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The role of D4-unsaturated sphingolipid long-chain bases such as sphingosine was investigated in Arabidopsis (Arabidopsis
thaliana). Identification and functional characterization of the sole Arabidopsis ortholog of the sphingolipid D4-desaturase was
achieved by heterologous expression in Pichia pastoris. A P. pastoris mutant disrupted in the endogenous sphingolipid
D4-desaturase gene was unable to synthesize glucosylceramides. Synthesis of glucosylceramides was restored by the expression
ofArabidopsis geneAt4g04930, and these sphingolipidswere shown to containD4-unsaturated long-chain bases, confirming that
this open reading frame encodes the sphingolipid D4-desaturase. At4g04930 has a very restricted expression pattern, transcripts
only being detected in pollen and floral tissues. Arabidopsis insertion mutants disrupted in the sphingolipid D4-desaturase
At4g04930 were isolated and found to be phenotypically normal. Sphingolipidomic profiling of a T-DNA insertion mutant
indicated the absence of D4-unsaturated sphingolipids in floral tissue, also resulting in the reduced accumulation of glucosyl-
ceramides. No difference in the response to drought or water loss was observed between wild-type plants and insertion mutants
disrupted in the sphingolipidD4-desaturaseAt4g04930, norwas any difference observed in stomatal closure after treatmentwith
abscisic acid. No differences in pollen viability between wild-type plants and insertion mutants were detected. Based on these
observations, it seems unlikely that D4-unsaturated sphingolipids and their metabolites such as sphingosine-1-phosphate play a
significant role in Arabidopsis growth and development. However, D4-unsaturated ceramides may play a previously unrecog-
nized role in the channeling of substrates for the synthesis of glucosylceramides.

Sphingolipids are ubiquitous membrane lipids and
have been shown to be essential in many different
eukaryotes (Dunn et al., 2004). It is widely considered
that sphingolipids play an important role inmembrane
structure and organization and that they are enriched
in plasmamembrane microdomains or so-called “lipid

rafts” (Borner et al., 2005). Such properties are likely to
be derived from the differences in structure (and hence
biophysical properties) between sphingolipids and
phosphoglycerolipids. Sphingolipids comprise a fatty
acid (usually a very long chain of C22–26, but it can also
be C16) N-linked to a long-chain base (LCB), usually
with the addition of a polar head group to generate the
mature lipid (Sperling and Heinz, 2003; Sperling et al.,
2004). There is considerable diversity in both the LCB
and the fatty acid components between eukaryotes,
although the functional significance of this has not yet
been fully explored. In addition to structural roles,
sphingolipids and their metabolites also act as second
messengers (Spiegel and Milstien, 2003). In animal
cells, the phosphorylated sphingolipid metabolite
sphingosine-1-phosphate (S-1-P) acts as a potent mes-
senger, modulating a range of processes such as prolif-
eration and apoptosis (Saba and Hla, 2004). A number
of roles for phosphorylated long chain bases (LCB-1-P)
have been observed in fungi, Drosophila, and Caeno-
rhabditis elegans (Oskouian and Saba, 2004). In higher
plants, a role for S-1-P in calcium-mediated stomatal
closure has been reported for Commelina communis (Ng
et al., 2001) and Arabidopsis (Arabidopsis thaliana;
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Coursol et al., 2003; for review, see Brownlee, 2001;
Worrall et al., 2003). More recently, a similar role for
phytosphingosine (4-hydroxysphinganine)-1-P has
been observed in Arabidopsis (Coursol et al., 2005).

A number of the Arabidopsis genes involved in the
biosynthesis of plant sphingolipids have recently been
identified and functionally characterized (predomi-
nantly by complementation of Saccharomyces cerevisiae
mutants and reverse genetics in Arabidopsis; reviewed
by Sperling andHeinz, 2003; Dunn et al., 2004; Sperling
et al., 2004). Such studies have experimentally con-
firmed the essential nature of sphingolipids in Arabi-
dopsis (Chen et al., 2006; Dietrich et al., 2008; Teng et al.,
2008) and also indicated the contribution of sphingo-
lipids to many aspects of plant growth, development,
and stress responses (Liang et al., 2003; Dietrich et al.,
2005; Zheng et al., 2005; Ryan et al., 2007).

As part of our efforts to understand the functional
consequences of sphingolipid heterogeneity, we have
examined the role of sphing-4-enine (commonly known
as sphingosine; d18:1D4t) in plants and fungi. Sphingo-
sine is synthesized via the D4-trans-desaturation of
sphinganine (d18:0; also known as dihydrosphingo-
sine), although this desaturation occurs on N-acylated
LCBs (i.e. using the dihydroceramide as the substrate,
rather than the free dihydrosphingosine LCB). In ani-
mal cells, free sphingosine is only generated through
the catabolism of sphingolipids (Spiegel and Milstien,
2003; Saba and Hla, 2004). For this reason, the dihy-
drosphingosine D4-desaturase is also known as the
dihydroceramide D4-desaturase (Michel et al., 1997).
However, in this article, we will refer to this activity as
the sphingolipid D4-desaturase, since this broader
term avoids confusion regarding the substrate of this
enzyme (which remains to be defined in many or-
ganisms). The first examples of the sphingolipid
D4-desaturase were isolated by Ternes et al. (2002),
who functionally identified candidate desaturases by
heterologous expression in S. cerevisiae sur2D mutants.
Yeast cells lacking the SUR2 sphingolipid hydroxylase
are unable to synthesize C4-hydroxylated LCBs such
as phytosphingosine and thus prevent competition
between SUR2 and the heterologous sphingolipid
D4-desaturase for their common substrate (sphinga-
nine; Sperling et al., 2001). This approach identified
active sphingolipid D4-desaturases from human
(MLD), mouse (mDES-1), Drosophila (DES-1), and
Candida albicans, and a similar study identified the
same activity from Schizosaccharomyces pombe (Garton
et al., 2003). These enzymes defined a new class of
desaturases (Napier et al., 2002;Hashimoto et al., 2008),
with apparent higher plant orthologs present in the
Arabidopsis and rice (Oryza sativa) genome sequences
and other plant EST collections. However, attempts to
express a tomato (Solanum lycopersicum) ortholog of the
sphingolipid D4-desaturase in S. cerevisiae sur2D mu-
tants did not result in any detectable activity (Ternes
et al., 2002).

