
17

ORIGINAL RESEARCH

Evolutionary Bioinformatics 2008:4 17–27

Correspondence: Glenn Hickey, School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6.
Tel: +1 (613) 520-2600 ext. 4588; Email: ghickey@scs.carleton.ca

Copyright in this article, its metadata, and any supplementary data is held by its author or authors. It is published under the
Creative Commons Attribution By licence. For further information go to: http://creativecommons.org/licenses/by/3.0/.

SPR Distance Computation for Unrooted Trees
Glenn Hickey1, Frank Dehne2, Andrew Rau-Chaplin3 and Christian Blouin4

1School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6. 2School of Computer
Science, Carleton University, Ottawa, Canada. 3Faculty of Computer Science, Dalhousie University,
Halifax, Canada. 4Faculty of Computer Science, Dalhousie University, Halifax, Canada.

Abstract: The subtree prune and regraft distance (dSPR) between phylogenetic trees is important both as a general means of
comparing phylogenetic tree topologies as well as a measure of lateral gene transfer (LGT). Although there has been exten-
sive study on the computation of dSPR and similar metrics between rooted trees, much less is known about SPR distances
for unrooted trees, which often arise in practice when the root is unresolved. We show that unrooted SPR distance compu-
tation is NP-Hard and verify which techniques from related work can and cannot be applied. We then present an effi cient
heuristic algorithm for this problem and benchmark it on a variety of synthetic datasets. Our algorithm computes the exact
SPR distance between unrooted tree, and the heuristic element is only with respect to the algorithm’s computation time.
Our method is a heuristic version of a fi xed parameter tractability (FPT) approach and our experiments indicate that the
running time behaves similar to FPT algorithms. For real data sets, our algorithm was able to quickly compute dSPR for the
majority of trees that were part of a study of LGT in 144 prokaryotic genomes. Our analysis of its performance, especially
with respect to searching and reduction rules, is applicable to computing many related distance measures.

Keywords: unrooted trees, SPR distance, lateral gene transfer, phylogenetic tree metrics

1. Introduction
Phylogenetic trees are used to describe evolutionary relationships. DNA or protein sequences are
associated with the leaves of the tree and the internal nodes correspond to speciation or gene duplication
events. In order to model ancestor-descendant relationships on the tree, a direction must be associated
with its edges by assigning a root. Often, insuffi cient information exists to determine the root and the
tree is left unrooted. Unrooted trees still provide a notion of evolutionary relationship between organ-
isms even if the direction of descent remains unknown.

The phylogenetic tree representation has recently come under scrutiny with critics claiming that it
is too simple to properly model microbial evolution, particularly in the presence of lateral gene trans-
fer (LGT) events (Doolittle, 1999). A LGT is the transfer of genetic material between species by means
other than inheritance and thus cannot be represented in a tree as it would create a cycle. The preva-
lence of LGT events in microbial evolution can, however, still be studied using phylogenetic trees.
Given a pair of trees describing the same sets of species, each constructed using different sets of genes,
a LGT event corresponds to a displacement of a common subtree, referred to as a SPR operation. The
SPR distance is the minimum number of SPR operations, denoted by dSPR, that explain the topological
differences between a pair of trees. It is equivalent to the number of transfers in the most parsimonious
LGT scenario (Beiko and Hamilton, 2006). In general, dSPR can be used as a measure of the topo-
logical difference between two trees, e.g. for comparing the outputs of different tree construction
algorithms.

Tree bisection and reconnection (TBR) is a generalization of SPR that allows the pruned subtree to
be rerooted before being regrafted. Computation of the TBR distance (dTBR) was shown to be NP-hard
(nondeterministic polynomial-time hard) by Allen and Steel (2001), who also provided two rules that
reduce two input trees to a size that is a linear functions of dTBR without altering their distance. These
rules, which reduce common chains and subtrees, also form the basis of algorithms that compute the
SPR distance between rooted trees (drSPR) (Bordewich and Semple, 2004) as well as hybridization
number (h) (Bordewich et al. 2007), see Section 3.3. Such algorithms proceed as follows. First the
distance problem is shown to be equivalent to counting components of a maximum agreement forest,

and then it is shown that the application of the rules
do not alter the number of components in the for-
est. These steps have been successfully applied to
dTBR, drSPR and h but not dSPR, for which no equiv-
alent agreement forest problem is known. As a
consequence, the computational complexity of dSPR
has remained an open problem. We provide a proof
of NP-Hardness in Section 2. In Section 3, we pres-
ent an effi cient algorithm that relies only on the
subtree reduction rule to compute the SPR distance
of unrooted trees. An implementation of this algo-
rithm was tested on a variety of data, and the results
are analyzed in Section 4. In particular, we show
that the conjecture that chain decomposition is
dSPR-preserving for unrooted trees (Allen and Steel,
2001) is strongly supported by our data.

