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Transcription factors (TFs) are major players in gene regulatory networks and interactions between TFs and their target genes
furnish spatiotemporal patterns of gene expression. Establishing the architecture of regulatory networks requires gathering
information on TFs, their targets in the genome, and the corresponding binding sites. We have developed GRASSIUS (Grass
Regulatory Information Services) as a knowledge-based Web resource that integrates information on TFs and gene promoters
across the grasses. In its initial implementation, GRASSIUS consists of two separate, yet linked, databases. GrassTFDB holds
information on TFs from maize (Zea mays), sorghum (Sorghum bicolor), sugarcane (Saccharum spp.), and rice (Oryza sativa). TFs
are classified into families and phylogenetic relationships begin to uncover orthologous relationships among the participating
species. This database also provides a centralized clearinghouse for TF synonyms in the grasses. GrassTFDB is linked to the
grass TFome collection, which provides clones in recombination-based vectors corresponding to full-length open reading
frames for a growing number of grass TFs. GrassPROMDB contains promoter and cis-regulatory element information for those
grass species and genes for which enough data are available. The integration of GrassTFDB and GrassPROMDB will be
accomplished through GrassRegNet as a first step in representing the architecture of grass regulatory networks. GRASSIUS can
be accessed from www.grassius.org.

A large fraction of the genome of any organism is
dedicated to specify when, where, and how much of
each mRNA needs to be produced. This regulatory
information, hardwired into the genomic DNA, is
essentially the same in every cell and largely constant
over time and generations. Because these regulatory
sequences are often in close proximity to the genes
they control, we refer to them here as the cis-regulatory
apparatus, which is formed by a mosaic arrangement of
cis-regulatory elements (CREs). However, depending
on the cell type or on the particular environmental
circumstance, the same regulatory sequences can be
interpreted in very different ways. It is the function of a
group of trans-acting proteins, the transcription factors
(TFs), to interpret the sequence code hardwired in the
cis-regulatory apparatus and execute it in the form of a

signal to the basal transcription machinery that will re-
sult in RNA production. TFs are organized into hierar-
chical gene regulatory networks in which one TF, often
in cooperation with other proteins, positively or nega-
tively regulates the expression of another TF. This
establishes a variety of regulatory motifs, which, when
assembled into regulatory modules, provide the free-
scale architecture that characterizes gene regulatory
networks (Babu et al., 2004; Yu and Gerstein, 2006).
A first step in starting to build regulatory networks
involves compiling the Parts List, which includes the
TFs, promoters, CREs, and interactions between TFs
and particular promoters (Schlitt and Brazma, 2007).
Providing a comprehensive parts list is the main gap in
our knowledge that GRASSIUS (Grass Regulatory In-
formation Services) intends to fill. This is being done
within the broader objective of linking regulatory net-
works and important agronomic traits in the grasses.

Several databases, including AtTFDB (http://
arabidopsis.med.ohio-state.edu/AtTFDB; Davuluri
et al., 2003), PlnTFDB (plntfdb.bio.uni-potsdam.de/
v2.0; Riano-Pachon et al., 2007), PlantTFDB (planttfdb.
cbi.pku.edu.cn; Guo et al., 2008), and DBD (dbd.mrc-
lmb.cam.ac.uk; Kummerfeld and Teichmann, 2006;
Wilson et al., 2008), contain information on plant
TFs. In addition, a few databases also provide infor-
mation on promoters (e.g. AtcisDB [Davuluri et al.,
2003], PlantProm [Shahmuradov et al., 2003], and PPDB
[Yamamoto and Obokata, 2008]). TF or promoter data-
bases that focus solely on Arabidopsis (Arabidopsis
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thaliana) benefit from a well-annotated genome, a co-
herent nomenclature for TFs, and a large collection of
full-length cDNAs (FLcDNAs), which permit the pre-
cise location of transcription start sites (TSSs) and hence
promoters. Most of these resources are only now be-
coming available in the grasses and, while the time is
ripe to start building the parts list for establishing
regulatory network architecture, significant challenges
remain.

