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Unravelling the timing of the metazoan radiation is crucial for elucidating the macroevolutionary
processes associated with the Cambrian explosion. Because estimates of metazoan divergence times
derived from molecular clocks range from quite shallow (Ediacaran) to very deep (Mesoproterozoic),
it has been difficult to ascertain whether there is concordance or quite dramatic discordance between
the genetic and geological fossil records. Here, we show using a range of molecular clock methods
that the major pulse of metazoan divergence times was during the Ediacaran, which is consistent with
a synoptic reading of the Ediacaran macrobiota. These estimates are robust to changes in priors, and
are returned with or without the inclusion of a palaeontologically derived maximal calibration point.
Therefore, the two historical records of life both suggest that although the cradle of Metazoa lies in
the Cryogenian, and despite the explosion of ecology that occurs in the Cambrian, it is the emergence
of bilaterian taxa in the Ediacaran that sets the tempo and mode of macroevolution for the remainder
of geological time.
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1. INTRODUCTION
Central to unravelling the causality and biological
significance of the Cambrian explosion is accurately
and precisely elucidating the origination times of the
metazoan phyla. Despite the fact that the Cambrian
explosion is geologically obvious (Darwin 1859), it has
long been argued that this same geological record,
owing to its incompleteness, might be misleading when
considering metazoan origins (Runnegar 1982b). As
Runnegar (1986) recognized, a second ‘fossil record’,
the genetic record written in the DNA of all living
organisms, could be used to test hypotheses about the
completeness of the geological record (Peterson et al.
2007), and initial attempts at using a molecular clock
strongly suggested that metazoans had a deep and
cryptic Precambrian history (Runnegar 1982a, 1986;
Wray et al. 1996; reviewed recently by Conway Morris
2006). Nonetheless, several palaeontologists have
cogently argued that the fossil record provides positive
evidence for the absence of Early Neoproterozoic and
Mesoproterozoic animals, casting doubt on the veracity
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of these molecular clock estimates (Budd & Jensen

2000, 2003; Jensen et al. 2005; Conway Morris 2006;

Butterfield 2007). Hence, comparisons between the

genetic and geological fossil records of early animal

evolution, as currently understood, suggest that either

the geological record is woefully incomplete or that

there is something seriously awry with our reading of

the genetic record (Bromham 2006).

To explore the apparent incongruity between the

known fossil record and the very deep estimates of

metazoan diversification as revealed by molecular

clocks, Peterson and colleagues (Peterson et al. 2004;

Peterson & Butterfield 2005) assembled the largest

novel dataset yet, showing that the two records were

remarkably concordant: metazoans originated some-

time during the Cryogenian, and bilaterians arose

during the Ediacaran. Part of the reason for the prior

discrepancy concerned the use of vertebrate divergence

times. Peterson et al. (2004) discovered that there was

an approximately twofold rate reduction across the

vertebrate protein-coding genome as compared with

the three invertebrate lineages examined (echino-

derms, molluscs and insects), consistent with total

genome comparisons between vertebrates and dipteran

insects (Zdobnov et al. 2002). However, some studies

using invertebrate calibrations have also inferred
This journal is q 2008 The Royal Society
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divergence times consistent with a cryptic Precambrian
history of Metazoa (Pisani et al. 2004; Regier et al.
2005), suggesting that the twofold rate reduction across
the vertebrate genome is only one of many factors
influencing the estimation of divergence times (Linder
et al. 2005; Peterson & Butterfield 2005).

