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Abstract
Purpose—To develop and validate a multi-dimensional segmentation and filtering methodology
for accurate blood flow velocity field reconstruction from phase contrast magnetic resonance
imaging (PC MRI).

Materials and Methods—The proposed technique consists of two steps: 1) the boundary of the
vessel is automatically segmented using the active contour approach; 2) noise embedded within
the segmented vector field is selectively removed using a novel fuzzy adaptive vector median
filtering (FAVMF) technique. This two-step segmentation process is tested and validated on 111
synthetically generated PC MRI slices and on 10 patients with congenital heart disease.

Results—The active contour technique was effective for segmenting blood vessels having a
sensitivity and specificity of 93.1 and 92.1 % using manual segmentation as a reference standard.
FAVMF was the superior technique in filtering out noise vectors, when compared to other
commonly used filters in PC MRI (p <0.05). The peak wall shear rate calculated from the PC MRI
data (248 ± 39 s−1), was significantly decreased to (146 ± 26 s−1) after the filtering process.

Conclusion—The proposed two step segmentation and filtering methodology is more accurate
compared to a single step segmentation process for post processing of PC MRI data.
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INTRODUCTION
Phase contrast magnetic resonance imaging (PC MRI) is a widely used clinical imaging
modality for visualizing and quantifying blood flow velocity fields in vivo. Besides the
measurement of flow rates, it has been used to quantify wall shear stress (WSS)(1–5),
pressure drops(2), and flow related phenomena like coherent structures and viscous
dissipation energy losses(6). In addition, PC MRI has also been used to identify regions
prone to atherosclerosis(7,8), aneurisms(9), and the patency of heart valves(10,11).
However, an accurate post-processing methodology is crucial for quantifying these
parameters.
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One of the key post-processing steps is the segmentation of the velocity field within the
blood vessel of interest. Typically, the segmentation process consists of the detection of the
vessel boundary, and the velocity field inside this boundary is then used for quantifying the
clinical parameters of interest. Most users employ manual outlining techniques for the
purposes of segmentation, although they can be quite time consuming and tedious,
especially in situations where large sets of data have to be processed. Automatic
segmentation techniques that can significantly speed up the time taken to process and
analyze these datasets are highly desirable. The most popular method in the literature for
automatic PC MRI segmentation is active contours(12–15). Active contours, or snakes, are
curves defined within an image domain that move under the influence of both external
forces (based on image data) and internal forces (based on the contour itself). These forces
are defined such that the snake will be attracted towards specific features within the image,
and in most cases towards the edge of a vessel. Different formulations of the external force
can be chosen. Options include gradient magnitude of phase images(15), velocity vector
based forces (16,17), and statistical models(18), that are selected based on the desired
segmentation application.

Active contours work well for detecting the morphology of the vessels. However, in
situations when the vessel boundary is blurred there are no suitable edges for a contour to
converge upon and hence only an approximation of the vessel boundary can be obtained. In
such a scenario, vectors that are not part of the desired velocity field get incorporated into
the segmentation (Figure 1). This effect is pronounced when the vessel is in close proximity
to the lungs where the signal to noise ratio is significantly lower for pixels closer to the
lungs s. Consequently, the presence of noise along the wall distorts the computation of
quantities like wall shear stress, viscous dissipation, etc., that depend upon the spatial
derivatives of the velocity field. Therefore filtering this noise is critical especially if PC MRI
is to be used as a reliable technique for computing these parameters.

The most frequently cited technique for noise removal in PC MRI is the one proposed by
Walker et al., which uses a standard deviation-based measure(19). This technique classifies
regions of high standard deviation as noise, and regions of low standard deviations as flow.
The technique is widely used because of its ease of implementation and effectiveness in
removing noise. However, the primary drawback of this filter is that it is a scalar technique,
and 3D PC MRI produces a vector field. When the Walker filter is applied to a vector field,
there is a tendency of the filter to remove vectors that are actually part of the flow field. This
is because the technique treats each component of the vector as an independent quantity, and
does not factor in the local characteristics of the velocity field in the filtering process.