Here, we describe the development of a first version
of GRASSIUS (GRASSIUS v1 already deployed at
www.grassius.org) as a knowledge-based public Web
resource that integrates information on TFs (in the
GrassTFDB database) and gene promoters (in the
GrassPROMDB) for maize (Zea mays), rice (Oryza
sativa), sorghum (Sorghum bicolor), and sugarcane (Sac-
charum spp.), yet expected to expand to other grasses
as genome information becomes available. In addition
to providing the framework for building a compre-
hensive parts list, GRASSIUS also serves as a central-
ized clearinghouse for TF synonyms for the grasses.
Combined with the discovery of phylogenetic rela-
tionships among members of TF families, and as a
portal for available TF open reading frames (ORFs) in
convenient recombination vectors, GRASSIUS pro-
vides a valuable resource for comparative regulatory
genomics across the grasses.

RESULTS AND DISCUSSION

GRASSIUS furnishes a user-friendly online database
tool developed as a comprehensive resource for re-
trieving information regarding the components in-
volved in the regulation of gene expression across
the grasses, initially focusing on maize, rice, sorghum,
and sugarcane. GRASSIUS currently consists of two
integrated databases, GrassTFDB and GrassPROMDB.
As previously done for AGRIS (Palaniswamy et al.,
2006), these databases are linked, providing a first step
toward establishing regulatory motifs, the building
stones of regulatory networks. Significantly different
from AGRIS, however, GRASSIUS integrates data
across multiple plant species and serves as a platform
for comparative regulatory genomics. As the genomes
being used in GRASSIUS continue to be analyzed, the
importance of this database for researchers focusing
on the grasses will increase. The rice genome is se-
quenced and annotated, providing plenty of resources
regarding this plant. Likewise, the sorghum genome is
sequenced, but the extent of the annotation or the
availability of resources is not comparable with rice. In
contrast, the maize genome is not yet fully sequenced
and gene models are largely based on ab initio pre-
dictions. Sugarcane has the least information, and EST
sequences are the major source in defining genes.
Thus, GRASSIUS provides a platform for integrating
resources related to regulatory genomics regardless of
genome sequence availability and it is designed to
grow to meet the future analytical needs of these

species. Additionally, GRASSIUS offers information
on resources for the experimentalist, including the
TFome collection, phylogenetic trees that allow the
identification of orthologous pairs and an incipient
collection of minimal promoter regions experimentally
shown to drive gene expression. Ultimately, GRASS-
IUS will furnish a venue for linking important agro-
nomic traits to aspects related to the control of gene
expression.

GrassTFDB

Whereas many other proteins participate in the
regulation of gene expression, we limit here our def-
inition of TFs to proteins that contain a characteristic
structural motif, the DNA-binding domain, which is
involved in recognizing a short (usually 4–8 bp) DNA
sequence. Based on the structure of the DNA-binding
domain, TFs are classified into a variable number of
different families (usually 40–60), and in plants, 5% to
7% of all the protein-encoding genes correspond to TFs
meeting these characteristics (Riechmann et al., 2000;
Riechmann and Ratcliffe, 2000).

Because many of the grass genomes are not yet
completely sequenced or annotated, the total number
of TFs that should be expected is hard to predict. As a
first step toward estimating the total number of TFs,
particularly frommaize and sugarcane where genomic
information is either incomplete or missing, we per-
formed a correlation between the number of genes in
various genomes and the number of identified TFs. For

Figure 1. Estimation of TF numbers in grass genomes. Correlation
between the number of TFs and the total number of genes in genomes
was based on completely annotated plant genomes of Arabidopsis,
rice, poplar, and Chlamy (black circles). A best-fit linear regression (r2 =
0.87) was used to estimate the predicted number of TFs in maize,
sorghum, and sugarcane (Table I). A similar analysis was conducted for
nonplant organisms (blue triangles), including yeast (Saccharomyces
cerevisiae), Caenorhabditis elegans, fruitfly (Drosophila melanogaster),
mouse (Mus musculus), and human (Homo sapiens), and a best-fit
linear regression line was drawn (r2 = 0.74; blue dashed line).
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sugarcane, the gene number was estimated based on
the EST data from the SUCEST Project (Vettore et al.,
2003). Based on the information available for Arabi-
dopsis, rice, poplar (Populus trichocarpa), and Chlamy
(Chlamydomonas reinhardtii) gene and TF numbers, a
linear regression (best-fit line) was estimated (Fig. 1,
solid line). To estimate the minimum number of TFs
in maize, sorghum, and sugarcane, the size of the
respective genomes was overlaid on the regression
(Fig. 1, red dotted lines). This analysis suggests that a
total of 3,470, 2,137, and 1,977 TFs could minimally be
expected for maize, sorghum, and sugarcane, respec-
tively (Table I). Of course, this analysis does not include
TFs corresponding to families yet to be identified from
the remaining fraction of plant genomes that remain as
unknowns.
Interestingly, when a similar analysis was done for