In addition, Peterson et al.’s (2004) estimates and
explanations were called into question by several
workers, notably Blair & Hedges (2005) who argued
that Peterson et al. (2004) used palaeontologically
derived calibration points as maxima as opposed to
minima, which generated spuriously shallow estimates
for metazoan divergences. Although false, as Peterson
et al. (2004) stated explicitly (see also Peterson &
Butterfield 2005), this criticism highlights an import-
ant issue surrounding the use of molecular clocks,
namely the proper way to incorporate calibration points
into molecular clock analyses (Benton & Donoghue
2007). Recent experimental analyses have shown the
importance of numerous, well-constrained calibration
points for returning accurate and precise estimates of
divergence times, and thus highlighting the need to pay
particular attention to this aspect of molecular dating
(Roger & Hug 2006; Hug & Roger 2007). Nonetheless,
difficulties arise when incorporating fossils into a
molecular clock analysis: unlike the establishment of
a minimal divergence time for any two taxa, which is
simply the first appearance of either one of the taxa,
estimating the maximum divergence time is much more
difficult (Benton & Donoghue 2007). Two types of
maxima have been proposed: a ‘hard’ maximum
proposes an absolute value for the oldest possible
date of divergence; whereas a ‘soft’ maximum treats a
divergence as having some chance of being older than a
particular date, depending on a probability distribution
used to describe the calibration point (Hedges &
Kumar 2004; Yang & Rannala 2006; Benton &
Donoghue 2007).

Most modern molecular clock methods (e.g.
Sanderson 1997, 2002; Thorne et al. 1998; Drummond
et al. 2006) allow constraining, as well as fixing, the age
of a calibration point, so that every fossil divergence can
be defined using a minimum and a maximum. This is a
significant improvement over older molecular clock
approaches (e.g. Kumar & Hedges 1998) because it
allows the integration of palaeontological uncertainty in
the estimation of divergence times. However, most
existing molecular clock software including ‘r8s’
(Sanderson 2004) and ‘MULTIDIVTIME’ (Thorne &
Kishino 2002), do not distinguish between hard and
soft maxima, instead treating all maxima as hard. The
difficulty here is that divergence times estimated with
uncertain maxima treated as if they were hard can only
give minimum estimates for the true divergence time, as
the soft maxima might significantly underestimate the
true age of the calibration points. Nonetheless,
Drummond et al. (2006) have now implemented
Bayesian relaxed molecular clock methods (in the
software package BEAST) where soft maxima can be
properly modelled using a probability distribution, and
can thus be older than their proposed fossil date.

Here, we set out to explore the diversification of
animal phyla in the Neoproterozoic using alternative
relaxed molecular clock approaches while testing the
Phil. Trans. R. Soc. B (2008)
stability of our results to the choice of different priors
and to the deletion of palaeontologically derived
maxima, and modelling soft maxima using the most
appropriate probability distribution. We find that,
although deleting or relaxing maxima tends to push
divergence times towards the past (as expected), all
estimates are largely congruent between algorithms.
We conclude that a synoptic reading of both the
geological and genetic fossil records demonstrates
that the Ediacaran was the time of major diversification
of most higher-level animal taxa and set the stage for
Phanerozoic-like macroecology and macroevolution.
2. MATERIAL AND METHODS
(a) Molecular characters

All taxa are taken from Sperling et al. (2007) where a

concatenated alignment of seven different housekeeping

genes, for a total of 2059 amino acid positions and 44

representative species (see Peterson et al. 2004; Peterson &

Butterfield 2005), was analysed using Bayesian methods

(MRBAYES v. 3.1.2; Ronquist & Huelsenbeck 2003; see

Sperling et al. 2007 for details).
(b) Molecular clock calibration

Calibration points were taken from Peterson et al. (2004)

