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Hepatic fibrosis represents a significant global health problem for which no adequate therapy
exists.1,2 Alcoholic fibrosis is the liver’s wound-healing response to injury and it can lead to
cirrhosis characterized by scar accumulation and nodule formation. Thus far, there is no proven
therapy for hepatic fibrosis, which can be further complicated by hepatocellular carcinoma.
Hence, prevention of liver fibrosis could help to ameliorate the complications of cirrhosis and
improve the quality of life of many patients worldwide.1,2

Uncontrolled production of collagen I is the main feature of liver fibrosis.1-13 Following a
fibrogenic stimulus such as alcohol, hepatic stellate cells (HSC) transform into an activated
collagen-producing cell. In alcoholic liver disease, numerous changes in gene expression are
associated with HSC activation, including the induction of several intracellular signaling
cascades, which help maintain the activated phenotype and control the fibrogenic and
proliferative state of the cell.1-16 Detailed analyses for understanding the molecular basis of
the collagen I gene regulation have revealed a complex process involving reactive oxygen
species (ROS) as key mediators.1,2 Less is known, however, about the contribution of reactive
nitrogen species (RNS). In addition, a series of cytokines, growth factors, and chemokines,
which activate extracellular matrix (ECM)-producing cells through paracrine and autocrine
loops, contribute to the fibrogenic response.17

RELEVANCE OF OXIDATIVE STRESS IN LIVER DISEASE
Following alcohol consumption, cholestasis, and iron overload, ROS and lipid peroxidation
products are generated in large amounts, leading to Kupffer cell activation,18-23 a key event
in the liver inflammatory and profibrogenic response, and to the secretion of a myriad of growth
factors, cytokines, and prostaglandins.24,25 Among other stimuli, hepatocyte-derived lipid
peroxidation induced by ethanol plays an important role in the pathogenesis of liver fibrosis
by up-regulating collagen I synthesis.26 Acetaldehyde is the first metabolite of ethanol and is
a profibrogenic agent that stimulates intracellular accumulation of H2O2.27 In addition,
H2O2 has been also implicated in the onset of scleroderma, an event consistent with earlier
clinical evidence for ROS participation in disease pathology.28,29 Furthermore, ROS-
sensitive cytokines contribute to HSC activation during inflammatory through paracrine
signals released from immune cells.30

Alcohol metabolism by cytochrome P450 2E1 (CYP2E1) generates ROS.31 Binge drinking
triggers steatosis, a fibrogenic response, and apoptosis in rats fed a choline-deficient diet
through increased oxidant stress, elevated phosphorylation of p38, and down-regulation of
ECM proteolytic enzymes.32 To better understand how HSC become activated in the presence
of oxidative stress and to evaluate whether CYP2E1-derived ROS could play a role in HSC
activation, our laboratory co-incubated primary HSC with HepG2 cells overexpressing or not
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CYP2E1.8,9 There were enhanced proliferation rates and induction of a-smooth muscle actin,
intracellular and secreted collagen I protein, and intra- and extracellular H2O2 and lipid
peroxidation products in HSC co-incubated with HepG2 cells overexpressing CYP2E1
compared with HSC incubated with control HepG2 cells.8,9 These effects were prevented by
antioxidants and by CYP2E1 inhibitors, suggesting a role for CYP2E1-derived diffusible
mediators on these effects.8,9

A causal relationship also exists between oxidative stress and chronic alcohol-induced liver
injury, with sustained activation of Kupffer cells and HSC. A recent study4 demonstrated that
Kupffer cells induced a more activated phenotype, greater proliferation rates, and increased
intra- and extracellular collagen I protein, H2O2, and IL-6 in HSC co-cultured with Kupffer
cells when compared with HSC cultured alone. All these features were prevented by catalase,
indicating a role for H2O2.4 In addition, MMP-13, which degrades extracellular collagen I,
decreased in the co-culture of HSC with Kupffer cells, while there was up-regulation of tissue
inhibitor of metalloproteinase 1 (TIMP1), a MMP-13 inhibitor. A novel dual mechanism
mediated by H2O2 and IL-6 was proposed for how Kupffer cells could modulate the fibrogenic
response in HSC.4

Supporting the role of oxidative stress in fibrosis, a novel study showed a correlation between
cellular activation and oxidative stress in the GRX cell line and how vitamin E and N-
acetylcysteine prevented the activation.33 Parola and colleagues34 also have demonstrated
that activated HSC are more vulnerable than quiescent HSC to aldehyde end products.