several nonplant genomes (fungal and animal), a
similar trend was observed (Fig. 1, blue triangles). The
fit of the regression (r2 = 0.74, blue dashed line; Fig. 1)
was significantly improved by combining the plant and
nonplant points (r2 = 0.82; data not shown), suggesting
that plants and animals have a similar relationship
between total gene numbers and TF numbers.
With these estimates in mind regarding the expected

number of TFs that GRASSIUS should contain, we
initiated the generation of GrassTFDB. As a first step,
publicly available plant TFs from PlnTFDB,
PlantTFDB, and DBD were obtained, and a compre-
hensive and nonredundant list of plant TFs was gen-
erated. Then, previously unidentified TFs were
searched in the most recent genome sequence releases
by scanning for PFAM domains found in plant TFs
(Fig. 2). Predicted TFs in each species were sorted into
47 families, following criteria similar to those used for
developing AtTFDB and AGRIS (Davuluri et al., 2003;
Palaniswamy et al., 2006). GRASSIUS provides vari-
ous ways to access information on TFs from the
various families (Fig. 3).
For rice and sugarcane, the number of TFs currently

present in GrassTFDB is very close to the predicted
number of TFs (Table I), indicating that the database
has good coverage. In the case of sorghum, the number
of predicted TFs is higher than the expected number,
suggesting that GrassTFDB may contain some dupli-
cates and splice variants that should be collapsed into
single TFs. For maize, the number of TFs in GrassTFDB
is close to the expected number, in agreement with
most of the coding region of the maize genome being
already available. The contents of GrassTFDB also

compare very favorably to other TF databases in terms
of comprehensiveness (Table II).

When all TFs in GrassTFDB are arranged into spe-
cies and families, interesting differences become evi-
dent, according to the online summary table furnished
by GRASSIUS (http://grassius.org/summary.html).

Table I. Number of grass TFs

Expected number of TFs was estimated from Figure 1.

Genome Features Maize Sorghum Saccharum spp.

Genome size (MB) 2,500 700 900
Total gene no. 59,000 36,338 33,620
Expected TF no. 3,470 2,137 1,997
TFs in GRASSIUS 3,337 2,448 1,647

Figure 2. Flow diagram describing the steps involved in the generation
of GrassTFDB. Details available in “Materials and Methods.”

Grasses Regulatory Genomics Database
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For example, although maize has the largest gene
count, the number of maize TFs in all families is not
the highest. Maize has significantly more TFs only in
the ABI3VP1, AP2-EREBP, bZIP, C2C2-YABBY, CPP,
E2F-DP, Homeobox, Jumonji, MYB, NAC, SBP, and
TUB families. In all other cases, the numbers are about
the same as for the other grasses, with the exception of
the GRAS family, which shows a significantly (P ,
0.05; Weisberg t test) lower TF number. Similarly, the
C2C2-CO-like family in rice has significantly fewer
members than those found in the same family in the
other species (P , 0.05; Weisberg t test), while the rice
Trihelix family is significantly larger (P, 0.05; Weisberg
t test). In sugarcane, the C3H family has significantly
more members than the C3H families of maize, sor-
ghum, or rice (P , 0.05; Weisberg t test). These trends
may reflect the expansion/contraction of individual
families in a particular taxon. The recent amplification
of R2R3-MYB regulators during the radiation of the
grasses (Dias et al., 2003) provides one possible mech-
anism for the expansion of particular families. Contrac-
tion could be associated with gene loss (Bennetzen,
2007) or domain loss, a phenomenon that has also been

reported for MYB domains (Braun and Grotewold,
2001). The significant difference in the size of particular
TF families between sugarcane and sorghum is poten-
tially also of interest since the coding regions for the
respective genomes have been shown to be 94.5%
identical (Jannoo et al., 2007).

Phylogenetic Analysis of TF Families

An important function of GRASSIUS will be to
provide information that facilitates comparative regu-
latory genomics studies. Central to this is the identi-
fication of orthologous TF pairs between the various
grasses. Therefore, GRASSIUS contains an application
that permits retrieval of preformed phylogenetic trees
for a particular family (Fig. 3D; Supplemental Fig. S1).