except for the minimum estimate for crown-group Eleuther-

ozoa, which was adjusted from 475 to 480 Myr ago in light of

the discovery of a slightly older asterozoan (Blake &

Guensberg 2005), and the minimum and the maximum for

crown-group Diptera were taken from Benton & Donoghue

(2007). Several new maxima and minima were incorporated

into this analysis. First, the maximum for the origin of crown-

group echinoderms was set at 520 Myr ago, the first

appearance of stereom in the fossil record. Because stereom

is a highly distinctive skeletal material, and its presence in

numerous stem-group taxa (Smith 2005) demonstrates that

stereom is a total-group echinoderm character, it must have

evolved before the origin of the crown group. Indeed, if

stereom had evolved much earlier (i.e. before the Tommotian,

~525 Myr ago), then one would expect that stereom would be

aragonitic as opposed to calcitic, given that mineral choice

seems dictated by the sea water chemistry at the time the

skeleton was first acquired (Porter 2007). Second, this same

time point also sets the minimum for Ambulacraria

(EchinodermataCHemichordata), as echinoderms appear

before hemichordates in the rock record (Budd & Jensen

2003). Third, because ambulacrarians are characterized by

the possession of four to six coeloms in each animal (Peterson

et al. 2000; Smith et al. 2004), and because coeloms cannot

predate the first appearance of bilaterian traces (Budd &

Jensen 2000, 2003), the first appearance of traces sets the

maximum age for crown-group Ambulacraria, ca 555 Myr

ago (Martin et al. 2000; Jensen et al. 2005). Fourth, the

maximum for the origin of GastropodaCBivalvia, is the first

appearance of skeletons in the fossil record, ca 542 Myr ago

(Bengtson 1994; Amthor et al. 2003). Fifth, the maximum for

the origin of crown-group demosponges, is the first

appearance of demosponge-specific biomarkers (McCaffrey

et al. 1994; Love et al. 2006; see Peterson et al. 2007 for

discussion), sometime after the Sturtian, ca 657 Myr ago

(Kendall et al. 2006). Finally, the maximum for the origin of

crown-group Eumetazoa, which was only used in the BEAST

analyses, is argued to be 635 Myr ago based on palaeoeco-

logical observations (Peterson & Butterfield 2005).
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Figure 1. The timing of the metazoan radiation according to the molecular clock. The phylogenetic tree for 41 metazoan taxa
rooted on the yeast Saccharomyces cerevisiae as determined by Bayesian phylogenetic analysis (see text) is shown. The
deuterostomes are shown in red, spiralian protostomes in green, ecdysozoan protostomes in blue, cnidarians in orange, the
homoscleromorph Oscarella in salmon pink, calcisponges in purple and demosponges in magenta. The nodes of the tree
are positioned according to the optimum as determined from the Bayesian autocorrelated method of Thorne et al. (1998),
as implemented in the software package ‘MULTIDIVTIME’ (Thorne & Kishino 2002) using a root prior of 1000 Myr ago
(s.d.Z500 Myr ago). The 95% HPD credibility intervals are shown in brackets. The red crosses are the estimates for clades with
internal calibration points as determined by Bayesian algorithm BEAST (Drummond et al. 2006) using uniform priors and an
exponential rate distribution; black Xs are the estimates using exponential priors and the same rate distribution. Note that much
of the metazoan diversification occurs during the Ediacaran (brown), which lies between the Cryogenian (ice blue) and the
Cambrian (green).
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Newly incorporated minima include the first appearance

of arthropod traces 525 Myr ago (Budd & Jensen 2003) as a

minimum for the divergence between insects and the

priapulid, the first appearance of medusozoans 500 Myr ago

(Hagadorn et al. 2002) as a minimum for the origin of the

crown-group Cnidaria, and the first appearance of vertebrates

520 Myr ago, as the minimum for the origin of crown-group

chordates (Benton & Donoghue 2007).

(c) Molecular estimates of divergence times

Molecular estimates of divergence times were obtained

using the Bayesian methods of Thorne et al. (1998) as

implemented in MULTIDIVTIME (Thorne & Kishino 2002),

and Drummond et al. (2006) as implemented in BEAST

v. 1.4.2 (Drummond & Rambaut 2007). All divergence times

were calculated assuming the tree topology of figure 1, which

was derived from MRBAYES (see above and Sperling et al.

2007). For the MULTIDIVTIME analyses, branch lengths

were estimated using the ESTBRANCHES program from the
Phil. Trans. R. Soc. B (2008)
MULTIDIVTIME package, under the WAG model. For BEAST

analyses, starting branch lengths were assigned arbitrarily to

match the constraints imposed by the calibrations.

For the MULTIDIVTIME analyses, a prior age for the root

node (in our case the Fungi–Metazoa split) must be specified.