SYNERGISM BETWEEN REACTIVE OXYGEN SPECIES AND GROWTH
FACTORS

The role of pro-fibrogenic cytokines and growth factors is central for the development of liver
fibrosis because they allow cross-talk between ECM-producing cells.3-6 ROS play a decisive
role in the initial phase of fibrosis by integrating different profibrotic stimuli independently of
TGFβ. By contrast, progression to the subsequent stage depends on TGFβ production and the
canonical Smad pathway.35 Liver fibrosis involves elevated expression of TGFβ in
rodents36,37 and in humans.38 In normal liver and in CCl4-induced fibrosis, TGFβ1 is mainly
produced by Kupffer cells and HSC although a small amount is generated by endothelial cells.
36,39 TGFβ is secreted as a latent complex that is trapped among matrix fibbers, from which
it is released and activated during tissue remodeling.40,41 Activated TGFβ signals through
transmembrane serine/threonine kinases and intracellular Smad proteins, which translocate
into the nucleus, activate gene transcription by binding the “CAGA” consensus sequence, and
interact with promoter-specific transcription factors and general co-activators42 to initiate and
perpetuate the fibrogenic response.43 TGFβ1 is a redox sensitive gene;44 indeed, ROS (eg,
H2O2) up-regulate TGFβ1 expression in rat HSC, which is blocked by catalase.45 In addition,
TGFβ per se increases O2

· − production in fibroblasts.46 Other studies have described how
TGFβ increases ROS production by activating the membrane-bound enzyme NADPH
oxidase47,48 and by impairing complex IV in the mitochondrial respiratory chain.49 The
canonical signal transduction pathway of TGFβ plays a central role in fibrosis42,43,50,51 even
though phosphatidylinositol 3-kinase (PI3K)/Akt is a well-documented example of an
alternative pathway that is induced by TGFβ in different cell lines and profibrogenic conditions.
35,52

PDGF is the most potent mitogen for transdifferentiated HSC during liver fibrosis, and the
expression of PDGF receptors is important for mitogenesis and chronic inflammation of the
liver,53-55 and particularly chemo-attraction of mononuclear cells.56 The expression of PDGF
is also influenced by intracellular redox changes.57 TGFβ1 regulates the PDGFRb in human
HSC.58 Moreover, the PDGF-dependent activation of HSC is followed by phosphorylation of
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PI3K.59,60 PI3K activation is essential for both mitogenesis and chemotaxis induced by PDGF
during liver injury in vivo.61 The 70-kDa ribosomal S6 kinase is activated in a PI3K-dependent
manner and plays an important role in HSC proliferation, collagen expression, and cell cycle
control, representing a potential therapeutic target for liver fibrosis.62 FoxO1 inhibits PDGF-
induced HSC proliferation via G1 cell cycle arrest suggesting that FoxO1 is a crucial
downstream target of the PI3K/Akt pathway in regulating HSC proliferation.60 PI3K is
induced by oxidative stress in rat HSC following exposure to CCl4.63 HSC isolated from
CCl4-treated rats or from acute liver damage in vivo show increased ERK activity, which
modulates HSC proliferation and chemotaxis and regulates nuclear signaling.64

The proliferative effect of PDGF requires the activation of PDGFRb.65,66 Furthermore, the
activation of cultured rat HSC by Kupffer cell-conditioned medium directly enhances matrix
synthesis and stimulates HSC proliferation via induction of PDGF receptors.65 The
myristoylated alanine-rich protein kinase C substrate is a downstream effector in PDGF-
induced motility of activated human HSC.67 Different compounds that activate the AMPK
pathway inhibit PDGF-stimulated proliferation and migration of human HSC and reduce the
secretion of monocyte chemoattractant protein-1, suggesting that AMPK negatively modulates
the activated phenotype of HSC.68 Nitric oxide (NO·) donors also exert a direct antifibrogenic
action by inhibiting PDGF-induced proliferation, motility, and contractility in HSC, in addition
to lowering ECM proteins.69 A regulatory mechanism of reactive aldehydes on PDGFRb
signaling and biologic actions is relevant to liver fibrosis.70