Phylogenetic analyses were performed by aligning
conserved domains of all members of a particular TF
family and trees were constructed using RAXML (see
“Materials and Methods”). The branches and nodes
of the tree, visualized with A TREE VIEWER (ATV;
Supplemental Fig. S1) are hyperlinked to the underly-
ing data within GRASSIUS. A click on a terminal

Figure 3. Screen shot showing query possibil-
ities for the GrassTFDB database of GRASSIUS.
A, All families in a species or members of a
single family can be retrieved by clicking the
species name or selecting the family name
from the pull-down menu, respectively. B,
Specific TFs or families can be retrieved by
performing searches by selecting a particular
family, or by keywords. Multiple TFs can be
searched simultaneously by using the batch
search option. C, BLAST application allows
TFs to be searched in GrassTFDB by protein
(blastp from the pull-down menu) or DNA
(blastn from the pull-down menu) sequence.
D, Phylogenetic trees of TF families can be
retrieved by selecting the families.
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branch displays a single sequence. A click on an
internal node displays all the data for the group of
sequences that node subtends.

Establishment of the Grass TF ORFeome
(TFome) Collection

The availability of FLcDNA clones and, in particu-
lar, the coding sequence prescribed by the ORF, for any
given gene greatly advances the potential for further
research of the protein encoded therein. Ready access

to a cloned ORF accelerates the pace of research by
permitting a variety of fusion and overexpression
constructs to be engineered. Despite the large number
of ESTs available through various projects, researchers
are often lacking a FLcDNA for particular genes of
interest. Thus, as part of the effort to establish a central
resource for grass regulatory genomics, the develop-
ment of a collection of clones containing ORFs for
grass TFs was initiated (Supplemental Fig. S2). The
clones in this collection are distinct from FLcDNA in
that the coding sequence without 5#- and 3#-untrans-

Table II. Comparison of GrassTFDB contents with other available plant TF databases

Table summarizes the number of proteins classified as TFs in particular databases. When several gene
models are available for a TF, primary gene models are considered when counting. In PlnTFDB and
PlantTFDB, TFs in families that are shared between GrassTFDB are considered for comparison.

TF Databases Maize

Rice

(subsp.

japonica)

Rice

(subsp.

indica)

Sorghum
Saccharum

spp.

GrassTFDB 3,337 1,741 1,836 2,448 1,647
PlnTFDBa N/A 1,875 N/A N/A N/A
PlantTFDBb 625 1,745 1,831 338 791
DBDc 673 1,626 N/A 1,452 N/A

aPlant Transcription Factor Database (http://plntfdb.bio.uni-potsdam.de). bPlant Transcription Factor
Database (http://planttfdb.cbi.pku.edu.cn). cTranscription Factor Prediction Database (http://dbd.mrc-
lmb.cam.ac.uk).

Figure 4. Screen shot of a part of the
maize MYB family query result. A short
description of the family is provided,
including one or more key references.
The first column indicates the name of
the TF, following the guidelines pro-
vided (see Letter to the Editor, this issue
[Gray et al., 2009]). Names in blue
correspond to those accepted, those in
gray correspond to those suggested,
waiting comments by the community.
The protein names provide clickable
links to the general information page
for each TF (Fig. 6). The Synonym/
Gene Name column provides alternate
names by which the TF (or the gene
encoding it) is known. Fields in blue
indicate hyperlinks to other databases
(such as, for example, MaizeGDB for
maize). The Gene Id column provides
links to species-specific external data-
bases. If a clone is available for a
particular TF in the TFome collection,
or if direct targets for a TF are known,
the corresponding columns provide
links to the corresponding pages.
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lated regions was specifically amplified omitting the
stop codon, and then cloned into a Gateway entry
vector. Such clones can be easily recombined into a
variety of destination vectors (e.g. Karimi et al., 2002;
Curtis and Grossniklaus, 2003; Deplancke et al., 2004;
Earley et al., 2006) suitable for yeast and bacterial
expression, reporter fusion, and overexpression pur-
poses. GRASSIUS provides information on the se-
quence of these clones, primers, and conditions used
for amplification as well as maps (Supplemental Fig.
S2). A growing collection of TF ORF clones frommaize
and rice are currently available to the research com-
munity on a distribution cost recovery basis and can be
requested at http://grassius.org/tfomecollection.html.