We assumed a 1000 Myr ago prior for this node (Knoll 1992;

Douzery et al. 2004), and then tested whether this choice

affected our results by performing analyses in which this age

was changed to 100 Myr ago (s.d.Z500 Myr ago), 1500 Myr

ago (s.d.Z500 Myr ago) and 2000 Myr ago (s.d.Z750 Myr

ago). Other priors used in MULTIDIVTIME analyses include the

mean and standard deviation of the prior distribution at the

root node, and ‘Minab’ (parameter for beta prior on

proportional node depth). The mean and standard deviation

of the prior distribution of the rate at the root node were set to

0.039, as estimated from the data following the procedure

outlined in the MULTIDIVTIME manual, and the effect that

100-fold changes to this parameter had on the results were

assessed. The Minab parameter affects the distribution of



Table 1. Optima (maxima and minima) in millions of years derived from MULTIDIVTIME (M) and BEAST (B) for five key metazoan
divergences.

method Metazoa Eumetazoa Bilateria Protostomia Deuterostomia

M-1000a 766 (803,731) 676 (709,645) 643 (671,617) 619 (648,594) 601 (625,579)
M-100b 760 (798,725) 672 (706,642) 641 (669,615) 618 (645,592) 600 (624,578)
M-2000c 774 (812,739) 679 (712,648) 645 (674,619) 622 (649,595) 602 (626,580)
M-1000-Dd 904 (997,825) 743 (798,694) 686 (727,649) 653 (689,619) 624 (655,596)
B-UCEX uniforme 815 (1621,625) 676 (849, 579) 652 (764,570) 620 (692,556) 572 (614,537)
B-UCEX expf 1067 (2358,612) 707 (985, 581) 669 (870,566) 638 (784,556) 582 (695,529)
B-UCLN uniformg 891 (995,640) 739 (822,607) 699 (768,588) 660 (715,572) 640 (706,559)
B-UCLN exph 953 (1093,821) 779 (869, 694) 733 (808,663) 688 (751,629) 677 (746,607)

aAge of the root prior is 1000 Myr ago (s.d.Z500 Myr ago); bAge of the root prior is 100 Myr ago (s.d.Z500 Myr ago); cAge of the root prior is
2000 Myr ago (s.d.Z750 Myr ago); dAge of the root prior is 1000 Myr ago (s.d.Z500 Myr ago) and estimates derived without considering the
demosponge maximum of 657 Myr ago; eEstimates derived using an exponential rate distribution and uniform priors. fEstimates derived using
an exponential rate distribution and exponential priors; gEstimates derived using a lognormal rate distribution and uniform priors; hEstimates
derived using a lognormal rate distribution and exponential priors.
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the nodes through time—Minab values greater than 1 will

cause the nodes to repel each other, while values smaller than

1 will cause the nodes to attract each other. This parameter

was set to 1 for our analyses, but we assessed how changing

the Minab parameter from 0.6 to 1.4 affected our results.

BEAST implements uncorrelated relaxed clock methods,

which assumes an overall distribution of rates across

branches, but does not assume that the rates on adjacent

branches are autocorrelated. We used both the exponential

and lognormal rate distributions with two different calibration

schemes: one with hard maxima in which most calibrations

were treated as uniform priors on clade ages, and a second

with only soft maxima, in which all calibrations were treated

as exponential priors, with 95% of their density lying between

the uniform maximum and minimum. In both schemes, the

maximum at 635 Myr ago was treated as an exponential

prior, with 90% of its density lying below 635 Myr ago,

giving a 10% prior chance that this calibration point is

incorrect. All other priors and operators were kept at default

settings, except that all operators that alter the tree topology

were disabled.

Ninety-five per cent highest posterior density (HPD)

credibility intervals are automatically calculated by MULTI-

DIVTIME, and were calculated using the program TRACER for

the BEAST analyses. To test whether our priors dominated the

posterior distribution, all our BEAST and MULTIDIVTIME

analyses were also performed without data and the results

obtained in these runs were compared with those obtained

when the data were actually analysed.
3. RESULTS
Molecular divergence times were estimated using the
topology shown in figure 1. Support for Cnidaria and
Deuterostomia was low (67 and 33%, respectively),
probably owing to long-branch artefacts (Pisani 2004)
associated with Ciona and Obelia in particular (indeed
the value for Deuterostomia increases to more than
90% with the removal of Ciona), but given the clear
monophyly of the phyla Chordata and Cnidaria cons-
training these nodes should not generate spurious mole-
cular divergence estimates. Most of the other nodes
were strongly supported, including CalcispongiaC
Eumetazoa and Eumetazoa, supporting the results of
Peterson & Butterfield (2005), and contra the con-
clusions of Rokas and colleagues (Rokas et al. 2005; see
also Baurain et al. 2006). Indeed, within Protostomia,
for example, all but one node (StylochusCNemertea)
Phil. Trans. R. Soc. B (2008)
have posterior probability values above 80%, and both
Lophotrochozoa and Ecdysozoa, as well as AnnelidaC
Mollusca, have clade credibility values of 100%. In
addition, we find strong support for the node
HomoscleromorphaCEumetazoa, which indicates
that there are at least three independent extant sponge
lineages (Sperling et al. 2007).