2. SPR Distance Computation
is NP-Hard for Unrooted Trees
Hein et al. (1996) showed that computing the size
of a the Maximum Agreement Forest (MAF) of
two trees is NP-Hard by reducing it from Exact
Cover of 3-Sets (X3C). Later, Allen and Steel
(2001) proved that this result is insuffi cient to show
the hardness of unrooted SPR distance because
there is no direct relationship between MAF size
and dSPR, as was previously claimed. Similar tech-
niques have since been used by Bordewich and
Semple (2004) to show that rooted SPR distance
is NP-Hard via reduction from X3C to a rooted
version of MAF. We show that although dSPR can-
not be used to compute | MAF | in general, it can
for the trees used in the polynomial-time reduction
from X3C and this is suffi cient to show that dSPR
is NP-Hard as well. We begin with two preliminary
defi nitions.

Defi nition 2.1
An agreement forest for two trees is any common
forest that can be obtained from both trees by cut-
ting the same number of edges from each tree,
applying forced contractions after each cut. A
maximum agreement forest (MAF) for two trees is
an agreement forest with a minimum number of
components. (Hein et al. 1996)

Defi nition 2.2
The exact cover by 3-sets (X3C) problem is defi ned
as follows (Garey and Johnson, 1979): Given a set
X with | X | = n = 3q and a collection C of m 3-element

subsets of X. Does C contain an exact cover for X ,
i.e. a sub-collection C' ⊆ C such that every element
of X occurs in exactly one member of C' ?
NOTE: This problem remains NP-Complete if no
element occurs in more than three subsets. Also
note that this problem remains NP-Complete if
each element occurs in exactly three subsets. This
second property is implied by Hein et al. (1996)
though never explicitly stated. A supplemental
proof is provided in Appendix A.

We now review the polynomial-time reduction
from X3C to MAF provided by Hein et al. (1996),
clarifying their notation to refl ect that each element
of X belongs to exactly three subsets in C, i.e. |X| =
|C| = 3q = m = n, a fact implied but not clearly
stated in their paper. An instance of X3C is trans-
formed into two rooted phylogenetic trees shown
in Figure 1. Each element of X is represented by a
triplet of the form {a, u, v}and each triplet appears
3 times in each tree, once for each occurrence in a
subset in C. Tree T1 is illustrated in Figure 1(a).
Each subtree Ai ∈ T1, shown in Figure 1(b) cor-
responds to a subset ci ∈ C. Each subtree of Ai
induced by the triple {ai,j, ui,j, vi,j}where j ∈ {1, 2, 3}
corresponds to a single element of X.

Tree T 2, shown in Figure 1(c), has the same leaf
set as T 1 but a different topology. Each Di subtree
of T 2, as seen in Figure 1(e), corresponds to a subset
in C except only the a-part of each triplet is present.
Each Bi subtree of T 2, as seen in Figure 1(d),
corresponds to an element in X. Each such element
x = {a, u, v} in the set X appears in three different
subsets of C: cj , ck , and cl . Without loss of general-
ity, assume it consists of the fi rst element of cj,
second element of ck , and third element of cl . The
corresponding B tree would have leaves {uj,j′, uk,k′,
ul,l′, vj,j′, vk,k′, vl,l′} where j′ = 1, k′ = 2, l′ = 3.

(Hein et al. 1996) show that |MAF(T1, T2)| =
20q + 1 if and only if C contains an exact cover of
X. Note that we have added the z leaf to these trees,
unrooting them. This does not have any affect on
the |MAF| as z can remain attached to x1 in the
agreement forest without the addition of any new
components.