GrassPROMDB

With the ultimate goal of populating GrassPROMDB
with all the regulatory sequences in the grasses, this
initial release focuses on a set of experimentally verified
regulatory sequences as well as predicted rice pro-
moters. Experimentally characterized promoters consti-
tute the gold standard because they furnish information
on when and how a particular regulatory sequence is
active, often providing information on the CREs re-

sponsible for expression and the TFs that they recruit.
GrassPROMDB summarizes much of that information
for every promoter in a single page (see Supplemental
Fig. S3), with links to the corresponding TFs that rec-
ognize each CRE, providing the information necessary
for building GrassRegNet.

However, given how laborious it is to experimen-
tally dissect promoter function, it is expected that
GrassPROMDB will be primarily populated with
predicted promoters. Predicted promoters can be of
two types, curated promoters and upstream regions.
Curated promoters correspond to sequences directly
upstream of the TSS. Identifying curated promoters
requires the availability of FLcDNAs to precisely de-
termine TSSs. Upstream regions will be used instead
of curated promoters when FLcDNAs are not avail-
able. Upstream regions consist of sequences 5# of
the translation start codons (ATG), thus including
5#-untranslated regions. Currently (September 2008),
GrassPROMDB contains 56,278 rice gene upstream
regions corresponding to sequences 5 kb upstream of
the ATG, according to the latest release of The Institute
for Genomic Research (TIGR) rice genome annotation
(release 5). These upstream regions carry the same unique
identifier as the genes from which they were extracted.

Figure 5. Structure of GrassTFDB. Interconnected MySQL tables contain data for each TF and related TFome clones and binding
sites. TF information submitted by the community is stored in the uploads table and integrated into GrassTFDB after review.
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CONCLUSION

GRASSIUS provides a first step toward building a
comprehensive platform integrating information,
tools, and resources for comparative regulatory ge-

nomics across the grasses. All the data in GRASSIUS

are downloadable and freely available to the commu-

nity. While initially containing information for maize,

sorghum, sugarcane, and rice, as increasing genome

Figure 6. TF general information page. Screen shot of a sample general information page for OsMYB1. The domain structure
view is generated using the Bio::Graphics module, which parses InterProScan results. Each box corresponds to an InterProScan
hit and provides a database-specific identification number above and a description below. The name of the database from which
the information is retrieved is provided on the left side of the image. Both nucleotide and peptide sequences of the TF are
provided in scrollable windows at the bottom of the page. This information page will be expanded as more information on TFs
becomes available.
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sequence data for other grasses (e.g. wheat [Triticum
aestivum], Brachypodium) accumulate, GRASSIUS has
the potential to include them as well. GRASSIUS also
serves as an initial centralized clearinghouse for TF
synonyms, and as a source of information regarding
orthologous TF pairs between several grasses.

MATERIALS AND METHODS

GrassTFDB

For the development of GrassTFDB, information on TFs was obtained from

the respective genome sequence databases and SUCEST, the sugarcane (Sac-

charum spp.) EST database (Vettore et al., 2003), and from existing resources

with various levels of information plant TFs, including PlnTFDB (Riano-

Pachon et al., 2007), PlantTFDB (Guo et al., 2008), and DBD (Kummerfeld and

Teichmann, 2006). PlnTFDB and PlantTFDB classified TFs into families based

on specific rules describing which domains are required and which ones

are forbidden for assigning a particular protein to a family. As part of the

SUCASTproject, sugarcaneTFswere identified from the SUCESTdatabase and

classified based on PFAMdomains and BLASTsimilarity to known TFs (Souza

et al., 2001).

Protein and respective nucleotide sequences for known TFs were inte-

grated and grouped by species, resulting in a nonredundant set. Filtering of

redundant nucleotide sequences was performed using the Perl Module

Digest::MD5 (available at http://grassius.org/help.html), consisting of a

sequence of 32 hexadecimal digits that identifies unequivocally each TF

sequence for each species. In a second step, BLAST searches were performed

to eliminate redundancy within each species. The proteins were considered

duplicated if they were found in the same species, had a query coverage

$90%, had a query identity $90%, and the query alignment starts less than

nine residues from the start codon. If all conditions were satisfied, the longest

protein was kept and the eliminated proteins were classified as identical or

splicing variants. The proteins identified as TFs without known PFAM

identification numbers or containing only SUPERFAMILY domains were

classified as Orphan.