TNFα secreted by macrophages, Kupffer cells, and HSC, as well as IFNγ secreted by T cells,
are well-known antifibrogenic signals.71,72 TNFα reduces ECM deposition by inhibiting the
synthesis of structural components, including elastin, osteocalcin, and collagen I.73-76
TNFα counteracts TGFβ-stimulation of collagen I gene in different cell types.77,78 Both
TNFα and IFNγ blunt the TGFβ-mediated up-regulation of the COL1A2 promoter by
interfering with the formation of the TGFβ1-responsive element complex.79-81 TGFβ
antagonism by TNFα involves c-Jun N-terminal kinase-1 phosphorylation of c-Jun, which
leads to off-DNA interference of Smad3 binding to the cognate DNA site and/or interaction
with the p300/CBP co-activators.82 Moreover, a previous report has shown that p38 MAPK
is a key mediator of the antifibrogenic effect of TNFα in regulating the expression of col1A1
in HSC in response to cytokines.83

In addition, interferon regulatory factor-binding site IF3 is a novel target of the pathways
elicited by IFNγ to blunt COL1A2 promoter transcription.84 IFNγ promotes occupancy of the
COL1A2 transcription start site by the RFX5/CIITA complex, which interacts with CBF/NFY
and/or YB-1.79 These antifibrogenic cytokines down-regulate COL1A2 transcription and
antagonize TGFβ through multiple pathways, which converge on the same promoter elements.
85,86 TNFα–mediated down-regulation of the mouse col1a1 gene is associated with the
activation and binding of C/EBPδ-and C/EBPβ-containing complexes to the -370 to -344
region of the mouse col1a1 promoter (Table 1).87

EFFECTS OF REACTIVE OXYGEN SPECIES ON THE COL1A1 AND COL1A2
PROMOTERS

Collagen I, the most abundant collagen type found in liver fibrosis, is a heterotrimeric protein
composed of two α1 chains and one α2 chain forming a triple helical structure. The human α-
chains genes are located as single copies on different chromosomes. The α1(I) chain gene is
on chromosome 17q21-22 whereas the α2(I) chain gene is located on 7q21-22.88,89 In normal
tissue, both genes are co-ordinately expressed,90 whereas a homotrimer of three α1(I) chains
occasionally occurs in tumors91 and in cultured cells.92 Structural and metabolic deficiencies
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of the collagen I chains lead to several heritable and acquired disorders of connective tissue,
93 in general, and impair liver function, in particular.94

The IL-4-induced transcriptional activator STAT6 binds to various sequences within the
COL1A1 and COL1A2 promoters.95 An AP-2 site adjacent to the reverse-oriented STAT6
consensus motif TTCN3/4 GCT is located within 205 bp from the transcription start site and
seems to support the moderate IL-4-induced COL1A1 gene activation. Furthermore, IL-6 up-
regulates the expression of type I collagen in vivo96 and in cultured HSC.97-99 HSC respond
to IL-6 with a transient increase in col1a1 mRNA expression.97,100 A TGFβ1-responsive
element is found in the -370 to -344 bp region of the mouse col1a1 gene.45 TGFβ1 induces
the activation and binding to the TGFβ1-responsive element of a protein complex that contains
C/EBPβ, and H2O2 acts as a second messenger for the TGFβ1-mediated col1a1 gene up-
regulation.45 In fact, acetaldehyde induces col1a1 up-regulation via H2O2.101 However,
IFNγ and TNFα down-regulate transcription of the COL1A1 promoter.95 The TNFα-mediated
down-regulation of the col1a1 gene is associated with activation and binding of C/EBPδ- and
C/EBPβ-containing complexes to the -370 to -344 bp region of the mouse col1a1 promoter.
Indeed, over-expression of C/EBPδ or p20C/EBPβ down-regulates the expression of a reporter
construct driven by the -412 to +110 bp sequence of the col1a1 promoter, validating the
relevance of these two transcription factors in the TNFα-mediated col1a1 down-regulation.87