Proving that dSPR(T1, T2) = |MAF(T1, T2) − 1| is
suffi cient to transform any instance of X3C where
|X| = |C| = 3q to an instance of dSPR. In fact, it is
suffi cient to show that the inequality dSPR(T1, T

2)
� |MAF(T1, T2) − 1| is true as dSPR(T1, T2) �
|MAF(T1, T2) − 1| follows from Lemma 2.7(b) and
Theorem 2.13 from (Allen and Steel, 2001). We
proceed much in the same way as the original

18

Hickey et al

Evolutionary Bioinformatics 2008:4

Figure 1. Reduction of an instance of X3C to | MAF (T1, T2) | from an {a, u, v} triplet. The instance of X3C has a solution if and only if | MAF (T1, T2) | =
20q + 1 (where n = 3q).

proof, noting that each SPR operation used to
transform to T1 to T2 corresponds to a cut required
to form their MAF.

MAF(T1, T2) is formed by the cutting edges from
Ai subtrees (and the corresponding subtrees in T2)
in either of two possible ways (Hein et al. 1996):
1. Cut leaves ui,1, vi,1, ui,2, vi,2, ui,3, vi,3 and then

prune the remaining subtree formed by leaves

{ai,1, ai,2, ai,3}. Such a procedure contributes
7 components to the MAF.

2. Cut the leaves ai,1, ai,2, ai,3 then cut each of the
remaining two-leaf subtrees: {ui,1, vi,1},
{ui,2, vi,2}, and {ui,3, vi,3}. These operations con-
tribute 6 components to the MAF.
We now show that given two trees T1 and T2

and their MAF, which was created using the above

19

SPR distance computation for unrooted trees

Evolutionary Bioinformatics 2008:4

n

z

x
x

x
x

x

2
1

3

4

2n−1x
2ny
1 y2n−1 y2n

A1

A2

A

(a) Tree T1

ai,3

vi,3
ui,3ai,2

vi,2
ui,2

ui,1 ai,1

i,1v

(b) Subtree Ai

n−1

1

2

3
4

2

x
x

z

2n−1

2n

1

2
x
2n

B
1y
y

B
y
y

n

n

B
y
y

D1

D D

(c) Tree T2

k,k’ vl,l’
v
v

u
u
u

j,j’
k,k’

l,l’
j,j’

(d) Subtree Bi

i,3

a
a ai,1
i,2

(e) SubtreeDi

20

Hickey et al

Evolutionary Bioinformatics 2008:4

cut operations, there exists |MAF| − 1 SPR
operations that can transform T1 to T2. In particular,
for each set of cut operations, there exists an
equivalent set of SPR operations.
1. Prune leaves ui,1, vi,1, ui,2, vi,2, ui,3, vi,3 from Ai

and regraft them onto the chain, forming Bi
subtrees in the required positions. Prune the
subtree {ai,1, ai,2, ai,3} and regraft into the posi-
tion of Di. In this case, 7 SPR operations are
performed.

2. Prune the leaves ai,1, ai,2, ai,3 and regraft them
onto the chain, forming a Di subtree in the
proper position. Prune the remaining two-leaf
subtrees: {ui,1, vi,1}, {ui,2, vi,2}, and {ui,3, vi,3} and
regraft them onto the chain, forming Bi subtree
components in the required position. 6 SPR
operations are used.
There is a one-to-one correspondence between

cuts formed when creating the MAF and SPR
operations that can transform T1 to T2. Thus
dSPR(T1, T2) � |MAF(T1, T2)| − 1 and the proof is
completed.

3. Algorithm for dSPR Computation

3.1. Defi nitions
All trees referred to in this paper, unless otherwise
stated, are unrooted binary phylogenetic trees.
Such trees have interior vertices of degree 3 and
uniquely labeled leaves. Given a tree T, let V (T),
L (T) and E (T) ∈{V (T) × V (T)} be the vertex, leaf,
and edge sets of T respectively. A tree can be rooted
by adding a root vertex of degree 2. A pendant
subtree of T is any rooted tree T′ such that V(T′) ⊆
V(T), L(T′) ⊆ L(T) and E(T′) ⊆ E(T). A SPR
operation on a tree T is defi ned by the following

three steps, illustrated in Figure 2. First, an edge
{u, v} ∈ E(T) is removed, effectively pruning a
pendant subtree rooted at u from T. A new interior
vertex w is created by subdividing an edge in T and
the subtree is then regrafted by creating edge
{u, w}. Finally, the degree-2 vertex v is contracted
by identifying its incident edges. The SPR distance
between T1 and T2, denoted dSPR(T1, T2), is the
minimum number of SPR operations required to
transform T1 into T2. Furthermore, dSPR is a metric
(Allen and Steel, 2001).