In animals, sphingosine (the direct precursor of S-1-P;
Fig. 1A) is the most abundant LCB (Pyne and Pyne,

2000). However, sphingosine is a very minor compo-
nent of most higher plant sphingolipids (Imai et al.,
1997; Sullards et al., 2000; Dunn et al., 2004; Lynch and
Dunn, 2004; Markham et al., 2006), with the predom-
inant LCB modifications being C4-hydroxylation,
D8-desaturation, or both, yielding phytosphingosine,
sphing-8-enine, or 4-hydroxysphing-8-enine, respec-
tively (Fig. 1A). While D4-unsaturated sphingolipids
are abundant in some plant species (such as soybean
[Glycine max]), these predominantly occur in conjunc-
tion with D8-unsaturation, in the form of sphinga-4,8-
dienine (Markham et al., 2006). In order to better define
the role of sphingosine and S-1-P in Arabidopsis, we
have functionally characterized the single ortholog of
the sphingolipid D4-desaturase. Insertional mutagene-
sis of the Arabidopsis sphingolipidD4-desaturase does
not result in any phenotypic alterations to growth or
development, likely indicating a very limited role for
S-1-P and other D4-unsaturated LCBs and their
phosphorylated metabolites in this organism.

RESULTS AND DISCUSSION

Functional Identification of a Sphingolipid
D4-Desaturase Candidate Gene of Arabidopsis by
Heterologous Expression in Pichia pastoris

Orthologs of the sphingolipid D4-desaturases iden-
tified by Ternes et al. (2002) are easily identifiable in
eukaryotic genome sequences, forming a distinct clade
from other microsomal lipid desaturases (Hashimoto
et al., 2008). Arabidopsis contains a single ortholog
of the sphingolipidD4-desaturase, located in proximity
to the centromere of chromosome IV. This gene
(At4g04930; T1J1.1) is annotated as showing similarity
to the Drosophila DES-1 gene characterized by Ternes
et al. (2002) and ismadeupof two exons split by a single
intron. At4g04930 represented the only plausible de-
tectable candidate for the sphingolipid D4-desaturase
in the Arabidopsis genome (Fig. 1B). Therefore, func-
tional characterization of the open reading frame (ORF)
encoded by At4g04930 was attempted by heterologous
expression in S. cerevisiae sur2Dmutants, similar to that
described previously (Ternes et al., 2002; Garton et al.,
2003). However, despite numerous attempts, no activ-
ity was detected in association with the expression
of the Arabidopsis ORF, in agreement with previous
attempts to characterize plant orthologs of this enzyme
(Ternes et al., 2002; our unpublishedobservations). This
lack of activity in S. cerevisiae sur2Dmutantsmost likely
related to the sphingolipid substrate required by the
plant desaturase, rather than to inactivity of the recom-
binant enzymeper se.Given that S. cerevisiae lacks some
common classes of sphingolipids (such as glucosylcer-
amides [GlcCers]) and also does not normally syn-
thesize sphingosine, this is perhaps unsurprising,
although it is important to note that this host was able
to support sphingosine synthesis by other nonplant
sphingolipidD4-desaturases (Ternes et al., 2002;Garton
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et al., 2003). These observations also serve to highlight
our partial understanding of sphingolipid biosynthesis
even in model systems.
In view of the failure of S. cerevisiae to serve as a

suitable expression host for the functional characteri-
zation of higher plant sphingolipid D4-desaturases, an
alternative system was developed. In common with
many fungi, the methylotrophic yeast P. pastoris syn-
thesizes GlcCers that contain D4-unsaturated LCBs,
predominantly in the form of 9-methyl-sphinga-4,8-
dienine. The three P. pastoris enzymes (sphingolipid
C9-methyltransferase and sphingolipid D4- and D8-
desaturases) responsible for the synthesis of this LCB
were recently identified and characterized by heterol-
ogous expression in S. cerevisiae (Ternes et al., 2006). In
this study, we deleted the intrinsic P. pastoris sphingo-

lipid D4-desaturase gene to establish a mutant strain
suitable as an expression host to characterize heterol-
ogously expressed sphingolipid D4-desaturase candi-
date genes. The sphingolipid D4-desaturase knockout
strain did not contain D4-unsaturated LCB (data not
shown) and, surprisingly, was completely devoid of
GlcCers (Fig. 2A). Taking advantage of this potential
screen, the Arabidopsis At4g04930 ORFwas expressed
in the sphingolipid D4-desaturase-disrupted strains of
P. pastoris. As can be seen in Figure 2A, heterologous
expression of theArabidopsisORF restores the levels of
GlcCers to that observed in wild-type P. pastoris, con-
sistent with Arabidopsis ORF At4g04930 encoding a
functional sphingolipid D4-desaturase.

Additional confirmation of this activity was pro-
vided by the analysis of LCBs isolated from theGlcCers

Figure 1. Sphingolipid biosynthesis and the role of the sphingolipid D4-desaturase. A, A schematic representation of
sphingolipid LCB modification in higher plants. Note that the actual substrates in terms of free LCBs versus N-acylated LCBs
are currently undefined, as is the order of desaturation reactions to generate d18:2D4,8. Standard sphingolipid LCB nomenclature
is used (e.g. d18:1D8 indicates that this is a dihydroxy-C18 LCB with a double bond at the D8 position; t18:0 indicates that this is a
trihydroxy-C18 LCB with no double bonds). The sphingolipid class in which different LCBs are enriched is indicated (broken
arrows), although it should be noted that other LCBs occur in these classes. Also shown (boxed) is the enzymatic conversion of
LCBs to their phosphorylated form LCB-1-P (via LCB kinases), the dephosphorylation of LCB-1-Ps back to LCBs (via LCB-1-P
phosphatases), and also the breakdown of LCB-1-Ps via the LCB-1-P lyase to generate phosphoethanolamine and hexadecanal.
Free LCBs can be generated either by de novo synthesis or ceramidase-mediated release from sphingolipids (the latter is the
predominant route in animals). B, Phylogenetic tree of sphingolipid D4-desaturase orthologs from different organisms.
Functionally characterized examples are from P. pastoris (AY700778), C. albicans (XM_716863), S. pombe (NM_001022326),
H. sapiens (AF002668; MLD), and Drosophila (AF466379; DES-1). Higher plant orthologs from Arabidopsis (NM_116731) and
tomato (AF466378) have previously proved intractable to heterologous characterization. An unusual virally encoded ortholog is
also included for comparison from Emiliania huxleyi virus 86 (EhV86; AJ890364).