Based on the information available in AGRIS and in the other TF databases,

we created a comprehensive list of PFAM domains, which was used to

generate a database containing all FASTA sequences for each domain cata-

loged in the PFAM database. Each PFAM domain can be represented by a

median of 67 domain sequences from different species, and it was the

reference for the approach to identify new TFs from the respective genome

databases. This was accomplished by collecting all protein sequences from

indica (Gramene; http://www.gramene.org) and japonica (TIGR5; http://rice.

plantbiology.msu.edu) rice (Oryza sativa), sorghum (Sorghum bicolor; Joint

Genome Institute; http://genome.jgi-psf.org/Sorbi1), maize (Zea mays;

http://maizesequence.org), and nucleotide sequences from Saccharum species

hybrids (SUCEST; http://sucest-fun.org). For the first three species, we used

BLASTP. For sugarcane, BLASTX was used during alignment against the

database of TF domain sequences. The first criterion in the BLAST alignment

was to retrieve hits with e-value #1025, getting the complete collection of

predicted proteins for a given species. To eliminate redundancy, we applied

BLASTN alignments in each species and removed all candidates that had

coverage $99% and identity $99% and the subject had coverage $99%. The

next step involved an InterProScan search against all available PFAM hidden

Markov models, keeping only significant hits with e-value #0.001 and

discarding all false positives from the first step. After that, we established

the rules for the identification and classification of TFs, according to DNA-

binding domain sequences (Luscombe et al., 2000). We utilized a combination

of the criteria developed by PlnTFDB (Riano-Pachon et al., 2007) and AtTFDB

(Davuluri et al., 2003; Supplemental Table S1).

Construction of Phylogenetic Trees

Phylogenetic analyses were conducted by aligning conserved domains of

all members of one TF family. InterProScan of TF sequences revealed the

locations of domains, information that was utilized to extract the nucleotide

sequence and perform subsequent analyses. A standard workflow that

consisted of multiple sequence alignments of nucleotide sequences by

ClustalW (Thompson et al., 1994) under default parameters, followed by

trimming of ragged ends and tree search by RAXML (Stamatakis et al., 2005)

under the gammai model of evolution was used for building the trees. The tree

and species data were converted to phyloxml format (http://www.phyloxml.

org) suitable for viewing with the ATV tool (Zmasek and Eddy, 2001).

Construction of TFome Collection

The ORFs of selected TFs were amplified from FLcDNA templates avail-

able from various sources (mainly the Arizona Genomics Institute) using PCR

and directionally cloned into a Gateway entry vector (Invitrogen) according to

the manufacturer’s protocol. A high-fidelity DNA polymerase (Phusion; New

England Biolabs) was employed to minimize errors during amplification.

Individual entry clones were picked and plasmids isolated and sequenced to

confirm the absence of errors, correct orientation, and remove the stop codon.

Clones that passed this quality control were then stored in duplicate at280�C.
Cloned TFs were named according to nomenclature guidelines developed

by the community (see Letter to the Editor, this issue [Gray et al., 2009]), and

information stored in GRASSIUS. Clones of interest may be conveniently

identified using the BLAST tool in GRASSIUS or by browsing through the

TF families (Fig. 2). Available clones are highlighted along with a sequence

and map of the entry clone generated using the Vector NTI 10.3 software

(Supplemental Fig. S2). Initially, clones will be made available by direct request

on a distribution cost recovery basis (see instructions at www.grassius.org).

GrassPROMDB

The development of GrassPROMDB was based on gathering published

promoter sequence information, along with detailed CRE information ex-

tracted from the literature (experimentally verified regulatory sequences). For

the predicted promoter sequences, 1-kb regions upstream from the ATG

translation start codon of all rice genes were obtained from to the latest TIGR

release of the rice genome and extended to 5-kb upstream regions using the

available genomic sequence.