This paper proposes a novel PC MRI post processing strategy that tackles the issue of
automatic vessel segmentation and noise filtering as two distinct steps. The morphology of
the vessel is first segmented automatically using active contours and the segmented velocity
field is filtered using a novel multi-dimensional fuzzy adaptive vector median filtering
technique optimized for PC MRI. This two step process is validated using both in vivo and
synthetically generated PC MRI datasets. The specific application targeted here is PC MRI
data acquired on children born with single ventricle congenital heart defects. These children
undergo a series of operations resulting in the connection of superior vena cava (SVC),
inferior vena cava (IVC), left pulmonary artery (LPA), and the right pulmonary artery
(RPA) in a configuration known as the total cavopulmonary connection (TCPC). The reason
this application was chosen, is because blood flow fields within the TCPC are quite
complex, and the ability to visualize and quantify these hemodynamics may help in
identifying patients at risk for heart failure.
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MATERIALS AND METHODS
Description of the Algorithm

Active Contour Segmentation—The original active contour model proposed by Kass et
al.(20), minimizes the energy function

Equation 1

where C(s) is a contour described as a function of arc length, α controls the curvature of the
contour, β controls the rigidity of the contour in the through-plane direction, C′(s) and C″(s)
are the first and second derivatives of the contour with respect to arc length. The external
energy Eext (s) is derived from the image domain and can be regarded as a discrete potential
field to guide the contour to the desired vessel. While there are many approaches in the
literature to determine the choice of the external energy field, the gradient vector flow
(GVF) implementation is chosen here because of its advantageous performance in
segmenting a wide variety of shapes in the presence of neighboring anatomic structures(21).
GVF fields are also less sensitive to noise and are more robust in segmenting complex
shapes with boundary concavities (such as the TCPC).

Implementation of Active Contours—Once the external energy fields are estimated,
the cine PC MRI data is first assembled as a 3D dataset (x, y, t) and the user is asked to
select the vessel of interest by drawing a box around it in any one of the phases of the
cardiac cycle (Figure 2a). The largest circle that fits within the box is then initialized and
this circle serves as the initial contour (C(s)) for that phase. Equation 1 is then iteratively
minimized, and after about 30–40 iterations the solution converges resulting in the
segmentation of the vessel in the first cardiac phase (Figure 2b). This contour is then used as
the initial contour in the subsequent cardiac phase, and the process is repeated until the
vessel in all cardiac phases is successfully segmented (Figure 2c). The 2 constants, α, and β
are set to be 0.2 and 0 respectively. β is set to 0 as the contour evolution is 2D (i.e. in the x-y
image plane). The optimum value of α was determined based on an experimental study
conducted on 50 datasets, where the segmentation error was evaluated for different values of
α using a manually segmented dataset as a reference standard. Once the vessel is segmented,
the enclosed vector field is used to evaluate a variety of clinically relevant parameters.

Fuzzy Adaptive Vector Median Filters (FAVMF)—The proposed active contour
algorithm works well when the vascular morphology is clearly defined. In situations when
the vessel edge is blurred, it approximates the vessel shape, which results in random noise
being incorporated into the segmentation. In order to filter this noise, two critical aspects to
consider are: a) the detection of a noise pixel within the vector field (if any), and b)
determining an appropriate value to replace this noise pixel. In order to tackle both (a) and
(b), a new filter is proposed that is based on a hybrid multi-channel framework (Figure 3):

Equation 2

where, k→ = (k1, k2) is the pixel co-ordinate vector, I(k→) is the input vector, α(k→) is a
continuous fuzzy membership function that takes a value between 0 and 1 (this determines
to what extent I(k→) is a flow pixel), and M(k→) is the chosen filter value for replacing the
noisy component of the vector. If α(k→) equals or is close to one then I(k→) is classified as
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part of the flow field and is retained. If it is close to zero then I(k→) is considered random
noise and is replaced by M(k→). Several choices for M(k→) are investigated including both
scalar and vector based techniques. Since a segmented PC MRI dataset is a vector field with
each data point having three components, a filter that is optimized for vector quantities is
desirable. One such filtering technique is vector median filtering, which is the choice for
M(k→) in this paper. The benefit of using vector median filtering will be demonstrated in
the following sections.