The functional properties of the proximal promoter of the COL1A2 gene have been studied in
transfection experiments,102 which have described the minimal upstream sequence directing
high and cell type-specific expression of the CAT-reporter gene. The proximal promoter of the
COL1A2 spans from −380 to +54 bp relative to the transcription start site and contains several
overlapping DNA elements that are bound by ubiquitous transcription factors. Constitutive
transcription of the proximal promoter of the COL1A2 is under the control of four clusters of
cis-acting elements, which are involved in mediating the transcriptional response to cytokines
implicated in tissue remodeling and fibrosis.103 Recent studies have underscored the
importance of the proximal promoter in proper COL1A2 expression, describing, in addition,
that a far-upstream enhancer and a downstream silencer are also part of the regulatory network
of the COL1A2 gene.104,105 A model has been proposed whereby COL1A2 expression is the
result of combinatorial interactions amongst trans-acting factors bound within the promoter,
enhancer, and repressor sequences.85 The downstream repressor resides within the first intron
of COL1A2 and contains a DNase I hypersensitive site located around a cluster of three cis-
acting elements, which contain binding sites for ‘GATA’ (FIi1 an FIi2) and IRF (FIi3) nuclear
proteins.105

Many nuclear factors that have been implicated in regulating the COL1A2 proximal promoter
in fibroblasts, including Sp1/Sp3, NFkB, C/EBPδ and β, AP1, Fli-1/Ets-1, CBF/NFY, YB-1
and the Smads 3/4 and RFX5/CIITA complexes.76,79,81,106 Specifically, either single or
multiple “CAGA” boxes are present in the TGFβ -responsive element on the COL1A2 gene;
hence, the Smad3/4 complex represents a common mediator of the TGFβ signaling for ECM
accumulation.107 The ubiquitous transcription factor Sp1, the Smad3/4 complex, and the co-
activators p300/CBP mediate the response of the COL1A2 promoter to TGFβ stimulation.85,
108,109 A Smad complex may represent the alleged Sp1 co-factor involved in COL1A2 trans-
activation.110 Transient over-expression of Smad3 and Smad4 can transactivate the
COL1A2 promoter.111 Sp1 and Smad3/Smad4 cooperate synergistically in transactivating the
COL1A2 promoter after binding to the TGFβ1-responsive element. Furthermore, there is
additional evidence for a critical role of Sp1 in constitutive COL1A2 expression, and in
integrating the transcriptional responses of the gene to antagonistic cytokines.112 Sp1/Sp3
proteins bound to the COL1A2 promoter interact with CBF/NFY to strengthen promoter
activity and patterned transgene expression.113,114 Fli-1, a member of Ets transcriptional
factors, is a negative regulator of the COL1A2 gene expression in dermal fibroblasts.115
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Competition between Fli-1 and Ets-1 for binding to the same promoter sequence is associated
both with modulating constitutive COL1A2 activity and inhibiting TGFβ signaling.116 In
addition, a recent study has shown that TGFβ -dependent acetylation and inhibition of Fli-1
may represent the principal mechanisms responsible for the TGFβ -induced dissociation of
Fli-1 from the COL1A2 promoter.117

Several studies indicate that adiponectin has antifibrotic properties because hepatic fibrosis
produced by chronic CCl4 was enhanced in adiponectin-knockout mice as compared with wild-
type mice,118,119 while leptin has an opposite effect of enhancing fibrogenesis.120-122

Acetaldehyde up-regulates type I collagen in HSC123-125 and the COL1A1 and COL1A2
induction occurs through a TGFβ-dependent mechanism.126 In addition, acetaldehyde
stimulates intracellular accumulation of H2O2 and COL1A2 promoter activity in HSC,29
strongly suggesting that the early stage of ethanol-induced liver fibrosis induces a H2O2-
dependent loop, which triggers and amplifies autocrine TGFβ production, via activation of the
Sp1-Smad3/4 complex, conceivably through the PI3K pathway.29,127 Another report has
implicated H2O2 in the pathology of scleroderma, demonstrating that PDGF treatment of
primary human fibroblasts triggers an intracellular loop involving Ha-Ras, ERK1/2, and ROS,
ultimately leading to COL1A2 up-regulation.128 The TGFβRI-dependent program and the up-
regulation of collagen I does not involve Smad2/3 activation but is mediated by ALK1/Smad1
and ERK1/2 pathways in scleroderma fibroblasts.128 The involvement of H2O2 in the
induction of the COL1A1 promoter under TGFβ treatment has been defined.45,76,101 Primary
Kupffer cells in co-culture with HSC induce a profibrogenic response mediated by H2O2 that
leads to up-regulation of COL1A1 and COL1A2 trans-activation and simultaneously prevents
collagen I protein degradation via an IL-6-dependent mechanism.4 Work from our group has
described a role for H2O2 in the up-regulation of COL1A2 expression by ethanol and
arachidonic acid whereby COX-2 appears to mediate the arachidonic acid-mediated induction
of COL1A2 expression (see Table 1).11