3.2. Exhaustive search
The reduction rules referred to above only serve
to transform the original problem into smaller
subproblems. These subproblems must still be
solved with an exhaustive search as the problem
is NP-Hard (see proof in Appendix). Let GSPR(n)
be the graph such that each vertex in the graph is
associated with a unique tree topology with n
leaves, and all possible topologies are in the graph.
A pair of vertices in this graph are connected if
their SPR distance is 1. Computing dSPR(T1, T2) is
therefore equivalent to fi nding the length of the
shortest path between T1 and T2 on GSPR(n) and can
be computed through an exhaustive breadth-fi rst
search beginning at T1. Allen and Steel (2001)
showed that each tree will have O(n2) neighbors
in the graph and it follows that the search will visit
O(n2) trees of distance 1 from T1, O(n4) trees of
distance 2, up to O(n2k) trees of distance k. A hash
table is kept to ensure the same tree is not visited
twice. Assuming that it can be updated in constant
time, each tree can be processed in O(n) bringing
the time and space complexity of the search to
O(n2k+1).

While it is still an open problem to determine
if reduction rules can be found to reduce n to k in

Figure 2. 2(a) Original tree. 2(b) Edge uv is removed, pruning subtree rooted at u. 2(c) Subtree is regrafted, creating new vertex V′. 2(d)
Degree-2 vertex v is contracted.

v2

6

7

1 3 4 5

u

(a)

u

4

v

6

7

5

32

1

(b)

54

v′

u1

32

v

6

7

(c)

4 v′

u1

32

6

7

5

(d)

21

SPR distance computation for unrooted trees

Evolutionary Bioinformatics 2008:4

both trees by three new leaves with new labels
correctly oriented to preserve the direction. Allen
and Steel (2001) showed that maximum application
of both of these rules reduces the size of the input
trees to a linear function of dTBR. This result also
holds for dSPR as dSPR � 2dTBR for two trees since
each TBR operation can be replaced by 2 SPR
operations. It is trivial to show that subtree reduc-
tions do not alter dSPR but, unlike dTBR it is presently
unknown whether or not chain reductions affect
dSPR, therefore they can not be used in an exact
algorithm. However, our experimental results,
further described in Section 4, do support the con-
jecture that chain reductions do not affect SPR
distance.

In addition to applying reductions on the input
trees, intermediate trees visited during the breadth-
fi rst search can be likewise reduced. For example,
if T* is a tree found on the ith iteration from T1 that
has a common pendant subtree with T2, then that
subtree can be reduced to a leaf in T* and T2 with-
out affecting dSPR(T*, T2). Accordingly, the shortest
path from T1 to T2 will still be found by a search
that applies subtree reductions to the intermediate
trees. For ease of maintaining the hash table of
trees visited, in our implementation we fl ag com-
mon subtrees rather than remove them and use
these fl ags to avoid performing SPR operations
that would prune from or regraft to fl agged sub-
trees. This process has no adverse effect on the
asymptotic complexity of the search as common
subtrees and chains can be detected in O(n). It is
expected that performing reductions on intermedi-
ate trees will lessen the total number of trees
searched but we are unable to show that it will
affect the worst case complexity.

Because the number of trees visited in each
iteration of the exhaustive search increases expo-
nentially, the asymptotic complexity is bounded
by the number of trees explored in the final
iteration. It follows that the order in which these

the asymptotic complexity above, the value of the
exponent can be reduced signifi cantly. Observe
that there must be some tree T′ such that dSPR(T1, T′) =
⎣k/2⎦ and dSPR(T2, T′) = ⎡ k/2T′⎤ because dSPR is a
metric and therefore satisfi es the triangle inequality.
T′ and, correspondingly, k can be computed by
performing two breadth-fi rst searches, with origins
at T1 and T2 simultaneously. During the ith iteration
of the search, all trees of distance i from fi rst T1
then T2 are explored and updated into the same
hash table. T′ is the fi rst tree to be found by both
searches and dSPR(T1, T2) is 2i − 1 if T′ is found in
the search for T1 or 2i otherwise. Pseudocode is
given in Algorithm 1. The time complexity of this
algorithm is O(n⎣k/2⎦+1) + O(n⎡k/2⎤+1) = O(nk+2). This
is a signifi cant reduction from the simple search
but the complexity is still prohibitive. Fortunately,
heuristics can greatly speed up many instances of
the problem while still guaranteeing an exact
answer.