Vector Median Filters (VMF)—A 3D PC MRI dataset can be thought of as a multi-
channel image, where each component of the velocity field is a single channel of the image.
To determine the filter output for the vector quantity I(k→), an interrogation window is
selected around I(k→). Let this window be W={Ii: i = 1,2,…, w}, where w is the size of the
window (w=9 for a 3×3 window, 25 for 5×5 window and so on) and I1, I2,…Iw is a set of
vectors inside this window. Each component of the velocity vector is expressed as Ii1, Ii2,
and Ii3. For each multi-channel image, Ii is associated with a distance measure:

Equation 3

where,

and γ is the chosen distance norm with a value greater than 1. This distance is computed for
each vector in the window, and the values are ordered according to the criteria D1<D2..<Dw
with D1 being the smallest. If the same ordering is applied to the input set, then the ordered
input sequence becomes I1<I2…<Iw. The sample I1 associated with distance D1 becomes the
output of the vector median filter(22,23). Simply put, the output is the vector that has the
smallest sum of vector distances to all of the other vectors in the interrogation window, or
equivalently:

Equation 4

Determination of Fuzzy Rules—The second component of the noise filtering algorithm
is to determine a fuzzy membership function (α (k→)) for use in the hybrid multi-channel
framework shown in Figure 3. A set of rules are employed for this purpose, which are
established by studying the physical characteristics of flow and noise. The parameters used
for establishing these rules as well as a description on how they are evaluated are discussed
below.

Distance from vector median (DVM, U (k→)): Let I (k→) be the vector at the current
location and M(k→) be the output of the median filter defined above for the interrogation
window. The DVM is calculated as
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Equation 5

where γ is the chosen distance norm for the VMF implementation. The larger the distance of
the given pixel from the vector median within the interrogation window, the higher is the
probability for the pixel to be a noise vector. The distances are normalized to be between 0
and 1.

Vector Direction Homogeneity (VDH, L (k→)): Since random noise has random direction,
this property can be used to differentiate between noise and flow. Let ui be the vector at
location i, di(k→) the difference in orientation between uk and ui, where uk is the vector that
is in question, and L(k→) be the VDH metric for the interrogation window centered on k.
Then the VDH metric can be evaluated as

where

Equation 6

If the orientation of the directions within the interrogation window is random, then L(k→)
tends to be 0, otherwise it has a high value. The histogram distribution for both random
noise and flow regions within a 3 component PC MR image are shown as part of Figure 4.
Notice the differences in VDH distribution for noise and flow.

Vector Field Standard Deviation (SD, S (k→)): Another property that can be used to aid
in noise detection is the standard deviation of the velocity field within the interrogation
window. In this work, a standard deviation map S(k→) is evaluated for each component.
This is accomplished as follows:

Equation 7

Here, μ (j) is the mean of the velocity component of each of the 3 vector components within
the interrogation window W, and I (k→) is the vector that has to be filtered. The histogram
distribution of the standard deviation map for both noise and flow pixels are shown in Figure
4. As can be observed, the distributions are markedly different, with noise having a higher
standard deviation compared to flow.

Magnitude Image Intensity (MI, MI(k→)): Another aspect that can be used towards the
filtering process is the intensity of the magnitude images. In the magnitude images, the
regions of flow are white (having a value of 1), while the noise regions are typically black
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(0). Therefore, if a pixel has a magnitude image intensity closer to 1 it has a higher
probability of being a flow pixel, while if it is closer to 0 then it is a noise pixel.

Based on the analysis and behavior of these four metrics in a PC MR Image, a set of general
rules can be defined that can now characterize flow and noise. These are:

Rule #1: DVM is high for noise and low for flow

Rule #2: VDH is low for noise and high for flow

Rule #3: SD is high for noise and low for flow

Rule #4: MI is low for noise and high for flow.

A membership function α (k→) is then evaluated to determine the probability of a pixel
being noise. This is accomplished using the Fuzzy C-Means Clustering technique(24).