The Role of Sphingosine and S-1-P in Arabidopsis
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of P. pastoris knockout mutant cells expressing the
Arabidopsis ORF. As can be seen in Figure 2B, the
LCB profiles of GlcCers isolated from wild-type P.
pastoris and theP. pastorisknockoutmutant disrupted in
the sphingolipid D4-desaturase but expressing the
plant ORF are similar, specifically with respect to the
synthesis of the predominant 9-methyl-branched di-
ene. As noted above, the P. pastoris knockout mutant
completely lacks GlcCers (Fig. 2). On the basis of these
data,we conclude that theArabidopsis geneAt4g04930
encodes the sphingolipid D4-desaturase responsible
for the synthesis of D4-unsaturated LCBs such as
sphingosine and sphinga-4,8-dienine. Our data also
indicate the utility of P. pastoris as a new system for the
identification of LCB-modifying enzymes that are not
tractable using the S. cerevisiae system. The requirement
for D4-unsaturated LCBs to initiate the synthesis of
GlcCers in P. pastoris also implies that this modification
is the first committed step for the biosynthesis of this
class of sphingolipids in this organism, although it is
equally clear that the absence of GlcCers is not essential
for the normal growth of this yeast.

Expression of the Sphingolipid D4-Desaturase Gene in
Arabidopsis Is Restricted to Floral Tissues

Having identified the sole Arabidopsis ortholog of
the sphingolipid D4-desaturase, we wished to deter-
mine the role of this enzyme in planta. Specifically, we

wished to determine if ablating this enzyme activity
resulted in reduced levels ofD4-unsaturatedLCBs such
as sphingosine and what the functional consequences
of this might be at the phenotypic level. Surprisingly,
the tissue-specific expression pattern of At4g04930 is
extremely restricted, as judged by analyses of micro-
arraydata sets,withhigh levels reported for pollen, low
transcript levels being detected in floral tissue, and
transcript being virtually absent in all other tissues
(Supplemental Table S1). Northern-blot analysis of
total RNA from Arabidopsis leaves failed to display a
signal when probed with At4g04930, even after pro-
longed exposure (data not shown). However, such
analysis cannot exclude the possibility that At4g04930
has a limited cell-specific expression pattern that is
restricted to a few cell types, although it is interesting
that this gene is apparently not expressed in guard cells
or modulated by abscisic acid (ABA), according to
transcriptomic analyses carried out by the Schroeder
laboratory and available through the Arabidopsis eFP
browser (Winter et al., 2007).

Identification of Insertional Mutants of Arabidopsis

Disrupted in the Sphingolipid D4-Desaturase Gene

To better define the role of the sphingolipid D4-
desaturase At4g04930 in sphingolipid metabolism in
Arabidopsis, a reverse genetic approach was taken.
Insertional mutants of At4g04930 were identified by

Figure 2. Functional characterization of Arabidopsis gene At4g04930 as a sphingolipid D4-desaturase. A, Expression of
Arabidopsis At4g04930 ORF in a P. pastorismutant lacking sphingolipid D4-desaturase activity restores the synthesis of GlcCer.
The P. pastoris mutant disrupted in the endogenous sphingolipid D4-desaturase AY700778 was transformed with either empty
expression vector or vector containing the Arabidopsis ORF. Sphingolipids were extracted, separated by thin-layer chromatog-
raphy, and stained by spraying with a-naphthol/sulfuric acid and subsequent heating to 160�C. The presence of GlcCer is clearly
visible in P. pastoris mutants complemented with the Arabidopsis ORF (PpD4KO + At4g04930) but absent in mutants
transformed with the empty vector (PpD4KO). For comparison, wild-type P. pastoris cells transformed with the empty vector are
also accumulating GlcCer (PpWT). B, GlcCer from P. pastoris cells was isolated and subjected to sphingolipid LCB analysis via
deacylation and derivatization with 1-fluoro-2,4-dinitrobenzene. LCBs were fractionated by HPLC and detected by A350.
GlcCers from wild-type P. pastoris transformed with the empty vector (top trace) and from the P. pastoris sphingolipid D4-
desaturase mutant transformed with Arabidopsis ORF At4g04930 (bottom trace) both contain D4-unsaturated LCBs (predom-
inantly in the form of the C9-methyl-sphinga-4,8-dienine). The P. pastoris mutant transformed with the empty vector does not
contain any GlcCers (middle trace).
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searching the SALK (Alonso et al., 2003) and RIKEN
(Kuromori et al., 2006) databases, and two suitable
alleles were identified and further characterized (Sup-
plemental Fig. S1). The first allele (RIKEN 15-1202-1)
was generated as a result of the insertion of a modi-
fiedDs transposon (Kuromori et al., 2006) after the 10th
residueof exon1.The secondallele (SALK_107761.42.15.x)
resulted fromaT-DNA insertion after 25 residues of the
secondexon. Inboth cases, the insertionswere predicted
to generate ORFs that lacked the essential His box
motifs required for desaturase function (Hashimoto
et al., 2008). Segregating T3 seeds for these two inser-
tion mutants were obtained from BioResource Center-
RIKEN and the NottinghamArabidopsis Stock Centre,
respectively, and used to isolate homozygous lines for
these disruptions (via genomic PCR using primers
designed against At4g04930 and the insertion cassette).
Since the RIKEN Ds transposon mutants were gener-
ated in the Nössen (No-0) ecotype, we also identified
and retained wild-type null lines that lacked insertions
in the target gene to serve as control material for

subsequent analysis. As a further confirmation of the
mutant status of these two insertion alleles, quantita-
tive (Q)-PCR was carried out on RNA isolated from
developing flowers (Supplemental Fig. S1). As shown,
transcripts for At4g04930 are detected in wild-type
material (Columbia [Col-0] and No-0) but not in the
insertionmutants, in agreement with the genomic PCR
analysis. Therefore, we conclude that these two differ-
ent insertion mutants have both resulted in the disrup-
tion of the synthesis and/or accumulation of transcripts
derived from gene At4g04930, which encodes the sole
sphingolipid D4-desaturase in Arabidopsis.