Using this topology as a constraint tree, divergence
times were estimated using the Bayesian autocorrelated
method of Thorne et al. (1998), as implemented in the
software package MULTIDIVTIME (Thorne & Kishino
2002). These Bayesian estimates are robust to changes
in the age of the root prior as the estimates are
essentially the same whether the age is 100 Myr ago
(s.d.Z500 Myr ago) or 2000 Myr ago (s.d.Z750 Myr
ago; table 1), suggesting that the age of the root prior is
not biasing the analyses. Also, changing the value of
Minab, or the mean rate of evolution of the root node,
did not change our results (not shown). Running the
analyses without data confirmed that our results were
not dominated by our choice of priors (not shown).
The suggestion that fungi diverged from animals ca
1000 Myr ago (Knoll 1992; Douzery et al. 2004) was
confirmed by all our analyses that did not assume a
particular age for the root node. Thus, we used the
values derived from the 1000 Myr ago (s.d.Z500 Myr
ago) prior on figure 1.

The removal of the deeper calibration point, namely
the maximum age of 657 Myr ago for the origin of
crown-group demosponges, resulted in increasing the
estimate for the age of crown-group Metazoa by
approximately 18% (from 766 to 904 Myr ago;
table 1). Nonetheless, the age for both crown-group
Protostomia and crown-group Deuterostomia
increased by only approximately 4–5%, suggesting
that the results derived with the use of this maximum
are generally robust. Given its position in the tree, the
geological depth of the divergence, and the unique
nature of the evidence (biomarkers), this maximum is
most likely adding both accuracy and precision to the
clock estimates.

We next explored these same divergence times using
the models implemented in BEAST (Drummond et al.
2006). In general, the estimates derived from BEAST

using an exponential rate distribution and uniform
priors (red crosses in figure 1) are similar to those
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Figure 2. Putative Ediacaran metazoans. (a) Natural cast on bed base of Kimberella resting trace (asterisk) and Radulichnus
radular feeding trace fans (arrows); scale bar, 1 cm. (b)Parvancorina minchami; scale bar, 1 cm. (c) Spriggina floundersi; scale bar,
10 mm. (d ) Marywadea ovata; scale bar, 10 mm. (e) Dickinsonia costata; scale bar, 2 cm.
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derived from MULTIDIVTIME (table 1). The analyses that
use exponential priors are somewhat deeper than those
that use uniform priors (black Xs in figure 1), and those
using a lognormal rate distribution are deeper than
those derived from an exponential rate distribution
(table 1), presumably because the exponential distri-
bution on rates is leading to greater autocorrelation
between rates. Analyses without data again confirmed
that the priors were not dominating the data (results
not shown).
4. DISCUSSION
(a) Concordance between the genetic and