Adaptive Fuzzy C-Means Clustering—The four parameters evaluated above can be
stacked such that every pixel is characterized by a four-dimensional vector:

Equation 11

Let C be the number of clusters of interest. In our case the two clusters are C1=flow and
C2=noise. Therefore two membership functions will be simultaneously estimated: one for
the degree of membership of a pixel to noise (αC1(k→)), and a second for the degree of
membership of a pixel to flow ((αC2(k→)). According to fuzzy set theory:

Equation 12

This effectively simplifies this process to estimating just a single function. Let C→F(j) be
the centroid vector associated with the cluster j. The corresponding membership functions
αC1(k→) and αC2(k→), and the centroid vector C→F(j) for each cluster can be
simultaneously estimated by minimizing

Equation 13

M×N is the size of the image, and C is the number of clusters. If the steepest descent
algorithm is used, the corresponding update equations become

Equation 14

and
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Equation 15

Iterations are continued until the value of a converges.

Algorithm Validation
Each step of the segmentation algorithm is quantitatively validated using synthetic PC MRI
generated from computational fluid dynamic (CFD) simulations and in vivo PC MRI. The
active contour segmentation methodology (step 1) is validated on in vivo datasets using a
manually defined contour as the reference standard. The filtering algorithm (step 2) is
validated using synthetic datasets generated from CFD simulations as well on in vivo
datasets. The reference standard for the CFD simulations were the original velocity field
themselves, while for the in vivo case, a manual filtering strategy was designed and
implemented that served as the reference standard. The benefit of using the proposed
FAVMF is demonstrated by comparing the velocity error/pixel, maximum wall velocities,
maximum wall velocities/core velocities ratio, and wall shear rates with and without the
filter.

Generation of Synthetic Datasets—To generate the synthetic datasets, a CFD
simulation was conducted on a 3D patient specific TCPC model reconstructed from in vivo
MRI(25,26). The TCPC model was first meshed using Gambit (FLUENT Inc.,) having
400,000 tetrahedral elements. The meshed geometry was then imported into the commercial
CFD solver FLUENT, and the governing Navier-Stokes equations were solved to obtain a
three dimensional vector field within the entire geometry of the TCPC. The CFD simulation
was then sampled at 111 equally spaced planes (Figure 5a) to obtain 3 sets of phase images
with velocity encoding in the anterior-posterior (AP), right-left (RL), and superior-inferior
(SI) directions respectively (Figure 5b). The pixel size was 1 mm2, the slice thickness was
1.2 mm, and the velocity encoding was 100 cm/s to obtain images having intensities ranging
from 0–216, which is the standard clinical dicom range. These images were noise free and
served as the reference standard for comparing the performance of different noise filters
(Figure 5b).

In order to test the robustness of the filtering algorithm, artificial noise was embedded into
the images (Figure 5c). An image (n (k→)) having random noise with values ranging
between 0–216 was generated for each image slice in the dataset. This image was then added
to the original phase images according to the formula:

Equation 16

where n(k→)is the noise pixel, pv is the noise level, and o(k→)is the original value of the
vector field. The value of pv was uniformly varied from 0 to 0.5 at intervals of 0.1 and
various filters were quantitatively compared using the normalized mean squared error
(NMSE) metric:
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Equation 17

M and N are the image dimensions, oap, orl, and ofh, are the original values without noise
corruption (reference standard), and ôap, ôrl, and ôfh, are the filtered images. Noise was only
embedded to within 5 pixels of the vessel for two reasons: a) to have noisy and noise-free
regions within the same velocity field so that the impact of filtering on both the regions can
be quantified; b) it was logical to embed noise into the system near the vessel border rather
than anywhere else since most of the noise is observed along the vessel border in the
presented application. However, it should be noted that the results of the algorithm are
unaffected by the choice of pixels selected for noise addition. The NMSE of VMF is first
compared to the filter proposed by Walker et al using the settings described in (19), and a
standard Gaussian low pass filter with a kernel size of 15×15 and a standard deviation of
1.5. Then, the benefit of using VMF in a fuzzy framework is demonstrated by comparing the
NMSE of VMF with FAVMF. In addition, maximum shear rates are computed for the
original vector field as well as for the noisy, and the filtered datasets. The results obtained
from FAVMF, low pass filter, and the Walker filter were then compared to the shear rates
from the original vector field from CFD. Principal shear rates for the 3D vector field were
calculated using the methodology outlined by Tambasco and Steinman (27).