STABILITY AND DEGRADATION OF COLLAGEN I: ROLE OF
METALLOPROTEINASES

Liver fibrosis is characterized by activation of HSC and subsequent ECM synthesis, along with
insufficient degradation. Matrix remodeling occurs mainly due to the action of MMPs, a
multidomain family of zinc-dependent endopeptidases. These enzymes are secreted into the
extracellular space as zymogens that require activation by a variety of stimuli. The active
enzymes can, in turn, be inhibited by the family of tissue inhibitors of metalloproteinases
(TIMPs). ECM remodeling is, therefore, highly regulated under physiologic conditions.
Alteration of the balance between MMPs plays a role in scarring.129,130

The three most relevant MMPs are gelatinase A (MMP-2), gelatinase B (MMP-9), and
stromelysin (MMP-3). In liver fibrosis, the expression of the MMPs involved in fibrillar
collagen degradation (eg, MMP-1 in humans and rodents and MMP-13 also in rodents) is
limited, whereas the expression of MMP-2 is markedly increased.131 TGFβ1 modulates
MMP-13 expression in HSC by complex mechanisms involving p38 MAPK, PI3K/AKT and
p70-ribosomal S6 kinase.132 MMP-2 can degrade several components of the subendothelial
matrix, including collagen IV, laminin, and fibronectin, and it may be important in the
remodeling of matrix during tissue repair processes.133 A recent study has shown that
oxidative stress induces MMP-2 expression, proliferation, and invasiveness of HSC; these
effects could be prevented by specific MMP inhibitors and antioxidants.62 Increased
expression of pro-gelatinase and formation of active enzyme occurs in human liver disease and
in animal models of liver fibrosis.134,135 Sustained over-expression of MMPs like gelatinase
A, with the consequent degradation of basement-membrane collagen IV, represents a basic
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mechanism in the remodeling of the space of Disse with capillarization of the sinusoids.136
In progressive liver fibrosis, the overall MMP activity decreases,137 due to increased
expression of TIMPs and other anti-proteases expressed by HSC and hepatocytes.62,138 In
liver fibrosis, hepatic TIMP-1 expression is markedly up-regulated both in humans and in
murine fibrosis models.130,139,140 Both TIMP-1 and TIMP-2 are released by fully activated
HSC.141 The increased expression of TIMPs is important in advanced liver fibrosis both in
rodents and in humans.142,143 In fact, increased TIMP-1 and TIMP-2 mRNA levels have been
demonstrated by in situ hybridization in CCl4-induced rat fibrosis,144 as well as in primary
biliary cirrhosis and biliary atresia.140

Plasmin is a broad-spectrum protease capable of directly degrading matrix components,
including fibronectin, laminin, and proteoglycans145 and also participates in matrix
degradation indirectly by activating MMP-13, MMP-1, MMP-3, interstitial collagenase, and
stromelysin.146,147 PAI-1, a physiologic inhibitor of plasminogen activator, inhibits protease-
dependent fibrinolytic activity and subsequent ECM degradation. PAI-1 expression is up-
regulated in a variety of fibrotic diseases as well as in experimental animal models such as
CCl4-induced liver fibrosis,148 and PAI-1-deficient mice develop less severe fibrosis in lung,
149 suggesting a role for PAI-1 in the progression of fibrosis. Furthermore, GSH inhibits
TGFβ -induced collagen I accumulation by blocking TGFβ-induced PAI-1 expression, and
thus stimulating collagen degradation.150 Many other studies have also described TGFβ as an
inducer of ROS production and ROS mediate PAI-1 induction by different stimuli.151-154

SOURCES OF REACTIVE NITROGEN SPECIES IN THE LIVER
Nearly all cell types in the liver, including hepatocytes, Kupffer cells, HSC, and endothelial
cells, have the capacity to generate NO·.155 The reactivity of NO· per se has been greatly
overestimated in vitro because no drain is provided to remove NO·.156 NO· remains in solution
for several minutes in micromolar concentrations before it reacts with O2 to form much stronger
oxidants like nitrogen dioxide and others.157 Most biological actions of NO· appear to be
mediated by interactions with paramagnetic centers in effector proteins, such as heme- or iron-
sulfur centers, but NO· is also known to react rapidly, via radical termination reactions, with
other targets that carry unpaired electrons.158 These reactions include interactions with ROS
such as O2