Algorithm 2 ITERATE (Lin, Lout, H, T)

1: for all t ∈ Lin do
2: if t ∈ H then
3: return TRUE
4: else
5: Append set of SPR neighbors of t to Lout
6: Insert t into H
7: end if
8: end for
9: return FALSE

Algorithm 1 SPRDIST (T1, T2)

 1: if T1 = T2 then
 2: return 0
 3: end if
 4: Apply subtree reductions to T1 and T2
 5: d ← 0
 6: H ← empty hash table
 7: L1, LA ← empty lists
 8: Insert T1 into L1
 9: Insert T2 into LA
10: loop
11: L2, LB ← empty lists
12: if ITERATE(L1, L2, H, T2) = TRUE then
13: return d
14: else
15: L1 ← L2
16: d ← d + 1
17: end if
18: if ITERATE(LA, LB, H, T1) = TRUE then
19: return d
20: else
21: LA ← LB
22: d ← d + 1
23: end if
24: end loop

3.3. Heuristic improvements
A subtree reduction replaces any pendant subtree
that occurs in both input trees by a single leaf with
a new label in each tree as as shown in Figure 3(a).
A chain reduction, illustrated in 3(b), replaces any
chain of pendant subtrees that occur identically in

22

Hickey et al

Evolutionary Bioinformatics 2008:4

trees are searched can have a critical impact on
the running time. We attempt to increase the
probability that the tree upon which the search is
completed is visited near the beginning of an
iteration by sorting the trees in each iteration
according to how many leaves are eliminated in
by subtree reduction. Our hypothesis is that trees
with larger common subtrees are more likely to
be near the destination tree. Since at most n leaves
can be eliminated by subtree reductions, the trees
can be bucket sorted in O(n) time, leaving the
asymptotic complexity unchanged. These last two
heuristics are employed by replacing the call to
ITERATE in SPRDIST to a call to SORT−ITERATE,
shown in Algorithm 3.

operation that affects more than one common clus-
ter would not reduce the distance and therefore not
be part of an optimal solution. Unfortunately, this
is not the case as evidenced by the counterexample
given in Figure 4 which presents T1 and T2 that
share the common cluster {7, 8, 9}. dSPR(T1, T2) = 3
and 3 SPR operations are shown that transform T1
into T2, the fi rst of which breaks the common clus-
ter. Indeed an exhaustive simulation showed that
no 3 sequential SPR operations exist to transform
the trees that do not break the common clusters.
This can be more easily seen by observing that any
such sequence would have to regraft 7 to 9 and only
2 operations would be left to transform the cluster
{1, 2, 3, 4, 5, 6} which is clearly insuffi cient.

4. Experimental Results

4.1. Datasets
The datasets were chosen to analyze the merits of
the heuristics discussed in the previous section as
well as evaluate our algorithm in a realistic setting.
To these ends, we bench-marked our algorithm on
a variety of randomly generated trees, as well as
trees created by Beiko et al. (2005) in the course of
analyzing the proteins from the 144 sequenced
prokaryotic genomes available at the time. Two sets
of random trees were generated, one by the Yule-
Harding model and the other by random walks.
Yule-Harding trees are constructed by fi rst creating
an edge between two randomly selected leaves, then
randomly attaching the remaining leaves to the tree
until none are left. The random walk dataset consists
of pairs of trees such that one of which is generated
by the Yule-Harding model and the other is created
from the fi rst by applying a sequence of between 2
and 8 random SPR operations (Beiko and Hamilton,
2006). The size of the datasets, along with the aver-
age distances computed by our algorithm are pre-
sented in Figure 5. In some cases, the program ran
out of memory before finding the solution.

Figure 3. Reduction rules applied to a tree. 3(a) A subtree is reduced to a leaf. 3(b) A chain of length n is reduced to a chain of length 3.

S x

(a)

1 2 3 nc c c c 321x x x

(b)

Algorithm 3 SORT_ITERATE (Lin, Lout, H, T)

 1: for all t ∈ Lin do
 2: Flag all subtrees in t that also occur in T
 3: end for
 4: Bucket Sort Lin in decreasing order by number

of vertices fl agged
 5: for all t ∈ Lin do
 6: if t ∈ H then
 7: return TRUE
 8: else
 9: Append set of SPR neighbors which

preserve fl agged subtrees of t to Lout
10: Insert t into H
11: end if
12: end for
13: return FALSE

A cluster is the leaf set of a pendant subtree. T1
and T2 share a common cluster C if they contain
pendant subtrees S1 and S2 respectively such that
L(S1) = L(S2) = C. Baroni et al. (2006) showed that
the hybridization number of two trees is equal to
the total of the hybridization numbers of all their
pairs of maximal common clusters. Beiko and
Hamilton (2006) made a similar assumption in their
heuristic algorithm to measure LGT. Such a decom-
position makes intuitive sense for exact SPR
distance as well, as it would seem that any SPR

23

SPR distance computation for unrooted trees

Evolutionary Bioinformatics 2008:4

The fraction of instances successfully resolved for
each type of data is listed in the “% Resolved”
column (Fig. 5(a), 5(c) and 5(e)).