In vivo PC MRI Acquisition Protocol—3D PC MR Images were acquired on 10
patients with single ventricle congenital heart disease. Each patient comprised a single
dataset. A segmented k-space fast field echo sequence with 3 segments per acquisition was
used to acquire images perpendicular to the four vessels of the TCPC, namely the SVC,
IVC, LPA, and the RPA, as well as in the coronal orientation spanning the entire TCPC
geometry, and the ascending aorta. All acquisitions were retrospectively gated with a typical
R-R time interval of 750 ms, resulting in about 20 cardiac phases for each vessel. The TR
and TE were set to be 50 and 3.8 ms respectively. A rectangular field of 66% was used
resulting in a net field of view of 250 mm. The slice thickness was 6 mm with an average in-
plane resolution of 1 × 1 mm2. All images were acquired in the Children’s Hospital of
Philadelphia using the Siemens 1.5T Avanto or Sonata scanners.

Manual Segmentation and Filtering Protocol—A manual segmentation protocol was
designed and implemented to serve as a reference standard for evaluating the performance of
the active contour methodology. To ensure the accuracy and reproducibility of this protocol,
two independent users manually outlined the vessels of interest on 5 datasets. The protocol
was refined until the reproducibility error of the segmentation overlap was less than 5%.
Using this protocol, the vessels of interest in all the in vivo datasets were manually outlined
by the trained user. The total time taken by the manual segmentation process for each
dataset was about 30 minutes. The automatic active contour segmentation algorithm was
quantitatively compared to the manually outlined contours by evaluating overlap, false
positive (percentage of total area included in the automatic segmentation and not present in
the manual segmentation), false negative (percentage of total area included in the manual
segmentation and not present in the automatic segmentation), sensitivity {true positive/(true
positive + false negative)}, and specificity {true negative/(true negative + false positive)}
percentages respectively. True positive is the same as overlap, while true negative is the
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region excluded from the segmentation common to both the automatic and manual
segmentations. The total time taken for the automatic segmentation process was
significantly lesser than the manual process at less than 10 minutes for each dataset.

A manual filtering approach was adopted to provide a noise-free control for PC MRI
filtering. The manual filtering protocol consisted of displaying the segmented velocities
using a vector plot with colors varying from the lowest (blue) to the highest (red) velocities.
Figure 1c shows an example of a typical vector plot. Color was used instead of grayscale
because noise is more easily detected by the human visual system in color. The user was
then asked to step through each phase of the cardiac cycle and click on the noise vectors.
Due to the large number of noise vectors that are normally present, this process was
independently conducted by two users to ensure that all noise was removed from the images.
The operators of the manual filtering process were blinded to each other and to the results of
the automatic filters used in the study to minimize any bias that may creep into the process.
The identified noise pixels were then replaced with the vector median of the surrounding
pixels. The presented approach has several benefits: a) Errant vectors that are not part of the
flow structure can be easily removed as they clearly stand out in the color vector field; b)
Pixel by pixel based error values can be calculated using the manually filtered dataset as the
control. A student’s unpaired t test was used for comparing the performance of the proposed
segmentation and filtering process.

RESULTS
Validation Based on Synthetic Datasets

Figure 6 shows the error associated with using the VMF (without the fuzzy framework),
Walker filter, and low pass filter as a function of increasing noise levels. As can be
observed, NMSE with the VMF technique was significantly lower than the low pass filter
and the Walker filter at all noise levels (p < 0.05). There were no significant differences
between the Walker filter and low pass filter at low noise levels, but the difference at high
noise levels was statistically significant (p<0.05). The increase in NMSE with increasing
noise levels was quite small for the VMF, when compared to the other two techniques. This
justified the use of VMF in the hybrid multi-channel FAVMF framework.