Sphingolipidomic Analyses of Arabidopsis
Insertion Mutants

Recent advances in mass spectrometry-based ap-
proaches to measuring sphingolipids have provided
powerful tools to yield quantitative and qualitative
information on Arabidopsis sphingolipid composi-
tion. Using the HPLC-electrospray ionization-tandem

Figure 3. Molecular species composition of GlcCer of wild-type (WT) and sphingolipid D4-desaturase mutant plants.
Sphingolipids were extracted from wild-type Col-0 flowers (A), SALK_107761 flowers (B), wild-type No-0 flowers (C), and
wild-type Col-0 leaves (D), and the amount of sphingolipid in the extract was determined by LC-MS/MS as described previously
(Markham and Jaworski, 2007). Only GlcCers were found to contain appreciable amounts of d18:2 LCBs (A) with no d18:2
detectable in the other sphingolipid classes (data not shown; Markham et al., 2006). GlcCers containing d18:2 were
undetectable (white arrows) in the SALK mutant line (B) and also absent from wild-type Col-0 leaf tissue (D). No d18:2 GlcCers
were detected in floral tissues in wild-type No-0 (C) from which the RIKEN transposon mutant was isolated (Supplemental Table
S2). Bars show averages (n = 5), and error bars show SD. dw, Dry weight.
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mass spectrometry (MS/MS) protocol developed by
Markham and Jaworski (2007), sphingolipidomic pro-
files were obtained from leaf and floral tissue of wild-
type and insertion mutant alleles of the sphingolipid
D4-desaturase At4g04930. Profiling of rosette leaf
material was carried out, but comparison of the mu-
tants with their respective wild-type backgrounds
(SALK_107761.42.15.x versus Col-0; RIKEN 15-1202-1
versus No-0) failed to reveal any significant alterations
to different sphingolipid classes (ceramide, hydroxyl-
ceramide, GlcCer, glycosyl inositol phosphoryl ceram-
ides [GIPCs]; Supplemental Data Set S1). Intriguingly,
the levels of two phosphorylated LCBs, t18:0-1-P
and t18:1D8-1-P, were reduced in the leaf samples of
SALK_107761.42.15.x compared with Col-0 (Supple-
mental Data Set S2), although the reason for these
changes is not obvious. No D4-unsaturated sphingo-
lipids or sphingolipid metabolites were detected in
these leaf samples, indicating the absence of sphingo-
sine and sphinga-4,8-dienine in all samples, confirming
previous sphingolipid analyses (Sullards et al., 2000;
Markham et al., 2006) and in agreement with our ob-
servations that At4g04930 transcripts are not detected
in leaf tissue.

In view of themicroarray expression pattern and our
own Q-PCR data (Supplemental Fig. S1), sphingolipi-
domic profiling was also carried out on floral material
(unopened flower buds) that expresses the sphingo-
lipid D4-desaturase at moderate levels. In these sam-
ples, the effect of insertional inactivation of At4g04930
was observed, specifically in the SALK insertion allele
(Fig. 3, B and C). Comparison between this line and
wild-type Col-0 (Fig. 3A) indicated the complete loss
of D4-unsaturated LCBs in GlcCers (in the form of
sphinga-4,8-dienine N-linked to a hydroxyl-C16 fatty

acid), confirming our assignment of this gene as the
sphingolipid D4-desaturase. Note that although the
regioisomer LCB d18:1D8 is present in Arabidopsis
floral and leaf tissues (Fig. 3D), sphingosine is not de-
tected (Supplemental Fig. S2; Supplemental Table S2).
Thus, d18:1 LCBs (Fig. 3) represent the D8-unsaturated
form rather than the D4-unsaturated isomer.

Interestingly, the loss of D4-unsaturated LCB in
GlcCer (which represent less than 5% of the LCBs
present in this class of sphingolipid) resulted in signif-
icant reduction in the total levels of GlcCer between the
wild type (528 nmol g21 dry weight) and SALK_107761
(334 nmol g21 dry weight; Fig. 4). This wasmirrored by
an increase in the hydroxyl-ceramide levels in these
same tissues (wild-type, 132 nmol g21 dry weight)
compared with SALK_107761 (232 nmol g21 dry
weight; Fig. 4). Given the unexpected nature of this
perturbation to sphingolipid biosynthesis, we also de-
termined by LCB analysis the levels of neutral sphin-
golipids (predominantlyGlcCers) in a chloroform-soluble
extract of floral tissues. This confirmed the decrease
in these sphingolipids (322.1 nmol g21 GlcCers in the
wild type, 248.2 nmol g21 GlcCers in SALK_107761,
corresponding to 77% of the wild-type level), although
this method appears to underestimate the levels of
these lipids. The decrease in GlcCers observed in
SALK_107761 is partially analogous to the situation in
the P. pastorismutant lacking sphingolipid D4-desaturase
activity and consequently devoid of GlcCer. Our data,
therefore, indicate a previously unsuspected role for
D4-unsaturated LCBs in the channeling of substrate
for the synthesis of GlcCers in both plants and fungi.
It is perhaps relevant that in some plant species that
do accumulate D4-unsaturated sphingolipids, such as
tomato, there are also markedly high levels of GlcCers
(Markham et al., 2006). Interestingly, a recent study
has shown that disruption of microsomal fatty acid
elongation in the Arabidopsis pas2-1 mutant results in
greatly reduced levels of GlcCers but not GIPCs (Bach
et al., 2008).

No other significant differences were observed in
ceramides or GIPCs isolated from this same floral
material. Very low levels of the free LCB sphinga-4,8-
dienine were detected in the Col-0 wild type, but these
were absent in the SALK insertion mutant (indicating
that these LCBs are most likely derived from GlcCers;
Supplemental Data Set S2). Thus, these data confirm
thatD4-unsaturated LCBs (either in sphingolipids or as
free LCBs) are absent in Arabidopsis Col-0 lines in
which the sphingolipid D4-desaturase At4g04930 has
been insertionally inactivated. Moreover, this also in-
dicates that this gene represents the sole sphingolipid
D4-desaturating activity in Arabidopsis, since no com-
pensatory synthesis was detected in the knockout mu-
tant.

In the case of the RIKENDs insertion allele 15-1202-1,
similar profiling of sphingolipids from developing
flower buds indicated the complete absence of D4-
unsaturated LCBs in both the wild type (No-0) and
mutant, even in GlcCers (Supplemental Data Set S1).