4.2. Performance
The algorithm described in Section 3 was imple-
mented in C++ and benchmarked on a 2.6Ghz
Pentium Xeon System with 3G of RAM. The
source code is available at http: //morticia.cs.dal.
ca/lab_public/?Download. This program was
executed for all pairs of trees described in Figure 5
with and without the various heuristic optimiza-
tions discussed previously. Graphs 6(a), 6(c) and
6(e) in Figure 6 display the effectiveness of the
reduction rules’ ability to reduce the input trees.
As could be expected, the trees in the protein and
random SPR walk datasets are reduced more than
the two random datasets as their ratios of size to
distance are much higher. In all cases, the amount
of reduction increases in correlation to the mean
distance rather than n. Our method is essentially a
fixed parameter tractability (FPT) approach
(Downey and Fellows, 1998) and our experiments
indicate that the running time behaves similar to
FPT algorithms. Also encouraging is the fact that
the reduction rules perform much better in practice
than the worst-case analysis by Allen and Steel
(2001), which predicts a reduction in size to a fac-
tor of 28 times the distance. For example, in the
random SPR walk dataset whose mean distance is
roughly 2, the reductions are effective for n � 4
whereas in the worst case it is only guaranteed to
work for n �= 56. Similar results are visible in the

protein dataset graphs as well. As can be seen in
these graphs, chain reductions accounts for only a
small portion (well under 10%) of the overall gain
with subtree reductions making up the rest. We
also note that of the roughly 20,000 pairs of trees
tested, application of the chain reduction rule did
not once affect the SPR distance.

The performance of the remaining heuristics is
displayed in terms of running time in graphs 6(b),
6(d) and 6(f) in Figure 6. Applying the reductions
to intermediate trees provided very little perfor-
mance gain, implying that the search space is
dominated by trees with few common subtrees and
chains. However, sorting the trees visited in each
iteration of the search by the number of leaves
reduced had a signifi cant impact on the running
time for all of the harder cases (dSPR � 4), speeding
up the computation by nearly a factor of 6 for some
of the larger protein tree pairs.

5. Conclusion
The computation of SPR distances between
unrooted phylogenetic trees can be used to compare
the evolutionary histories of different genes and
provide a lower bound on the number of lateral
transfers. Little previous work has been done on this
problem though many related tree metrics have been
relatively well studied in the literature. The reason
for this appears to be primarily due to less insight
into the problem’s structure (no known MAF reduc-
tion) rather than lack of interest. In this paper we
revisited the problem of unrooted SPR distance,
showing that it is NP-Hard and providing an

Figure 4. Example of trees whose common clusters cannot be maintained by a minimal SPR path. T1 4(a) and T2 4(b) have a SPR distance
of three but all possible sequences of SPR operations of this length (one is shown by the dotted lines) break the common cluster {7, 8, 9}.

9

1

2

3 4
5 6 7 8

(a) T1

6
1

5

2 3
4 9 7

8
(d)

3

1

2

6 7 85 9 4

(b) {3, 4} is regrafted to {9}

8

1

2

65 93 4 7

(c) {2} is regrafted to {3}

24

Hickey et al

Evolutionary Bioinformatics 2008:4

Figure 5. Size, success rate and distance distributions for each dataset. For the protein data, no trees of size greater than 60 were
resolved.

optimized algorithm and implementation to solve
it exactly. The algorithm is based on dividing the
problem into two searches and making use of heu-
ristics such as subtree reductions and reordering.
This algorithm was able to quickly compute the
exact distance between the majority of proteins
belonging to 144 available sequenced prokaryotic

genomes and their supertree. Our method can also
be used to improve the brute force search component
of TBR and rooted SPR distance computation.