Design and Web Implementation of GRASSIUS

The Web interface for GRASSIUS consists of a Perl-embedded HTML and

was developed by using HTML::Mason (http://search.cpan.org/dist/

HTML-Mason; accessible through http://grassius.org/help.html). Such an

approach allowed implementing already available BioPerl (www.bioperl.org;

Stajich et al., 2002) modules, such as Bio::Graphics and Bio:SeqIO, easily into

the GRASSIUS interface. The databases GrassTFDB and GrassPROMDB were

developed using MySQL (http://www.mysql.com). Figure 5 contains a

simplified diagram revealing the interaction of the different components

behind GrassTFDB, and Supplemental Figure S5 describes the structure of

GrassPROMDB.

Data Visualization and User Interface

GrassTFDB

Detailed information on a particular TF can be accessed by either browsing

family members (Fig. 3A) or by searching by name (Fig. 3B). TFs can be

queried by sequence similarity through BLAST searches (Fig. 3C) or by

phylogenetic homology (Fig. 3D). Searching for TF name or browsing a family

generates a results table (Fig. 4), where TF name, gene name (synonym), gene

accession number, DNA-binding preferences (when available), direct targets,

availability of TFome clones, and curation quality levels are shown in separate

columns. The TF name column directs users to a page providing details of the

particular TF. The Gene Name and Gene Id columns link to external sources

depending on the particular species to which the TF belongs. For rice TFs,

users are directed to either TIGR (http://www.tigr.org) or RAP-DB (http://

rapdb.dna.affrc.go.jp). For maize TFs, users are directed to MaizeGDB

(http://www.maizegdb.org) or the Maize Genome Sequencing Project

(http://www.maizesequence.org) pages.

The TF information page provides domain information, nucleotide, or pep-

tide sequences, orthologs in the other grasses (when available), and expression

information as it becomes available (Fig. 6, sample screen shot for OsMYB1).

Domain information is extracted from InterProScan results and gathers informa-

tion from multiple databases including BlastProDom, FPrintScan, HMMPIR,

HMMPfam, HMMSmart, HMMTigr, ProfileScan, ScanRegExp, SuperFamily,
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SignalPHMM, TMHMM, HMMPanther, and Gene3D. The positions of the

corresponding domains with respect to a schematic representation of the protein

(N terminus on the left, C terminus on the right) are represented by boxes

generated by the Bio::Graphicsmodule of BioPerl. Thisprovides an identification

number specific to the database and descriptions of the particular domain. Each

box, when clicked, takes the user to detailed information about the protein

domain at corresponding databases.

GrassPROMDB

Users can query for promoters by either browsing curated promoters in

one species, or by searching by gene id, pathway/process name, targeting TF,

sequence motif, and BLAST. Not all the links are active at this time because

much of the information is in the process of being generated as the genome

annotations for maize and sorghum progress. The promoter information page

provides a graphic view of CREs as well as the sequence of the promoter

(Supplemental Fig. S3). The CREs represented by boxes are located relative to

the TSS for curated promoters, ATG for noncurated promoters with their

sequence, as well as the name of the TF that binds the respective CRE (when

available) being shown, their sequence as well as the name of the TF that binds

the respective CRE (when available), is displayed underneath. Upon clicking

on a box, a page describing properties and experimental information regard-

ing that CRE is displayed. The TF names link to the corresponding records in

GrassTFDB.

Community Contribution

Users are encouraged to contribute to contents of GrassTFDB and

GrassPROMDB. After submitting a form describing the details about a

particular TF (Supplemental Fig. S4) or promoter sequence, the submitted

information is reviewed by GRASSIUS curators and then integrated into

GRASSIUS.

Downloads, Help Pages

All the data in GRASSIUS can be freely downloaded from http://www.

grassius.org/downloads.html after a swift user registration. Sequences, the

alignments of members of TF families and promoter sequences, along with

CRE information, are available for download in tab-delimited text format.

Any other data are available upon request. Users are guided by comprehen-

sive help pages on how to use all features available in GRASSIUS.

Supplemental Data

The following materials are available in the online version of this article.

Supplemental Figure S1. Interactive visualization of phylogenetic trees for

TFs from the grasses.

Supplemental Figure S2. Example of the information available in

GRASSIUS for a TF ORF clone.

Supplemental Figure S3. Detailed information of genic upstream regions

in GrassPROMDB.

Supplemental Figure S4. TF submission form in a community contribu-

tion page.

Supplemental Figure S5. GrassPROMDB database structure.

Supplemental Table S1. Family names in four different plant TF data-

bases.

Supplemental Materials and Methods S1. Additional methods descrip-

tion and supplemental figure legends.
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