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Abstract

Dishevelled (Dvl) is a positive regulator of the canonical Wnt signaling pathway, which regulates
the levels of B-catenin. The B-catenin oncoprotein depends upon the association of Dvl and Axin
proteins through their DIX domains, and its accumulation directs the expression of specific
developmental-related genes at the nucleus. Here, the 1H, 13C, and 1N resonances of the human
Dishevelled 2 DIX domain are assigned using heteronuclear nuclear magnetic resonance (NMR)
spectroscopy. In addition, helical and extended elements are identified based on the NMR data.
The results establish a structural context for characterizing the actin and phospholipid interactions
and binding sites of this novel domain, and provide insights into its role in protein localization to
stress fibers and cytoplasmic vesicles during Wnt signaling.
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Introduction

The Wnt signaling pathway is crucial in cell differentiation and proliferation of embryonic
and adult tissues, and its disruption leads to human tumors including colorectal cancer
(Nelson and Nusse, 2004). Signaling is initiated by secreted Wnt glycoproteins, which bind
to seven transmembrane Frizzled receptors and the low-density receptor-related lipoproteins
at the cell surface. Downstream events include positive and negative regulation of b-catenin
levels by two DIX domain-containing proteins, Dishevelled (Dvl) and Axin, respectively. In
unstimulated cells, p-catenin is targeted for destruction in the ubiquitin-proteosome pathway
by a protein complex that includes the Axin protein, a putative tumor suppressor (Satoh et
al., 2000). Under specific Wnt stimulation, Dvl binds to Axin and disassembles the -
catenin destruction complex. Thus, Dvl boosts the intracellular levels of p-catenin, which
translocates to the nucleus where it binds to transcription factors leading to changes in gene
expression.

The DIX domain is a 85-residue conserved module found in a family of seven human
signaling proteins. Dvl and Axin represent the two major subtypes of DIX domain-
containing proteins, and their homo and hetero oligomerization is mediated by their DIX
domains (Kishida et a/., 1999). A third subtype of a DIX-related protein, the coiled-coil-
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DIX1, has been recently shown to positively regulate Wnt signaling by hetero
oligomerization with Dvl and Axin (Shiomi et a/., 2003). The DIX domain interacts with
actin stress fibers and vesicular membranes, partitioning Dvl between these two pools and
segregating the proteins to distinct pathways (Capelluto ef a/., 2002). In addition to the N-
terminal DIX domain, the three mammalian Dvl proteins (Dvl1, DvI2, and DvI3) contain
DEP and PDZ domains in their sequences of approximately 700 residues, and these modules
are generally thought to mediate membrane and protein interactions, respectively (Wharton,
2003). The involvement of Dvl in the Wnt pathway requires the integrity of its DIX and
PDZ domains while its DEP domain may coordinate planar cell polarity through the Jun N-
terminal kinase cascade (Wharton, 2003).

In order to obtain further insights into structure-function relationships of Dvl, we carried out
NMR studies of its conserved DIX domain. Here we report the NMR characterization of the
homodimeric DIX domain of the Dishevelled 2 (Dvl2) protein.

Materials and Methods

The DIX domain of human DvI2 (residues 10-94) was overexpressed in £. coli
BL21(DE3)pLysS strain (Novagen, Madison, USA) as a glutathione S-transferase (GST)
fusion protein. Unlabeled protein was purified from cells grown at 30°C in Luria-Bertani
broth. Uniformly 15N and 13C/15N labeled DIX was produced in M9 minimal media
supplemented with 15NH4Cl and 13Cg-glucose (Cambridge Isotope Laboratories). Harvested
cells were disrupted by sonication. The GST- fusion protein was immobilized and purified
on Glutathione Sepharose 4B beads (Amersham, Arlington Heights, USA). DvI2 DIX was
eluted by cleavage with thrombin (Sigma Chemical Co, St. Louis, USA), concentrated in the
presence of 7 mM perdeuterated dodecylphosphocholine (DPC-dsg) (Cambridge Isotope
Laboratories), and its purity was verified by SDS-PAGE. The dimeric state of the DIX
domain was evidenced from its diffusion coefficient determined by the pulse field gradient
experiments and from SDS PAGE and bis(sulfosuccinimidyl) suberate crosslinking
experiments (Capelluto et al., 2002).