Figure 7 shows the overall benefit of using VMF in a fuzzy framework compared to VMF
alone. There is a statistically significant drop in the overall NMSE at all levels of noise using
the FAVMF technique (p < 0.05). The Fuzzy filter was also able to accurately differentiate
between noise and flow as can be observed in Figure 7b, where the NMSE is compared
between VMF and FAVMF in regions where there was no noise. FAVMF had extremely
low error when compared to the VMF technique demonstrating that it had minimal impact
on the true velocity field. In regions where noise was present, FAVMF performed as well as
the VMF. This adaptive feature is highly desirable in applications which require
quantification and visualization of complex flow patterns, especially where filtering artifacts
can alter the measured velocity field. The maximum shear rates evaluated using the vector
fields derived after FAVMF, Walker filtering, low pass filtering, and no filtering were 240 ±
40.3, 346 ± 11.6, 370 ± 15.9, and 453 ± 16 s−1 respectively. Maximum shear rates derived
from FAVMF were much closer to the true shear rate derived from CFD (176.1 ± 30.4)
compared to the other filtering methodologies.

Validation based on in vivo datasets
Automatic Segmentation—Table 1a shows the numerical comparison of the manually
and the automatically segmented datasets for the aorta, SVC, IVC, LPA, and RPA. Table 2
shows the net flow rates in L/Min evaluated using the manual and automatic segmentation
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techniques respectively. For the ascending aorta, 93 ± 4.6% of the automatically segmented
region overlapped with the manually segmented region. The false positive rate was 6.9 ± 4.6
% and the false negative was 4.7 ± 3.6%. The percentage of the total flow through the
overlapping, false positive and false negative regions were 98%, 2%, and 1% respectively.
For both the IVC and SVC, the percentage of total flow through the overlapping, false
positive and false negative regions were 98%, 2%, and 2% respectively. In the LPA and the
RPA, the overlapping regions between the automatic and manual segmentation techniques
were lower since the diameter of these vessels is much smaller than the IVC and the SVC.
However, the net flow through the overlapping regions still remained at 98% for the LPA
and the RPA. This showed that regions excluded from the automatic segmentation were
generally characterized by low velocity flow. For each vessel the automatic and manual
segmentation results (flow rates) were statistically identical with a type II (β) error < 0.05.

Automatic Filtering—Figure 8a shows the drop in error that can be accomplished using
the automated FAVMF technique when compared to the unfiltered dataset using the
manually segmented dataset as reference. When no filtering was performed, the average
error in the velocity measured was about 2cm/s/pixel. This error was reduced to < 1cm/s/
pixel after the dataset was filtered using the FAVMF technique. Figure 8b shows the peak
velocities in close proximity of the vessel wall for 3 different cases: a) Segmentation + No
Filtering; b) Segmentation + Manual Filtering; c) Segmentation + FAVMF. Unrealistically
high peak velocities were observed in the unfiltered dataset, which are not characteristic of
the flows in the TCPC and the aorta. After filtering, the peak velocities significantly dropped
to less than 50% of the original values (p<0.05). The peak velocities evaluated using the
automatic filtering technique was statistically identical to the reference with a type II error
<0.05. Figure 8c shows the ratio of the peak velocities along the vessel wall to those
measured in the core of the vessel. This ratio should be between 0 (parabolic profile) and 1
(flat profile) for a physiological velocity field. For the unfiltered dataset, this ratio was about
2, which cannot be true, indicating that pixels giving such high values were noise pixels.
This ratio dropped significantly to less than 1 once the filtering was performed (p<0.05).
The performance of the automatic FAVMF technique was statistically identical to the
reference with a type II error < 0.05.