Though a polynomial time solution is unlikely
due to its NP-Hardness, some possible avenues of
future work on this problem remain. One is to
show that chain reductions do not affect the

 0

 50

 100

 150

 200

 250

 4 5 6 7 8 9 10 4 5 6 7 8 9 10

N
um

be
r

of
 T

re
e

Pa
ir

s

Number of Leaves (n) Number of Leaves (n)

Total
Resolved

Total
Resolved

Total
Resolved

(a) Yule-Harding Random Pct. Resolved

 0

 1

 2

 3

 4

 5

d S
P

R
d S

P
R

d S
P

R

Min/Mean/Max - Distance

(b)Yule-Harding Random Distances

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 T

re
e

Pa
ir

s

Number of Leaves (n)

(c)Simulated SPR Walk Pct. Resolved

 0

 1

 2

 3

 4

 5

 6

Number of Leaves (n)

Min/Mean/Max - Distance

(d) Simulated SPR Walk Distances

 0

 50

 100

 150

 200

 250

 300

 20 25 30 35 40 45 50 55 60

N
um

be
r

of
 T

re
e

Pa
ir

s

Number of Leaves (n) Number of Leaves (n)

(e) Protein Pct. Resolved

 0

 1

 2

 3

 4

 5

 6

 7

 5 10 15 20 25 30 35 40 45 50 55

Min/Mean/Max - Distance

(f) Protein Distances

25

SPR distance computation for unrooted trees

Evolutionary Bioinformatics 2008:4

distance, a conjecture that is supported by our
experimental results but for which an analytical
proof remains absent. This result would be suffi -
cient to show that unrooted SPR distance is fi xed
parameter tractable, being exponential only in
terms of the distance and not the size of the trees.

Bordewich et al. (2007) used a decomposition by
common clusters was used with signifi cant practi-
cal success. We showed that such a technique
cannot be directly applied to the problem of
unrooted SPR distances but perhaps a variation of
this technique can.

Figure 6. Experimental evaluation of the different heuristics on the three datasets. The effect of the reduction rules on the input tree sizes
is displayed on the left. The improvements to the running time made by reducing and sorting intermediate trees are displayed on the right.

 0

 2

 4

 6

 8

 10

 4 5 6 7 8 9 10

N
um

be
r o

f L
ea

ve
s

A
fte

r R
ed

uc
tio

ns

Number of Leaves in Input (n)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

4 5 6 7 8 9 10

M
ea

n
W

al
l T

im
e

(s
)

Number of Leaves (n)

 0

 20

 40

 60

 80

 100

10 20 30 40 50 60 70 80 90 100

N
um

be
r o

f L
ea

ve
s

A
fte

r R
ed

uc
tio

ns

Number of Leaves in Input (n)

No Reductions
Min/Mean/Max - Subtree Reductions

Min/Mean/Max - Chain & Subtree Reductions

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

M
ea

n
W

al
l T

im
e

(s
)

Number of Leaves (n)

No Heuristics
Intermediate Subtree Reductions

Intermediate Subtree Reductions & Sorting

 0

 10

 20

 30

 40

 50

 60

10 20 30 40 50 60

N
um

be
r o

f L
ea

ve
s

A
fte

r R
ed

uc
tio

ns

Number of Leaves in Input (n)

No Reductions
Min/Mean/Max - Subtree Reductions

Min/Mean/Max - Chain & Subtree Reductions

(e) Protein

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

5 10 15 20 25 30 35 40 45 50 55

M
ea

n
W

al
l T

im
e

(s
)

Number of Leaves (n)

No Heuristics
Intermediate Subtree Reductions

Intermediate Subtree Reductions & Sorting

No Reductions
Min/Mean/Max - Subtree Reductions

Min/Mean/Max - Chain & Subtree Reductions

(f) Protein

(d) Simulated SPR Walk(c) Simulated SPR Walk

(a) Yule-Harding Random (b) Yule-Harding Random

No Heuristics
Intermediate Subtree Reductions

Intermediate Subtree Reductions & Sorting

10 20 30 40 50 60 70 80 90 100

26

Hickey et al

Evolutionary Bioinformatics 2008:4

The contributions of this paper can thus be
summarized as follows: (1) We show that SPR
distance computation is NP-hard for unrooted trees.
(2) We present an effi cient heuristic algorithm for
this problem and benchmark it on a variety of
synthetic datasets. Our algorithm computes the
exact SPR distance between unrooted trees, and
the heuristic element is only with respect to the
algorithm’s computation time. Our method is a
heuristic version of a fi xed parameter tractability
(FPT) approach (Downey and Fellows, 1998) and
our experiments indicate that the running time
behaves similar to FPT algorithms. For real data
sets, our algorithm was able to quickly compute
dSPR for the majority of trees that were part of a
study of LGT in 144 prokaryotic genomes. (3) Our
analysis of its performance, especially with respect
to searching and reduction rules, is applicable to
computing many related distance measures. (4) In
Bordewich et al. (2007), a decomposition by com-
mon clusters was used with signifi cant practical
success. We show that such a decomposing by
common clusters cannot be used to compute exact
SPR distance for unrooted trees (Fig. 4) which is
somewhat counterintuitve.