Figure 4. Sphingolipid content of wild-type (WT) and sphingolipid D4
desaturase mutant lines. Sphingolipids were extracted from floral tissue
(three samples for wild-type Col-0 and six samples for SALK_107761),
and the amount of sphingolipid in the extract was determined by LC-
MS/MS as described previously (Markham and Jaworski, 2007). Total
amounts of each class of sphingolipid were calculated compared with
added internal standards. Significant differences (P , 0.05) between
the samples were determined by Student’s t test and are indicated by
stars. dw, Dry weight.
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Thus, it appears that there is natural variation in the
accumulation of different forms of sphingolipids
between ecotypes, and as such, the absence of D4-
unsaturated LCBs such as sphingosine and sphinga-
4,8-dienine inNo-0would argue that such LCBs are not
essential for any particular biological process (in agree-
ment with observations of the SALK insertion line).
Interestingly, both Col-0 and No-0 ecotypes showed
similar (low) levels of D4-desaturase At4g04930 tran-
script accumulation (Supplemental Fig. S1). In the case
of the No-0 ecotype, it is possible (based on the higher
levels of phytosphingosine present) that a much more
active C4-hydroxylase out-competes the sphingolipid
D4-desaturase for the same substrates (see Fig. 1A for
representation; Sperling et al., 2001). It is also notewor-
thy that No-0 not only lacks D4-unsaturated sphingo-
lipids but also contains reduced levels of GlcCers in
floral tissue, compared with Col-0. In addition to using
the MS-based method described above, we also used
highly optimized HPLC analysis of total LCBs (de-
scribed in Tonon et al., 2005) isolated from the same
floral material used for the sphingolipidomic analysis.
As shown in Supplemental Figure S3, the LCB profiles

of total floral sphingolipids in Col-0 and the SALK
insertion mutant are very similar apart from the ab-
sence of sphinga-4,8-diene in the mutant, confirming
the results presented above. Equally, it is again clear
that the No-0 ecotype does not accumulate this partic-
ular LCB, irrespective of whether or not the sphingo-
lipid D4-desaturase gene is insertionally inactivated
(Supplemental Fig. S3). The observation that sphingo-
lipid LCB composition is subject to natural variation
may also facilitate quantitative genetic approaches to
defining regulatory (homeostatic) processes.

Collectively, these data confirm the absence of D4-
unsaturated sphingolipids from the leaves ofwild-type
Arabidopsis plants and that a Col-0 background inser-
tion mutant line lacks sphinga-4,8-dienine in sphingo-
lipids of floral tissue. It is also important to highlight
that our comprehensive analysis of over 160 different
sphingolipids and their metabolites failed to identify
significant amounts of sphingosine in either leaf or
floral tissue (Supplemental Fig. S2; Supplemental Table
S2). Such analyses do have limits to their ability to
detect very low abundance compounds; however, our
observations are in agreement with the restricted ex-

Figure 5. Phenotypic characterization of mutants for
altered drought response. A, The wild type (WT) and
the respective insertion mutant were grown to first
bolt stage and then water was withheld. As a control,
wild-type material was also fully watered. Leaves
were harvested from drought-treated and control
plants every 2 d for 17 d, and the (fresh weight 2
dry weight)/fresh weight [(FW-DW)/FW] percentage
was calculated. As can be seen, there is no significant
difference between the wild-type (Col-0 and No-0)
and themutant (SALK-107761 and RIKEN 15-1202-1)
lines in terms of their decrease in fresh weight in
response to drought. Each point represents an average
(n = 3), and error bars show SE. B, The wild type and
the respective insertion mutants were assessed for
their ability to regulate water loss through their
transpiration stream via excision of roots and mea-
surement of total mass as an indicator of water loss.
Measurements were taken over a 7-h period, and data
are expressed as percentages of the original starting
mass (in grams) of the rootless plant. Plant material
used was as for A. As can be seen, neither insertion
mutant had any significant difference in mass loss.
Each point represents an average (n = 3), and error
bars show SE.
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pression pattern of the sphingolipid D4-desaturase
gene and also with previous sphingolipid analyses in
several different studies (Sullards et al., 2000;Markham
et al., 2006, Markham and Jaworski, 2007).

Phenotypic Characterization of Arabidopsis
Insertion Mutants

Having demonstrated that mutants disrupted in the
sphingolipidD4-desaturase gene lackedD4-unsaturated
sphingolipids, we wished to determine if this absence
had any functional consequences. Gross phenotypic
appearances of SALK_107761.42.15.x and RIKEN 15-
1202-1 showed no obvious differences compared with
their respective wild types (Supplemental Fig. S4);
equally, a more detailed examination of a range of
growth and developmental parameters showed no
differences (data not shown). In the case of the RIKEN
insertion mutant, these observations are in agreement
with a large-scale “phenome” study that included this
allele but reported no alterations to growth and devel-
opment (Kuromori et al., 2006). In view of the previous
reports of a role for S-1-P in Ca2+-mediated guard cell
closure in Arabidopsis (Coursol et al., 2003) and Com-
melina (Nget al., 2001) and thatdrought stress resulted in
an increase of S-1-P in this latter species, we sought
to establish if the insertion mutants had altered re-
sponses to drought. As discussed above, although no
D4-unsaturated sphingolipids were detected in analysis
of total rosette leaves, it was hypothetically possible
that sphingosine and S-1-P might be present in specific
cell types via the discrete expression of sphingolipidD4-
desaturase At4g04930, leading to underrepresentation
inmicroarray andQ-PCR studies ofwhole tissues. Thus,
the availability of bona fide knockout alleles of this gene
allowed this scenario to be evaluated.