· −, or with radical intermediates in proteins or lipids.156 Furthermore, NO· reacts
with O2 to form higher oxides of nitrogen, in a relatively slow reaction (Fig. 1).159 The eventual
biologic fate of NO· is oxidation to nitrite and nitrate, end products of NO· metabolism that
are rapidly distributed throughout the body and excreted in urine.158

There are a number of RNS derived from NO·.160 Of these, peroxynitrite (ONOO−) is the best
characterized and appears to have the highest biological activity.160 ONOO− is formed by the
bi-radical reaction of NO· and O2

· −. The reaction is extremely fast and will occur at a near
diffusion-limited rate.161 NO· is the only biological molecule produced in concentrations large
enough to compete with superoxide dismutase for O2

· −.156 ONOO− reacts relatively slowly
with most biological molecules, which defines it as a selective oxidant. Effects of ONOO− may
also be beneficial or detrimental depending on the concentration and local environment, the
level of cellular activation, and the endogenous GSH pool, which acts as a natural ONOO−

scavenger.162 On the other hand, direct in vivo and in vitro evidence that, at low
concentrations, ONOO− is actively involved in triggering cellular survival signals has been
reported in studies demonstrating protection against myocardial ischemia-reperfusion injury
and neuronal apoptosis.163,164

REACTIVE NITROGEN SPECIES AND HEPATOTOXICITY
NO· is a short-life gaseous free radical known to exert many actions in the liver as well as in
other tissues and organs.165 This review summarizes only the major notions, with special
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reference to interactions with ROS at the molecular level leading to collagen I regulation, and
effects at the cellular level (ie, HSC activation). In normal liver, low fluxes of NO· are produced
by constitutive endothelial nitric oxide synthase (eNOS, mainly in endothelial cells) and are
considered sufficient to maintain perfusion of liver sinusoids by acting on vascular tone (ie,
vasodilatation) and on vascular permeability.166 NO· regulates leukocyte adhesion to
sinusoidal endothelium and inhibits platelet adhesion and aggregation.167 In pathologic
conditions, including endotoxemia and chronic inflammation, nitric oxide synthase 2 (NOS2)
is up-regulated in almost all liver cells, including HSC,168 by several mediators and,
consequently, NO· generation increases.166 Under these conditions, NO· acts either as
cytoprotective or as cytotoxic depending on the cellular microenvironment.169

The molecular regulation of NOS2 expression is complex and occurs at multiple levels. NOS2
expression requires the transcription factor NFκB and is down-regulated by steroids, TGFβ,
the heat shock response, p53, and NO· itself.169 NO· also presents a protective effect both in
vivo and in vitro by blocking TNFα-induced apoptosis and hepatotoxicity, in part by a thiol-
dependent inhibition of caspase-3-like protease activity.170 These studies demonstrate the
cytoprotective effects of NO· in the liver and suggest that hepatic NOS2 expression may
function as an adaptive response to minimize inflammatory injury.170 Thus, numerous
mechanisms have evolved to regulate NOS2 expression during hepatocellular injury.171 The
activation of NO· synthesis can be considered as an early adaptive response, which may become
a mediator of tissue damage in excess. Whether or not NO· or secondary oxidants generated
from NO· act as mediators of tissue injury or protect against toxicity will likely depend on the
precise targets of these RNS, the levels of O2

· −, and the extent to which tissue injury is mediated
by ROS.155

SYNERGISM BETWEEN REACTIVE NITROGEN SPECIES AND REACTIVE
OXYGEN SPECIES

ROS may synergize with or antagonize RNS during liver injury and inflammation. ROS and
RNS are important in the process of energy generation, lipid peroxidation, protein and DNA
oxidation, nitration, nitrosation, or nitrosylation and catecholamine response.172 ROS and
RNS also strongly interact with reactive sulfur species, ie, derivatives of reduced thiols (RSH)
including the thiolate anion (RS−), thiyl radical (RS·) , sulfenic acid (R-SOH), sulfinic acid
(R-SOO), and sulfonic acid (R-SOOH) derivatives.