Acknowledgment
This research partially supported by the Natural
Sciences and Engineering Research Council of
Canada and Genome Atlantic.

References
Allen, B.L. and Steel, M. 2001. Subtree transfer operations and their

induced metrics on evolutionary trees. Annals of Combinatorics,
5(1):1–15.

Beiko, R.G. and Hamilton, N. 2006. Phylogenetic identifi cation of lateral
genetic transfer events, BMC Evolutionary Biology 15(6)

Bordewich, M., Linz, S., John, K.S. and Semple, C. 2007. A reduction
algorithm for computing the hybridization number of two trees.
Evolutionary Bioinformatics, 3:86–98.

Bordewich, M. and Semple, C. 2004. On the compuational complexity of
the rooted subtree prune and regraft distance. Annals of Combinator-
ics, 8(4):409–23.

Doolittle, W.F. 1999. Phylogenetic classifi cation and the universal tree.
Science, 284:2124–8.

Downey, R. and Fellows, M. 1998. Parameterized Complexity, Springer-
Verlag

Garey, M.R. and Johnson, D.S. 1979. Computers and Intractability: A Guide
to the Theory of NP-Completeness, W.H. Freeman and Company.

Hein, J., Jiang, T., Wang, L. and Zhang, K. 1996. On the complexity of
comparing evolutionary trees. Discrete Applied Mathematics,
71:153–169.

27

SPR distance computation for unrooted trees

Evolutionary Bioinformatics 2008:4

Appendix A

X3C remains NP-complete when
each element occurs in exactly 3
subsets
In this appendix we verify that X3C remains NP-
Complete in the special case where each element
occurs in exactly three subsets. Consider an
instance of X3C in which no element occurs in
more than three subsets. We provide a polynomial
time reduction from such an instance, known to be
NP-Complete, into an instance in which each ele-
ment occurs in exactly three subsets. Let:

Y1 ⊆ X : Elements of X that appear in exactly
one subset

Y2 ⊆ X : Elements of X that appear in exactly
two subsets

Y3 ⊆ X : Elements of X that appear in exactly
three subsets

So |Y1| + 2|Y2| + 3|Y3| = |X| = 3q
For each element to appear in exactly three subsets,

we must add 2|Y1| + |Y2| elements to subsets in C.
Let multiset Z = {z0, z1, ... , z3p−1} = Y1 + Y1 + Y2

be these elements we have to add. Note that |Z| =
3p where p = 2(q − |Y3|) − |Y2|.

Let X′ = {x′0, x′1, ... , x′3p–1} be a set of new ele-
ments such that |X′| = 3p and X ∩ X′ = φ.

We now create a collection C′ of new subsets
out of Z and X′ so that each element in X ∪ X′
appears in a subset in C + C′ exactly three times.

For each i = 0, 3, ... , 3p − 1, we add four subsets
to C′:

 c′4i = {x′i, x′i+1, x′x+2}
c′4i+1 = {zi, x'i, x'i+1}
 c′4i+2 = {zi+1, x'i+1, x'i+2}
c′4i+3 = {zi+2, x'i+2, x'i}

We now show that X ∪ X′ and C + C′ form an
instance of X3C such that every element of X ∪ X′
appears in 3 subsets in C + C' and X has a cover in
C if and only if X ∪ X′ has a cover in C + C′.

(if): If X has a cover in C, then X ∪ X′ has a
cover in C + C': Let S ⊆ C be the cover of X. Then
S + c'0+ c'4+ c'8+ ... + c'12p−1 is a cover X ∪ X′.

(only if): If X ∪ X′ has a cover in C + C′, then
X has a cover in C: Similar to above, the only way
to cover X′ is with c′0+ c′4+ c′8+ ... + c′12p−1 and no
other elements of C′ can be part of an exact cover.
This means that X is covered entirely by subsets
in C so X is exactly covered by C.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