Two different protocols were used to evaluate the
performance of mutant plants compared with wild-
type plants under drought-induced conditions. First, in
an experiment similar to that used by Ng et al. (2001),
in which a 2-fold increase in S-1-P was reported in
unwatered Commelina plants after 11 d, Arabidopsis
plants were withheld water for 17 d, with leaf samples
being harvested every 2 d. Fresh and dry weights of
well-watered controls and drought-treated plants were
obtained for wild-type controls and mutant lines. As
can be seen in Figure 5A, there is no statistically
significant difference in response to drought between
the controls and mutants in terms of the plant’s ability
to regulatewater loss. A second experimental approach
was adopted to determine if maintenance of water
status through guard cell closure was altered in these
mutants, using well-established methods previously
used to identify Arabidopsis mutants altered in their
response to ABA and drought resistance (Xiong et al.,
2001; Chini et al., 2004). This method determines a
plant’s ability to restrict water loss through (ABA-
mediated) guard cell closure and has been used to
characterize mutants such as aba2, aba3, abi1, and sad1
(Leon-Kloosterziel et al., 1996; Xiong et al., 2001; Chini
et al., 2004). Plants were grown to just prior to bolt
initiation stage under well-watered conditions, and
then all aerial parts of the plants were severed from the
roots with a scalpel. The fresh weights of these intact
rootless plants were then determined over 7 h, indicat-
ing the rate of mass loss (water) via the transpiration
stream. As can be seen in Figure 5B, no significant
differences between wild-type controls and insertion
mutants were observed.

In addition to these indirect measurements of water
relations in Arabidopsis, we also measured the stoma-
tal aperture of mutants and wild-type plants in the
presence or absence of ABA (10 mM; using a slightly
modified method based on that described in Vahisalu
et al., 2008). As can be seen in Figure 6, stomata of the

Figure 6. Stomatal aperture measurements of wild-type (WT) and
mutant lines after ABA treatment. Stomatal apertures were measured
from wild-type and mutant leaves treated with or without ABA for 2 h.
Data are from three independent experiments, and measurements were
carried out double blind. Each bar represents an average (n = 3), and
error bars show SE. Significant differences (P , 0.01; stars) between the
treated and untreated samples were determined by Student’s t test.

Figure 7. Pollen viability of mutants. Pollen from wild-type (WT) and
insertion mutant flowers was assayed for germination, with percentage
germination assessed by microscopic examination. Plant material used
was as for Figure 5. No significant difference between the wild type and
mutants was observed. Each bar represents an average (n = 3), and error
bars show SE.
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mutant lines responded well to ABA compared with
wild-type stomata. All four lines (Col-0, SALK_107761,
No-0, and RIKEN 15-1202-1) showed a highly signifi-
cant (P = 0.01) stomatal closure in response to ABA
treatment, indicating that there was no difference be-
tween wild-type and mutant plants in the response to
this hormone.
Collectively, these data indicate that D4-unsaturated

sphingolipids and/or their metabolites do not play a
primary role inmodulatingwater relations or response
to drought stress in Arabidopsis. This is perhaps sur-
prising given the study of Ng et al. (2001), which
indicted a role for S-1-P inCommelina guard cell closure
(based on exogenous application of 4–6 mM S-1-P) and
also reported an increase in the endogenous levels of
this phosphorylated LCB in drought-treated leaves.
Our analysis of sphingolipid LCBs fromCommelina leaf
tissue indicates that sphingosine is a very minor com-
ponent (Supplemental Fig. S2), although this does not
preclude the presence of S-1-P in Commelina. Based on
our current studies in Arabidopsis using insertion
mutants lacking any capacity to synthesize sphingo-
sine, it is clear that this particular LCB(-1-P) either does
not play a dominant role in these processes or is
functionally redundant. In that respect, it is interesting
that Coursol et al. (2005) reported a different LCB-1-P,
phytosphingosine-1-P (t18:0-1-P), as being involved in
Arabidopsis guard cell closure. Very recently, Chen
et al. (2008) demonstrated a crucial role for these C4-
hydroxylated LCBs in Arabidopsis growth and devel-
opment.
Having not observed a direct role for sphingosine

and other D4-unsaturated sphingolipids in drought
stress, control of transpiration rate, or stomatal closure,
we considered any other potential roles for these LCBs.
As noted above, the sphingolipid D4-desaturase
At4g04930 is only expressed at significant levels in
flowers, predominantly in pollen. Interestingly, muta-
tions in theDrosophilaDES-1ortholog result inflieswith
defective spermatogenesis (Endo et al., 1996). There-
fore, we investigated the formation and viability of
pollen in our Arabidopsis mutants, although the initial
isolation and characterization of these insertion alleles
indicated that both mutant alleles (SALK and RIKEN)
were fertile, implying no gross defect in pollen devel-
opment or viability. Pollen from control and mutant
lines were visualized by double staining with fluores-
cein diacetate and propidium iodide, allowing the
discrimination between live and dead pollen (McConn
and Browse, 1996). However, no difference was ob-
served in the percentage of dead pollen cells between
control and mutant lines (data not shown). Second,
pollen from wild-type control and mutant lines was
germinated in vivo in the presence of 2% Suc, and the
percentage germination rate was determined accord-
ing to themethods of Footitt et al. (2007). As can be seen
in Figure 7, no significant differences in rates between
wild-type controls and mutants were observed, indi-
cating no role for sphingosine orD4-unsaturated sphin-
golipids in pollen viability or germination.

CONCLUSION

The aim of this study was to determine the function
of the Arabidopsis gene At4g04930, assumed to encode
a sphingolipid D4-desaturase, and also to investigate
the role ofD4-unsaturated LCBs inArabidopsis growth
and development. We have provided, to our knowl-
edge, the first functional characterization of a higher
plant sphingolipidD4-desaturase via complementation
of a P. pastorismutant lacking this activity. Arabidopsis
insertion mutants disrupted in At4g04930 lacked any
detectable transcripts for this gene and also did not
contain any D4-unsaturated sphingolipids such as
sphingosine or S-1-P. Our data, however, indicated a
role for D4-unsaturated LCBs in the channeling of
ceramides for the synthesis of GlcCers in certain tis-
sues, although these insertion mutants displayed nor-
mal growth and development and did not indicate any
perturbation todrought tolerance, transpiration rate, or
pollen viability. Based on all of these data, and bearing
in mind that At4g04930 transcripts are undetectable in
most Arabidopsis tissues, we consider it unlikely that
sphingosine and S-1-P play a significant role in the
life cycle of Arabidopsis. We believe that our approach,
in which the in vivo capacity to synthesize sphingo-
sine (and hence S-1-P) is abolished by insertional
gene inactivation and biochemically confirmed by a
high-resolutionHPLC-electrospray ionization-MS/MS
analysis of Arabidopsis sphingolipids, provides defin-
itive evidence that D4-unsaturated sphingolipids are
nonessential in this plant species. In addition, in viewof
the absence of sphingosine and S-1-P in virtually all
Arabidopsis tissues, we would suggest that activities
recently described as “sphingosine kinase” (Worrall
et al., 2008) should be renamed “LCB kinase.”