Among the many types of oxidative modifications induced by ONOO− and other RNS are the
characteristic addition or substitution products in which NO· is essentially incorporated into
the target molecule (ie, nitrosation and nitration reactions).158 For instance, reactions with
thiol residues to form S-nitrosothiols have been proposed as a mechanism of either enzyme
regulation or NO· transport, and may provide a unique signaling mechanism induced by
nitrosative stress. S-Nitrosothiols in proteins (eg, albumin) or in low-molecular-weight thiols,
such as GSH, have been detected in the circulation, bile, as well as in respiratory tract lining
fluids.158 There is a mechanism for pro-MMPs activation caused by S-glutathiolation whereby
the GSH adduct of pro-MMP may be produced through disulfide S-oxide formation involving
generation of S-nitrosoglutathione (GSNO2) by ONOO−.173

The amino acid tyrosine appears to be a particularly susceptible target for nitration, and the
formation of free or protein-associated 3-nitrotyrosine has received much recent interest as a
potential biomarker for the generation of RNS in vivo.158 Furthermore, there is considerable
evidence in the protein chemistry literature that nitration of essential tyrosine residues can
inactivate many enzymes or prevent phosphorylation of tyrosine kinase substrates,174 and
these findings have supported the hypothesis that tyrosine nitration might result not only in the
formation of inactive “footprints” of RNS but might also be functionally related to the
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pathobiology of inflammatory diseases.175 For example, ONOO− promoted nitration and/or
phosphorylation of regulatory sites at tyrosine kinase receptors coupled to the well-known anti-
apoptotic pathways involving PI3K/Akt or MAPK.176,177 Moreover, one of the most
interesting protective effects of NO· is represented by the NO-dependent blocking of
hepatocyte apoptosis induced either by removal of growth factors or by exposure to TNFα or
anti-Fas antibody. This anti-apoptotic effect has been ascribed to S-nitrosylation of caspase-3
and -8, with the subsequent inhibition of their activity.178

REACTIVE NITROGEN SPECIES AND HEPATIC STELLATE CELL
ACTIVATION

Paracrine signaling is also important for nitrosative stress as it is for oxidative stress. Kupffer
cells also produce NO·, which can counterbalance the stimulatory effects of ROS by reducing
HSC proliferation, contractility, and collagen I production.179

Neutrophils are an important source of ROS, which have a direct stimulatory effect on HSC
collagen I synthesis. Activated neutrophils increased HSC collagen synthesis 3-fold over
control levels. O2

· − was identified as the principal mediator of the neutrophils’ effect. Activated
neutrophils also produce NO·, which dampened the effect of O2

· − on collagen I expression but
did not abrogate it completely.180

Activated HSC have contractile features181 that may contribute to increased intrahepatic portal
hypertension via constriction of the sinusoid or by contraction of fibrous ECM rich in collagen
I with concomitant disruption of lobular architecture.182 Endothelin and NO· play a major role
in the modulation of HSC contractility, and are therefore important in the pathogenesis of
intrahepatic portal hypertension.182

Therefore, NO· and NO· donors are capable of preventing or reducing proliferative responses
of activated HSC. NO· donors can efficiently inhibit PDGF-dependent proliferation and
chemotaxis in activated human HSC by activating an ibuprofen-sensitive, prostaglandin E2
and cAMP-dependent pathway which interferes negatively with PDGF signaling.69 Similar
results (ie, inhibition of stimulated proliferation of HSC by NO· donors) have been found with
angiotensin II as proliferative stimulus.183

There is recent work showing lipopolysaccharide-induced synthesis of IL-6, TNFα, and NO·
via NOS2 in HSC.184 This group presented evidence that activation of p38 by
lipopolysaccharide initiates signaling via NFκB and ROS (eg, H2O2) leading to the induction
of NOS2 and expression of IL-6 and TNFα, major players in hepatic hemodynamic regulation,
inflammation, and immune responses.

REACTIVE NITROGEN SPECIES AND COLLAGEN I
Oxidative stress may represent a direct or indirect relevant profibrogenic stimulus for HSC, as
suggested by in vivo experimental studies in which administration of antioxidants prevents
oxidative stress, lipid peroxidation, and liver fibrosis.185 Furthermore, oxidative stress and
lipid peroxidation are concomitant or precede HSC activation and collagen I deposition.4
Exposure of cultured human or rat HSC to pro-oxidants or to medium containing products
released from hepatocytes undergoing oxidative stress (ie, to mimic a possible paracrine effect
by damaged parenchymal cells) is followed by increased pro-collagen I gene expression.10

