of its variance. Higher-activity MAO-A genotypes in

H
Genotype

5-HT,, receptor binding potential depends on MAO-A genotype. A, Binding potential of individual subjects in

midbrain ROI versus genotype. L, Low-activity allele; H, high-activity allele. B, Mean binding potential in three brainstem ROIs

versus genotype. Midbrain and medulla ROls are significant by ANOVA ( p << 0.05); the pons ROl is nonsignificant (N.S.). €, Binding
potential of individual subjects in right medial/inferior temporal lobe (MTL) cluster versus genotype. D, Mean binding potential in

type, whereas among men, a nonsignifi-
cant trend in the opposite direction was
found. Individuals with a high-activity
MAO-A genotype would be expected to
have greater serotonin turnover, higher
metabolite levels, lower synaptic serotonin
levels, and compensatory upregulation of
5-HT), 4 receptors. This model is consistent
with studies in MAO-A knock-out mice,
in which the complete abolishment of en-
zyme function was associated with the opposite effects: greater
extracellular serotonin levels, reduced 5-HT, , receptor sensitiv-
ity, and decreased 5-HT,, receptor density (Evrard et al., 2002;
Owesson et al., 2002; Lanoir et al., 2006). In a recent functional
MRI study of healthy participants, interaction effects between sex
and MAO-A genotype were described on activation in medial
temporal lobe and dorsal anterior cingulate (Meyer-Lindenberg
et al., 2006), regions in which we also found a robust sex-
genotype interaction on receptor levels. An interaction effect be-
tween MAO-A genotype and testosterone level on male antisocial
behavior was recently demonstrated (Sjoberg et al., 2008), but we
found no such effect on 5-HT, , receptor BP.

Investigators have become increasingly aware of sex differ-
ences in the brain, including those involving the serotonergic
system (Cahill, 2006; Cosgrove et al., 2007). Women and men
have different whole blood serotonin concentrations (Ortiz et al.,
1988; Weiss et al., 2005), cerebral serotonin synthesis (Nishizawa
etal., 1997), and raphe neuron morphology in infancy (Cordero
et al., 2000, 2001). Several studies have demonstrated higher

L/L L/H H/H
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5-HT,, receptor availability in women compared with men
(Arango etal., 1995; Cidis Meltzer et al., 2001; Parsey et al., 2002).
We found that women with high-activity MAO-A genotypes dif-
fer from men and from women with a low-activity genotype,
which suggests that women with high-activity MAO-A genotypes
may drive some previously reported sex differences in serotoner-
gic mechanisms.

The biological sex differences described above are likely to
contribute to sexually dimorphic behaviors associated with sero-
tonergic function such as aggression [for review, see Miczek et al.
(2007)] and emotional memory [for review, see Cahill (2006)], as
well as sexually dimorphic psychiatric illnesses like mood disor-
ders (Kessler et al., 1993; Grant et al., 2005), anxiety disorders
(Wittchen et al., 1994; Grant et al., 2006), and eating disorders
(Kaye et al., 2005).

Although our study included healthy and depressed individ-
uals, a larger sample will be needed to allow us to address several
important clinical questions, for example, whether genotype in-
teracts with diagnosis, response to treatment, trait impulsivity,
suicidality, or other endophenotypes. We found no significant
effect of depression diagnosis on BP in brain regions that are
modulated by MAO-A genotype. Recent studies of the effect of
depression on 5-HT, , receptor availability have been discrepant.
Although some investigators have described reduced BP in those
with major depression (Drevets et al., 1999; Sargent et al., 2000;
Bhagwagar et al., 2004; Meltzer et al., 2004; Moses-Kolko et al.,
2007), others have found elevated BP and a dependence on anti-
depressant exposure (Parsey et al., 2006b). Our results do not
provide a resolution of this controversy, but suggest that differ-
ences among studies could be influenced by genotype and
genotype-sex interactions.

In conclusion, our results demonstrate a sex-specific interac-
tion between two key molecules of the human serotonergic sys-
tem. The sex-dependent influence of MAO-A genotype on
5-HT, , receptor availability suggests a neurobiological basis for
sexual dimorphism in serotonin-mediated behaviors and
disorders.
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