geological fossil records

Here we have shown, using a variety of analyses and
appropriately testing for biases that may have been
introduced by the use of palaeontologically derived
maxima, that the genetic fossil record strongly supports
the notion that the diversification of metazoans in
general, and bilaterian metazoans in particular,
occurred during the Ediacaran Period, 635–542 Myr
ago (Knoll et al. 2004, 2006). How do these molecular
estimates compare with the known geological record?
Macroscopic fossils of the Ediacara biota span the
upper half of the Ediacaran Period, from 575 to
542 Myr ago (Grotzinger et al. 1995; Martin et al.
2000; Bowring et al. 2003; Condon et al. 2005). Since
most of these fossils occur as soft-bodied impressions in
relatively coarse-grained siliciclastic sedimentary rocks,
a comprehensive array of palaeobiological interpre-
tations of the Ediacara biota has been put forth.
Phil. Trans. R. Soc. B (2008)
Nonetheless, a few taxa stand out as potential
candidates for affinities within Metazoa. One taxon in
particular, Kimberella, has generated much discussion
as a possible triploblastic metazoan. Not only does it
compare well in external form to molluscs (Fedonkin &
Waggoner 1997), in a few cases an everted proboscis is
preserved (Gehling et al. 2005) that is inferred to
contain a radula-like organ given the association
between specimens of Kimberella (figure 2a, asterisk)
and aligned sets of paired scratch marks (figure 2a,
arrows; Gehling et al. 2005). These findings suggest
that Kimberella was preserved in place while grazing on
substrate microbial mats (Seilacher 1999; Gehling et al.
2005). Given that we estimated the divergence between
annelids and molluscs to be ca 570 Myr ago (figure 1),
it is possible, if not probable, that Kimberella is allied
with modern molluscs.

What about other higher-level clades? Our estimates
suggest that arthropods diverged from priapulids ca
575 Myr ago, suggesting that stem-group panarthro-
pods (Nielsen 2001) should be present in Upper
Ediacaran rocks. Interestingly, several taxa compare
favourably with a panarthropod interpretation. For
example, large specimens of Parvancorina show lateral
structures originating on either side of the medial ridge
that might be characterized as appendages (figure 2b).
In fact, in external form, Parvancorina bears a striking
resemblance to the unmineralized kite-shaped Cam-
brian arthropod Skania (Lin et al. 2006). Spriggina
(figure 2c) also preserves large numbers of appendage-
like structures, and still others like Marywadea
(figure 2d ) show apparent cephalic branching
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structures that resemble digestive caecae in arthropods.
Importantly (see below), all of these taxa were no larger
than 10 cm in maximum dimension (Gehling 1999;
Fedonkin 2003; see figure 2), and appear simul-
taneously with the first demonstrable trace fossils
(Droser et al. 2005; Jensen et al. 2005). The absence
of arthropod scratch marks (Seilacher 1999), though, is
not too worrisome given that such traces would
demand the presence of sclerotized appendages to cut
through the ubiquitously present microbial mats, a
character not necessitated by the presence of stem-
group panarthropods, or even deeply nested stem-
group arthropods, in Ediacaran-aged sediments.

Indeed, the distinct possibility remains that this
fauna preserves numerous stem-group forms ranging
from basal triploblasts up through basal ecdysozoans,
spiralians and possibly even deuterostomes. Given the
enigmatic nature of some very prominent taxa like
Dickinsonia (figure 2e), a taxon that appears capable of
some form of limited motility (Gehling et al. 2005), a
position for Dickinsonia within total-group Eumetazoa
is not out of the question. In fact, mobile but
saprophytic feeding without the use of a gut would be
compelling evidence that some form of ectomesoderm
predates the advent of endoderm.

(b) Discordance between the genetic and

geological fossil records

Of course, many others have addressed these questions
using a similar approach, and it is worth comparing our
results against not only the fossil record but also with
other molecular clock estimates as well. It compares
well with some molecular analyses, notably Peterson
et al. (2004) and Peterson & Butterfield (2005), all of
whom argued that the last common ancestor of
protostomes and deuterostomes evolved not more
than 635 Myr ago. But recently, Blair & Hedges
(2005), argued for much deeper divergences, based
on a series of penalized likelihood (Sanderson 2002)
analyses using r8s (Sanderson 2004) in which every
calibration point was treated as a minimum. They
suggested that the divergence between ambulacrarian
and chordate deuterostomes was 896 Myr ago (with
the 95% CI spanning from 832 to 1022 Myr ago).
They further argued that the divergence between
hemichordates and echinoderms was 876 Myr ago
(725 and 1074 Myr ago), and the origin of crown-
group echinoderms was 730 Myr ago. Finally, they
estimated that the divergence between starfish and sea
urchins was 580 Myr ago. Unfortunately, their results
are most likely spurious because as Sanderson (2004)
pointed out, r8s cannot converge on a unique solution
if only minima are used to calibrate penalized
likelihood analyses, which is supported by the fact
that their estimate for the origin of a mineralized,
coelomate taxon like crown-group Echinodermata
precedes their appearance in the fossil record by some
200 Myr ago.