However, it shouldalsobe emphasized thatwebelieve
that it is very likely that other LCBs and LCB-1-Ps play
important roles in plant-specific processes. Such data
are starting to emerge regarding the role of phyto-
sphingosine (Coursol et al., 2005; Shi et al., 2007; Chen
et al., 2008) and also D8-unsaturated LCBs (Ryan et al.,
2007). The significance of sphingolipids and their phos-
phorylated metabolites is still an evolving story in
many eukaryotic systems, and it is hoped that studies
such as this can contribute to the development of more
precise models for their form and function in different
organisms. In addition, our observation of the unex-
pected role ofD4-unsaturatedN-acylatedLCBs inGlcCer
synthesis highlights our still only partial understand-
ing of sphingolipid metabolism in plants and yeast.

MATERIALS AND METHODS

Construction of a Phylogenetic Tree

The amino acid sequences of sphingolipid D4-desaturase genes from

Arabidopsis (Arabidopsis thaliana) were aligned using the EMBOSS multiple

alignment program EMMA. The phylogenetic tree was created using the

PHYLIP software package. To test the reliability of the final tree, 100 bootstrap

samples were made of the alignment and distance matrices created for each

bootstrap sample using PROTDIST. The distance matrices were converted into
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trees using the neighbor-joining method, and a consensus tree was created

with numbers indicating how many times each branch was observed in the

bootstrap sets.

Generation of a Sphingolipid D4-Desaturase Deletion
Mutant of Pichia pastoris

Generation of the knockout cassette for the deletion of the D4-desaturase

was performed by restriction enzyme-based cloning. The ORF including 500

bp of flanking upstream and downstream sequences was amplified from

genomic DNAwith PfuTurboDNA polymerase (Stratagene). The primers used

were Delta4-F-EcoRI and Delta4-R-HindIII (Supplemental Table S3). The

primers included adapter sequences (underlined in Supplemental Table S3)

containing the indicated restriction sites. The PCR products were purified by

gel electrophoresis and ligated into the multiple cloning site of the Litmus38i

vector (New England Biolabs) using the restriction sites EcoRI and HindIII. A

part of the ORF was subsequently deleted by digestion with XbaI and XmnI.

The zeocin resistance cassette from the GAPZ-B vector (Invitrogen) was

amplified using the primers Zeo-F-XbaI and Zeo-R-XmnI and ligated into the

interrupted ORF using the indicated restriction sites (underlined in Supple-

mental Table S3).

Transformation of P. pastoris Cells by Electroporation

The vector containing the knockout cassette was linearized and used for

the transformation of electrocompetent GS115 (his4) cells (Invitrogen). Trans-

formants were selected on yeast potato dextrose media plates containing 100

mg L21 zeocin. Correct integration of the knockout cassette was tested by PCR

with the primer pairs Delta4-Test-F/Zeo-int-R and Zeo-int-F/Delta4-Test-R

(data not shown).

Cloning of the Arabidopsis D4-Desaturase

The complete coding sequence of the putative D4-desaturase from Arabi-

dopsis was amplified with Pwo polymerase (Peqlab) using a standard PCR

program and the specific primers d4At-F and d4At-R on cDNA (generated

from RNA isolated from floral tissue). PCR products were ligated in the P.

pastoris expression vector pPIC3.5 (Invitrogen) in the EcoRI and NotI restric-

tion sites of the multiple cloning site. The cloned complete coding sequence

was checked by sequencing.

Transformation of P. pastoris

Chemical competent cells from P. pastoris strain GS115-D4-desaturase-KO

were transformedwith the ScaI andNdeI linearized construct described above.

The strains GS115 (= wild-type) and GS115-D4-desaturase-KO were also

transformed with linearized empty vector pPIC3.5. Single colonies were

isolated and used for lipid analysis.

Liquid Culture

A preculture was grown in liquid minimal glycerol medium (1.34% yeast

nitrogen base without amino acids, 1% glycerol) for 24 h at 30�C with shaking

(180 rpm). A total of 200 mL of minimal glycerol mediumwas inoculated 1:100

from the preculture and incubated again for 24 h at 30�C. Gene expression was

induced by the addition of methanol to a final concentration of 0.5% and

further incubation for 24 h. Cells were harvested by centrifugation.

Isolation of GlcCer

Approximately 5 g fresh weight of P. pastoris cells was suspended in 5 mL

of water and boiled in a water bath for 15 min. The cells were sedimented by

centrifugation, and the lipids were extracted by shaking in 10 mL of chloro-

form:methanol (1:1) overnight at 8�C, followed by 9 mL of chloroform:

methanol (2:1) for at least 4 h at 8�C. The lipid extract was washed by phase

partitioning with chloroform:methanol:0.45% (w/v) NaCl (8:4:3), and the

solvents subsequently evaporated. The lipids were redissolved in chloroform,

and GlcCer was purified by preparative thin-layer chromatography on silica

gel 60 plates (Merck) developed in chloroform:methanol (85:15, v/v).

Analysis of the Sphingolipid LCB Composition

The LCB composition of P. pastoris glucosylceramides was analyzed as

described by Ternes et al. (2006). Similar methods were used for the analyses

of Arabidopsis and Commelina communis sphingolipid LCBs, according to the

methods of Borner et al. (2005) and Tonon et al. (2005). Briefly, samples (yeast

pellet or plant tissues) were subjected to strong alkaline hydrolysis in 10%

barium hydroxide in dioxane. The resulting free LCBs were converted to

dinitrophenyl derivatives and analyzed by reverse-phase HPLC with detection

by absorbance at 350 nm. Identification was via comigration with known

standards (Avanti Polar Lipids) and atmospheric pressure chemical ionization-

MS (Tonon et al., 2005).

Sphingolipidomic Analysis

Sphingolipid analysis was carried out exactly as described by Markham

and Jaworski (2007). Analyses were carried out on pooled material (leaves and

flowers) from a number of individual plants grown in the same growth

cabinet. A minimum of three technical replicates were run from each pooled

sample.