One important clinically relevant parameter that can be evaluated using PC MRI is wall
shear stress. Wall shear stresses are evaluated by first computing the velocity shear rates
along the wall. Figure 8d shows the peak wall shear rates computed for the 3 cases
mentioned above. The peak wall shear rates in the unfiltered dataset were significantly
higher compared to the filtered datasets (p=0.05). The peak wall shear rate for all the vessels
dropped by about 50% after the filtering was performed. This mechanism is depicted in
Figure 9 where the velocity fields (9 a–c) and the corresponding velocity shear rate contour
plots (9 d–f) for the 3 cases are shown on a coronally acquired dataset. The noise present
along the SVC resulted in an abnormally high shear region, which really doesn’t exist. Once
the noise is filtered out using either the manual or the automatic technique, this region
disappears. Overall, the two-step segmentation process produced much cleaner velocity
fields, preserving key features of the flow field at the same time. For example, the
recirculation region circled in Figure 9c is preserved, while the noise vectors circled in
Figure 9a are removed. This demonstrates the benefit of using the FAVMF technique in
conjunction with the segmentation process for velocity field quantification.

DISCUSSION
With the growing application of 3D PC MRI for quantifying in vivo velocity fields, it is
important that accurate post processing methodologies are developed and validated. Most of
the current automated methodologies for PC MRI post processing, use a single step process
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for segmentation. This paper proposes a new two step segmentation and filtering process,
where the vessel of interest is first segmented using the active contour technique, and the
resulting velocity field is then automatically filtered using a novel Fuzzy Adaptive Vector
Median Filter (FAVMF). This two-step approach produced velocity fields that are cleaner
and more accurate for performing quantitative analysis, than the single step approach
adopted by current methodologies. .

The automatic segmentation based on active contours for step 1 of the segmentation process,
is not novel by itself. Kozerke et al, were the first to use active contours for automatic PC
MRI segmentation. This paper improves the robustness of the active contour methodology
by incorporating the gradient vector flow (GVF) for the external force field and a filtering
process following it. The strength of this methodology is that vessels of arbitrary shapes can
be segmented, and the resulting velocity field is clean and free of noise. The Fuzzy
framework presented here is a significant improvement over both generic noise removal
strategies from multi-dimensional image processing and current filtering methods popular
for PC MRI. This framework requires no a priori knowledge for determination of the
membership function and exploits differences between random noise and flow in the
filtering process. It uses both velocity magnitude and direction information to achieve this
objective. Techniques such as those proposed by Song et al, which use divergence as a
parameter, cannot be applied to single velocity slices since one of the velocity derivatives is
unavailable and hence the true divergence is unknown. The proposed Fuzzy filter is not
subject to this limitation.

While the proposed methodology was tested here on 3D PC MRI slices, it can easily be
adapted to 3D PC MRI volumes for newer sequences such as those proposed by Markl et al
(28,29). The Fuzzy framework is robust enough, that the parameters in the filtering process
can be easily evaluated for window sizes of 3×3×3. This may increase the total processing
time, but will be negligible compared to the overall segmentation process. Besides flow
applications, the framework can also be used in other situations where filtering can play a
role on 3D data. For example, in displacement encoding using stimulated echo (DENSE)
(30) and PC MRI of the myocardial wall(31), the presence of noise complicates the
estimation of regional biomechanical parameters such as strains in the ventricle. The
proposed filtering technique has significant potential in improving the quality of the vector
fields acquired from any of these modalities if certain constraints on the quality of acquired
images are met. Since this approach uses vector median filters with a minimum window size
of 3 × 3, the resolution of the images should be high enough so that filtering can actually be
performed within the region of interest; i.e. the number of pixels enclosed within should be
much higher than 9. This is typically not a problem for a majority of PC MRI and DENSE
acquisitions where large cardiac structures are being analyzed. Another requirement is that
the signal to noise ratio and contrast to noise ratio should be sufficiently high, such that the
bulk features of the flow field can be visualized. If these constraints are met, then the
proposed FAVMF technique offers significant advantages for noise filtering over traditional
scalar filters as it preserves the inherent characteristics of vector fields.