Of course, neither the genetic nor the geological
fossil record has a monopoly on historical accuracy, and
as much as molecular evolutionists need to keep in
mind the relevant palaeontological data, palaeontolo-
gists need to keep in mind estimates derived from
molecular clocks (Donoghue & Benton 2007). For
Phil. Trans. R. Soc. B (2008)
example, Budd & Jensen (2000, 2003) argued that
bilaterians could not have had an extensive Precam-
brian history, as suggested by almost all molecular
clocks, as the trace fossil record, and the inferred
morphology of these animals, is not consistent with an
origin much before 555 Myr ago. They observed that
possession of coelom(s) and a blood vascular system
(BVS) is inconsistent with a meiofaunal origin, as tiny
organisms would have had no need for a transport
system like the BVS, and are only consistent with a size
large enough to be detected in the geological record. In
general, we agree with their arguments, and use their
insights to set a maximum age for crown-group
Ambulacraria (see above).

However, the same argument cannot be extended to
many other parts of the bilaterian tree. Contra Budd &
Jensen (2000), there is no evidence for homology of
coeloms either between protostomes and deuteros-
tomes or even within both protostomes and deuter-
ostomes. Since the coelom is, by definition, just a
mesodermally lined cavity (Ruppert 1991; Nielsen
2001), the possession of the space itself cannot be used
as an argument of similarity. Instead, topological
similarity must be used, and when it is, it strongly
suggests homology, for example, within Ambulacraria
(Peterson et al. 2000; Smith et al. 2004), but not
homology between any other higher taxa (Ruppert
1991; Nielsen 2001). Thus, outside of Ambulacraria,
the trace fossil record cannot be used to set a maximum
for most bilaterian divergences. In fact, the small size of
many putative Ediacaran bilaterians (figure 2), and the
fact that acoel flatworms are now recognized as the
sister group to the remaining bilaterians (Baguñà &
Riutort 2004; Peterson et al. 2005; Sempere et al.
2007), is consistent with an argument that small size
and absence of a coelom are primitive for Bilateria.
This then removes the final obstacle to a pre-555 Myr
ago origin for Bilateria, which is consistent with
both the appearance of many different bilaterian
lineages in the Ediacaran (figure 2) and the molecular
clock (figure 1).

Despite the presence of many different stem-group
taxa, the Ediacaran is still a transitional ecology, with
these organisms confined to a two-dimensional mat
world. This stands in dramatic contrast to the Early
Cambrian where the multi-tiered food webs that so
typify the Phanerozoic were established with the
eumetazoan invasion of both the pelagos and the
infaunal benthos (Butterfield 1997, 2001; Vannier &
Chen 2000, 2005; Dzik 2005; Peterson et al. 2005;
Vannier et al. 2007). Hence, although the Ediacaran is
an apparent quantum leap in ecological complexity as
compared with the ‘boring billions’ that characterize
Earth before the Ediacaran, it is still relatively simple
when compared with the Cambrian, yet another
quantum leap in organismal and ecological evolution.
Thus, the Ediacaran stands as the transition interval
between the ‘Precambrian’ and the Phanerozoic
(Butterfield 2007). Whether the Ediacaran transition
was triggered by the introduction of eumetazoans, as
argued by Peterson & Butterfield (2005), or by the
introduction of mobile, macrophagous triploblasts, as
is suggested by our analyses reported here (figure 1), or
some other factor or combination of factors, remains to
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be more fully studied through continued exploration of
the relevant rock sections throughout the world, and
continued improvements in molecular clock methods.
5. CONCLUSIONS
Both the genetic and geological fossil records, each with
their own inherent biases and artefacts, are largely
congruent with one another, and for historical dis-
ciplines congruence of independent datasets is the
strongest argument one can make for historical accuracy
(Pisani et al. 2007). Thus, our analyses suggest that
while the cradle of metazoan life is in the Cryogenian,
and the explosion of metazoan ecology occurred in
the Cambrian, it is the emergence of bilaterians in the
Ediacaran that established the ecological and evolution-
ary rules that largely govern Earth’s macrobiota for the
remainder of geological time.
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