NMR samples contained 0.2-1 mM of the DIX domain, 90%H,0/10% 2H,0 or

99.9% 2H,0, 20 mM Tris-dq1 (pH 6.5) buffer, 600 mM DPC-d3g, 1 mM dithiothreitol-dyg, 1
mM NaN3 and 50 mM 4-amidinophenylmethane sulfonyl fluoride. NMR experiments were
performed at 303 K on Varian INOVA 600 and 500 MHz spectrometers equipped with triple
resonance shielded probes with z-axis pulse field gradients. Spin system and sequential
assignments were made from *H,15N-HSQC, CBCA(CO)NNH, HNCACB, HNCO, HNHA,
H(CCO)NH TOCSY, C(CO)NH TOCSY, 1°N-edited TOCSY, 1°N-edited HSQC-NOESY
and HSQC-NOESY-HSQC experiments (tmix=50 and 135 ms) (Grzesiek et al., 1993; Kay
et al.,, 1993; Muhandiram and Kay, 1994) (Fig. 1). Asn and GlIn side chain 1H and 1°N
resonances were assigned using 3D 1°N-edited NOESY and 3D CBCA(CO)NNH spectra.
The secondary structure elements were identified from JynHe coupling constants derived
from HNHA (Vuister and Bax, 1993) and HMQC-J spectra, medium and sequential NOEs
patterns, and *Hg, 13C, 13Cg, and 13CO chemical shifts (Wishart and Sykes, 1994).
Titrations of G-actin (Cytoskeleton) into the 15N-labeled DIX domain were analyzed by
HSQC experiments. Spectra were processed with NMRPipe (Delaglio ef a/., 1995) and
analyzed using PIPP (Garrett ef a/., 1991), nmrDraw and in-house software programs (http://
biomol.uchsc.edu).

Results and Discussion

The 1Hy and 15N resonances of all 80 backbone amides (excluding the five Pro residues)
and 13C resonances of 77 of the 85 backbone carbonyls of the human DvI2 DIX were
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assigned. The majority of the spin systems of the DvI2 DIX domain were identified by the
analysis of the H{CCO)NH TOCSY and C(CO)NH TOCSY experiments. In total, 100% of
Ha, 99% of HB, Hy, H& and He, 98% of Ca, 99% of CP and 52% of Cvy, C8, Ce and Cn
resonances were assigned. All the aromatic side chain protons of five Phe, three Tyr, one
Trp and three His and the IH and 1°N resonances for the NH, side chains of 2 Asn and 2
GIn were assigned completely. No assignments were made for the guanidino moiety of Arg
and the side chain NH3* of Lys. The chemical shift values of the 1H, 1°N and 13C
resonances are represented in Table 1. A typical 1H 15N HSQC spectrum is shown in Fig. 2,
where the backbone NHs are labeled for its corresponding amino acid. Chemical shift index
analysis of the Ha,, 13Ca and 13CO resonance assignments together with NOEs patterns in
3D 15N-edited NOESY and coupling constants estimated from the HNHA experiment
indicated the presence of two a-helices (residues Ala35-GIn48 and Ala51-Tyr55), as well as
helical and extended elements (Asn82-Leu89 and Val29-1le31, respectively) (Fig. 3).