Growth of Arabidopsis and Identification of Arabidopsis
D4-Desaturase Insertion Mutants

Arabidopsis plants were grown and maintained as described previously

(Footitt et al., 2007) in soil, with plants grown to maturity in controlled-

environment rooms (16 h of light at 23�Cand 70% relative humidity/8 h of dark

at 18�C and 80% relative humidity). During the light phase, the incident

photosynthetically active radiation was 150 to 175 mmolm–2 s–1 at the soil level.

The position of plant trays was rotated to minimize light effects. Arabidopsis

seed stocks were obtained from the Nottingham Arabidopsis Stock Centre

(Salk_107761.42.15.x, Col-0 ecotype) and the RIKEN BioResource Centre (in-

sertion mutant RIKEN 15-1202-1, No-0 ecotype). PCRwas used to identify and

isolate homozygous mutants from segregating populations using a gene-

specific primer in conjunction with a primer to the insertion module. Genomic

DNAwas extracted from leaf material, and PCR was performed at 94�C for 15

min, followed by 35 cycles of 94�C for 1 min, 55�C for 1 min, and 72�C for 1.5

min, and then 72�C for 7 min using HotStart Taq Pol master mix (Qiagen).

The following primers were used for the identification of RIKEN 15-1202-1

homozygous individuals: 930F (5#-TCTCTCTCGTTTGACTTTCC-3#), 930R

(5#-TGCTAAGAAGAGATTGTGGTT-3#), and Ds3-2a (5#-CCGGATCGTATC-

GGTTTTCG-3#). The following primer combination was used for the

identification of Salk_107761.42.15.x homozygous individuals: SalkLP

(5#-AGGTTGTCGAAGAAACAAACG-3#), SalkRP (5#-TGATGAACTCC-

CAGTAGCCAG-3#), and LBb1 (5#-GCGTGGACCGCTTGCTGCAACT-3#).
Confirmation of the absence of D4-desaturase transcript was obtained by

real-time PCR. RNA was extracted from three independent biological repli-

cates comprising 100 mg of inflorescence tissue (Supplemental Fig. S1) using

an RNeasy plant RNA isolation kit with on-column DNase treatment (Qiagen)

followed by RNA cleanup using the RNeasy plant RNA isolation kit. One

microgram of total RNA was treated with the Turbo DNA-free kit (Ambion)

and used as a template to synthesize cDNA using the SuperScript III Platinum

Two-Step qRT-PCR Kit with SYBR Green (Invitrogen). PCR was performed on

the ABI 7500 Real Time PCR System (Applied Biosystems) using Platinum

SYBR Green qPCR SuperMix-UDG reagents (Invitrogen) according to the

manufacturer’s specification, with the cDNA equivalent of 17.5 ng of RNA in a

25-mL reaction volume. Reactions were performed in duplicate, and the

absence of genomic DNA and primer dimers was confirmed by analysis of RT-

minus and water control samples and by examination of dissociation curves.

The primers for the Arabidopsis D4-desaturase, T1J1F2.2 (5#-TGGAGATCTT-

TCGCGTATCTAATC-3#) and T1J1R2.2 (5#-CATACCGCCTCCAACAAATG-3#),
were designed using Primer Express version 2.0 (Applied Biosystems). Primers

for the reference gene At4g34270 have been described (Czechowski et al., 2005).

Calculation of normalized expression valueswas done after themethod of Livak

and Schmittgen (2001).

Drought Stress Experiments

Leaves were detached and weighed (one from a representative plant on

each day; many plants were used in rotation so as not to defoliate them). Then

the leaf was dried at 80�C and reweighed. Rosette plants were detached from

the soil surface, placed under 30% relative humidity at 19�C, and weighed at

Michaelson et al.

496 Plant Physiol. Vol. 149, 2009



designated time points. Percentage of fresh weight was calculated based on

the initial weight of the plants as described by Chini et al. (2004).

Pollen Germination in Vitro

Pollen germination assays were carried out as described by Footitt et al.

(2007). For each line, pollen from two flowers was cultured in suspended

drops in control medium [16% (w/v) polyethylene glycol-3550, 2% (w/v) Suc,

1 mM CaCl2, 1 mM Ca(NO3)2, 1 mM MgSO4, and 0.015% (w/v) boric acid, pH

6.5]. Pollen was incubated in a humid chamber for 16 h in hanging drops on

microscope slides. Germination was scored by microscopic examination.

Tubes of germinated pollen grains were visualized with a Carl Zeiss Axiovert

135 inverted microscope.

Stomatal Bioassays

Stomatal assays were performed by floating leaves for 2.5 h under

continuous illumination (60–100 mE m22 s21) in MES/KCl buffer (5 mM KCl,

10 mM MES, and 50 mM CaCl2, pH 6.15). Following the opening of stomata,

leaves were treated with 10 mm ABA for another 2 h. The leaves were

subsequently homogenized individually in a Waring blender for 30 s, and the

epidermal fragments were collected on a 100-mm nylon mesh (SpectraMesh;

Merck). Stomatal apertures from epidermal fragments were then measured

using a calibrated light microscope attached to an imaging system (QWin

software; Leica). Experiments were repeated three times and by counting at

least 20 stomata per leaf per treatment; this analysis was performed double

blind, meaning that neither the experimenter measuring the apertures nor the

researcher who provided the material was aware of the identity (i.e. genotype)

of the four samples undergoing the ABA treatment.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Validation of insertion mutants by Q-PCR.

Supplemental Figure S2. LCB profile of plant sphingolipids showing

resolution of D8 and D4 regioisomers and the absence of sphingosine in

Arabidopsis.

Supplemental Figure S3. LCB profiles of the wild type and insertion

mutants.

Supplemental Figure S4. Phenotypic appearance of wild-type and mutant

Arabidopsis.

Supplemental Table S1. Microarray-derived tissue-specific expression

profile for At4g04930.

Supplemental Table S2. LCB analysis of wild-type and mutant Arabi-

dopsis.

Supplemental Table S3. List of PCR primers used in construction of the

P. pastoris expression system.

Supplemental Data Set 1. Sphingolipidomic analysis of sphingolipids

from the wild type and insertion mutants (leaves and floral tissue).

Supplemental Data Set 2. Sphingolipidomic analysis of free LCBs and

LCP-1-Ps from the wild type and insertion mutants (leaves and floral

tissue).
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