One case examined here was the total cavopulmonary connection, which is characterized by
complex flow. Recirculation regions and vortex patterns are common in these geometries,
and may be an indication of high energy losses within the system. The ability to accurately
quantify such structures can tremendously improve clinical evaluation of the surgically
altered connection. Hence the proposed Fuzzy filter plays a significant role as it offers an
attractive solution for removing such noise vectors preserving flow features at the same
time. While not all noise is filtered, performance is seldom worse than the manual technique,
and usually better.
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Although, there are several benefits of using the proposed two-step segmentation process for
accurately quantifying flow from PC MRI data, certain limitations of the methodology are
well acknowledged. Firstly, the performance of the filtering done during second stage is
highly dependent upon the quality of the segmentation done in stage one. Therefore care
should be taken that the vessel is not under segmented, i.e., all flow vectors are included in
the segmentation. If there is a doubt that flow-vectors are being excluded during stage one of
the segmentation process, then a dilation operation can be performed to include more
vectors in the segmentation. If noise vectors get included in the process, then they can be
removed during stage two. Secondly, there was a lack of true reference data for comparing
the results of the filtering algorithm on in vivo datasets. A manual filtering algorithm was
designed and developed to serve as a reference to get around this issue. However, data
acquired from alternative computational and experimental fluid dynamic modalities may
have served as better controls. Unfortunately, such data were not available for the patients
used in this study. Finally, the proposed algorithm is ultimately dependent upon the quality
of the MRI data acquired and is limited by SNR and CNR constraints. Although the
algorithm works well with data having low SNR, the quality of the reconstructed velocity
field goes down considerably as the noise components of the velocity field increase.

In conclusion, a two-step segmentation and filtering framework for multi-dimensional PC
MRI is presented, which is more accurate compared to a single step process of segmentation
alone. This is the first time a filtering technique based on fuzzy theory has been proposed
and optimized for quantifying velocity fields from PC MRI. The framework is robust and
easily extensible to other multi-dimensional MRI applications where noise is a significant
problem.
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Figure 1.
Example of noise being embedded into the segmentation. Within this segmented vessel,
noise vectors along the vessel walls are clearly evident as shown by the oval.
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Figure 2.
Different steps in the automatic segmentation process. The user first selects the vessel by
drawing a box around it -> The vessel is automatically segmented in that phase -> The
vessel is segmented in all cardiac phases-> Parameters evaluated directly from the
segmentation
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Figure 3.
The hybrid multi-channel framework used in this study
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Figure 4.
The properties of noise and flow in different regions of the PC MR image. The top right
graph shows the histogram distribution of the vector direction homogeneity and the bottom
right graph shows the histogram distribution of the standard deviation of the velocity field.
Region1 is Flow and Region 2 is Noise
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Figure 5.
The process of noise being embedded into the system. a) The CFD model is first sampled at
111 discrete locations. b) 4 images are acquired per location (Magnitude, and 3 phase
images); c) Artificial noise is embedded into the phase images
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Figure 6.
Comparison of VMF with the Walker filter, and a standard low pass filter. VMF had the
lowest error compared to the two other filters.
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Figure 7.
a) Comparison of VMF with FAVMF; b) Comparison of VMF with FAVMF in regions
where no noise is present. Using VMF in the fuzzy framework further reduced the error.
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Figure 8.
The benefit of filtering using the FAVMF approach. a) The reduction in error/pixel achieved
after filtering with FAVMF compared to no filtering; b) Comparison of peak velocities close
to the wall between manual filtering, FAVMF, and No Filtering; c) Comparison of mean
peak wall velocity to mean peak core velocity (MWV-MCV) ratio between manual filtering,
FAVMF, and No Filtering; d) Comparison of wall shear rates evaluated using manual
filtering, FAVMF, and No Filtering.

Sundareswaran et al. Page 22

J Magn Reson Imaging. Author manuscript; available in PMC 2010 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9.
a–c) The vector field of a TCPC reconstructed from a coronally acquired velocity field. a)
Unfiltered dataset; b) Dataset manually filtered; c) Dataset filtered with FAVMF. Notice the
vortex region is preserved while the noise is removed. d–e) The velocity shear rate map: d)
Unfiltered dataset; b) Dataset manually filtered; e) Dataset filtered with FAVMF. Notice the
reduction in wall shear rates along the SVC after the filtering is performed
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