In contrast to ROS, which have been typically considered pro-fibrogenic agents,4,11 NO· may
be anti-fibrogenic.69,186 In the wound-healing response that restores tissue integrity, NO· is
synthesized in the early phase by inflammatory cells, mainly macrophages.187,188 However,
many cells participate in NO· synthesis during the proliferative phase after wounding. NO·
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released via NOS2 regulates collagen formation, cell proliferation, and wound contraction in
distinct ways in animal models of wound healing. Although NOS2 gene deletion delays, and
arginine and NO· administration, improve healing, the exact mechanisms of action of NO· on
wound-healing parameters are still unknown.187,188

ONOO− can down-regulate type I collagen in dermal and cardiac fibroblasts,189 smooth
muscle cells,190 and other cell types.191 In addition, ONOO− can act as a potent antifibrotic
effector in animal models of experimental fibrosis,192 and in the long-term inhibition of NOS2
in rats.186 However, in early traumatic wound-healing conditions, ONOO− favors collagen
synthesis and the formation of granulation tissue.193 There are different mechanisms to explain
the inhibition of collagen by ONOO−, ie, ONOO− may act through direct inhibition of collagen
synthesis by proline hydroxylation,191 stimulation of MMPs,194,195 reduced production of
TGFβ,189,195 initiation of fibroblast apoptosis,196 and/or neutralization of profibrogenic
ROS.156,164

Recent data from our group indicate that ONOO− and its secondary products may have potential
beneficial effects in the early fibrogenic response of HSC, which are exposed to reactive species
(ie, O2

· − and NO·) per se and also able to generate them (Fig. 2). The authors found a time-
and dose-dependent down-regulation of intra- and extracellular collagen I protein along with
an up-regulation of MMP-1 and TNFα in HSC treated with either pure ONOO− or a ONOO−

donor, which were blocked by ONOO− scavengers. The addition of ONOO− increased nitration
of MMP-1 and MMP-13 leading to increased activity as the cleaved active isoforms 22/25 kDa
for MMP-1 and 44/48 kDa for MMP-13 were undetected in the absence of ONOO−. However,
the protective role of ONOO− occurs only in the early fibrogenic response, and it is lost at more
advanced stages of the disease when other factors may hit in a synergistic way.197

The temporal expression profiles of profibrogenic genes in HSC and their coordination
concerning cell proliferation in alcoholic liver disease still needs further clarification. Stress-
derived mediators may activate seemingly contradictory signaling pathways and the ultimate
outcome may be dependent on the balance between these stress-activated pathways because
they could determine whether the cell proliferates or undergoes a fibrogenic response.
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Fig. 1.
Generation of NO· by NOS in liver cells. NO· is relatively unstable in the presence of O2 and
will rapidly and spontaneoulsy auto-oxidize to yield a variety of nitrogen oxides.NO· also reacts
with O2

· − to generate ONOO−. Although ONOO− is relatively stable, it has a pKa of 6.8, which
implies that substantial amounts of ONOO− will be protonated at physiologic pH to yield
peroxynitrous acid. This conjugate acid rapidly decomposes to yield NO3

−. Nitration of
tyrosine residues by ONOO− forms the stable product, 3-nitrotyrosine (3-NT, the footprint for
ONOO−) by addition of a nitro group to the 3-position adjacent to the hydroxyl group of
tyrosine.
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Fig. 2.
In liver injury, ROS and RNS are generated in all liver cells. O2

· − can react with NO· to generate
ONOO− and other metabolites that may impact the HSC fibrogenic response in the early stages
of cellular activation. ONOO− and its metabolites lower collagen I protein by increasing
TNFα and inducing nitration of MMP1 with the subsequent cleavage of collagen I. These
effects can be reverted by ONOO− chelating agents.
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Table 1
Summary of different factors that modulate collagen I expression

Collagen I
ROS(O2

· − and H2O2) 11,29,47,64,91,133,157-160 ↑
IL-4100 ↑
IL-6101,102 ↑
Acetaldehyde29,106,128-131 ↑
Arachidonic acid11 ↑
Malondialdehyde134 ↑
PDGF61,62,67 ↑
Nitric oxide71 ↓
TGFβ47,112,113 ↑
TNFα78,85,89 ↓
INFγ81,83,86 ↓
Fli-1120-122 ↓
Sp1/Sp3118,119 ↑
Adiponectin123,124 ↓
Leptin125-127 ↑
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