The ability of the DIX domain to interact with membranes was studied using DPC micelles.
A number of structural determinations of membrane proteins bound to micelles have
indicated that valuable structural information can be obtained from NMR studies of such
systems (Henry and Sykes, 1994). The DIX domain mediates DvI2 localization to vesicular
membranes, where activates canonical Wnt signaling by stabilization of p-catenin
(Capelluto et al.,, 2002). HSQC spectra of the DIX domain were collected during stepwise of
DPC micelle addition. Several chemical shifts changes in the backbone amides of DIX were
detected and plotted as a histogram (Fig. 4A). The data indicates that a short stretch between
the last two helical elements in the DvI2 DIX domain is a putative membrane recognition
motif.

The DIX domain has also been shown to bind to actin stress fibers, where it may activate
non-canonical Wnt signaling (Capelluto et a/., 2002). Thus, we mapped the DIX domain
actin-binding site using a similar approach as described for DPC binding. The residues
interacting with the actin are evident from the chemical shift perturbations (Fig. 4B). This
actin-binding site is localized between the second helix and the DPC binding site, as
identified by chemical shift changes induced by stepwise addition of G-actin (Fig. 4B). The
actin binding motif of DIX is similar to those described for MARCKS and actobindin
proteins (Maciver, 1995). As shown in Fig. 4C, the amino acid sequence alignment of DIX
domain-containing proteins indicates that both DPC and actin-interacting residues are
predominantly conserved among the DIX proteins. This suggests that the actin and micelle
interactions may be extended to other members of the family of DIX domain-containing
proteins. Thus, the information provided here provides a structural basis for understanding
the ligand interactions and molecular function of the DIX domain.
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Fig. 1.

Representative strips from the HNCACB spectrum of DvI2 DIX domain (1 mM) collected at
303 K showing sequential connectivities for Ca (solid line) and Cp (dotted line) resonances
of residues Cys80-Trp88 of the domain.
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Fig. 2.

Two dimensional H 15N HSQC spectrum of 200 uM 1°N-labeled DvI2 DIX domain

Page 6

acquired at 600 MHz. Selected peaks are labeled with the corresponding residue numbers.
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Fig. 3.

Predicted secondary structure of the DvI2 DIX domain. The predictions are based on
consensus chemical shift indices (CSI’s), coupling constants, and local NOEs. The CSI
predictions of helical (H) and extended (B) conformations were based on each

residues THa,, 13Ca, 13CB, and 13C’ chemical shifts. The JynHq coupling constants under 6
Hz (black circle), over 8 Hz (open circle), and between 6 and 8 Hz (grey circles) are
consistent with helical, extended, and indeterminate secondary structure, respectively, and
were estimated from HNHA and HMQC-J spectra. The NOE connectivities provide
distances (d) between the HN (N), Ha (&), and Hb (b) resonances of residues that are i = 2, 3,
or 4 positions apart, and are indicated as solid and dashed lines depending on whether they
are resolved or partially overlapped, respectively, in NOESY spectra collected with NOE
mixing times of 50 and 135 ms.
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Fig. 4.

Identification of ligand-interacting residues of the DIX domain by HSQC experiments. (A)
The histogram displays the normalized chemical shift difference for each residues amide
group of 15N-labeled DvI2 DIX domain (100 M) caused by increasing the d3g-DPC
concentration from 10 to 400 mM. (B) Histogram showing the progressive changes in
chemical shifts of DIX domain (100 M) residues following actin addition. Blue, yellow
and black bars represent reductions after addition of 200, 300, and 400 .M G-actin,
respectively. The H,1°N chemical shifts were normalized as ([(A8p)? + (ASn/5)2]/2)02,
where & is chemical shift in parts per million (ppm). Labeled residues exhibit changes that
exceed the red line, which represents 50% of the largest change. (C) The amino acid
sequences of the DIX domains from human Dvl homologs, KIAA1735, Conductin and Axin
and zebrafish Ccd1 are aligned. Identical, highly conserved and similar residues are shown
in red, black and blue, respectively. The DvI2 residues that are involved in actin and DPC
micelle binding are shown with unfilled and filled dots, respectively.
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