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Abstract
Glutamate’s role as a neurotransmitter at synapses has been known for 40 years, but glutamate has
since been shown to regulate neurogenesis, neurite outgrowth, synaptogenesis and neuron survival
in the developing and adult mammalian nervous system. Cell surface glutamate receptors are coupled
to Ca2+ influx and release from endoplasmic reticulum stores which causes rapid (kinase- and
protease-mediated) and delayed (transcription-dependent) responses that change the structure and
function of neurons. Neurotrophic factors and glutamate interact to regulate developmental and adult
neuroplasticity. For example, glutamate stimulates the production of brain-derived neurotrophic
factor (BDNF) which, in turn, modifies neuronal glutamate sensitivity, Ca2+ homeostasis and
plasticity. Neurotrophic factors may modify glutamate signalling directly, by changing the expression
of glutamate receptor subunits and Ca2+-regulating proteins, and also indirectly by inducing the
production of antioxidant enzymes, energy-regulating proteins and anti-apoptotic Bcl2 family
members. Excessive activation of glutamate receptors, under conditions of oxidative and metabolic
stress, may contribute to neuronal dysfunction and degeneration in diseases ranging from stroke and
Alzheimer’s disease to psychiatric disorders. By enhancing neurotrophic factor signalling,
environmental factors such as exercise and dietary energy restriction, and chemicals such as
antidepressants may optimize glutamatergic signalling and protect against neurological disorders.
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Introduction
Glutamate functions as a neurotransmitter in organisms as diverse as insects, worms,
amphibians and mammals1. It is the major excitatory neurotransmitter in the central nervous
system (CNS) of mammals, and is therefore essential for all of our behaviours2. Although best
known for its role at synapses in the mature nervous system, glutamate is also of vital
importance during development where it regulates neurogenesis, neurite outgrowth,
synaptogenesis and programmed cell death (apoptosis)3. Because of the well-established
functions of neurotrophic factors in nervous system development, interactions between
glutamate and neurotrophic factors have been sought, and found. Indeed, a delicate interplay
between glutamate and neurotrophic factor signalling systems is at the heart of activity-
dependent neuroplasticity during development and in the adult4. Because of the large scope
of this topic, the present article will focus primarily on glutamate – neurotrophic factor
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interactions in the hippocampus, a region of the CNS that provides a tractable model of
developmental and adult neuroplasticity5, and is a focus of several major neurological
disorders in humans including epilepsy, depression and Alzheimer’s disease (AD)6. This
article is not intended to be a comprehensive review of the topic; instead, I provide examples
from some of our own studies, and related findings from other laboratories. Only a few of the
many neurotrophic factors that have been shown to influence, or be influenced by, glutamate
signalling will be discussed in any detail; they include brain-derived neurotrophic factor
(BDNF), basic fibroblast growth factor (bFGF), insulin-like growth factor 1 (IGF1) and nerve
growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF). The importance
of a tightly-regulated interplay between glutamate and neurotrophic factor signalling for
hippocampal plasticity, and the pathological consequences of dysregulation of these systems
is emphasized.

Glutamate Receptors and Signal Transduction
There are two major types of ionotropic glutamate receptors; alpha-amino-3-hydroxy-5-
methyl-4-isoxazolepropionate (AMPA) receptors flux mainly Na+ and some Ca2+, whereas N-
methyl-D-aspartate (NMDA) receptors flux Ca2+ in large amounts7. Activation of AMPA
receptors depolarizes the membrane resulting in the opening of voltage-dependent Ca2+

channels and NMDA receptor channels. A different type of glutamate receptor, so called-
metabotropic receptors, are coupled to the GTP-binding protein Gq11 which, in turn activates
phospholipase C resulting in production of inositol triphosphate (IP3) which induces Ca2+

release from endoplasmic reticulum stores, and the activation of protein kinase C8. Glutamate-
induced elevation of cytosolic Ca2+ levels activates: protein kinases such as calcium/
calmodulin-dependent protein kinase II and PKC; proteases such as calpains; and transcription
factors such as cyclic AMP response element-binding protein (CREB) and NF-κB9–11. In
these ways, glutamate elicits rapid local (dendritic) changes in membrane excitability and
cytoskeletal architecture, and delayed transcriptional changes in a variety of genes involved in
plasticity including those encoding neurotrophic factors.

Neurotrophic Factor Receptors and Signal Transduction
Many of the major neurotrophic factors, including BDNF, NGF, bFGF and IGF1 activate
receptors that possess intrinsic tyrosine kinase activity12,13. Binding of each of the latter four
ligands to their receptors results in receptor dimerization and trans-autophosphorylation of
tyrosine residues in the cytoplasmic domains of the receptors. Specific adaptor proteins and
kinases then associate with the activated growth factor receptors to form a signalling complex.
Major downstream pathways activated by neurotrophic factors include the
phosphatidylinositol-3-kinase – Akt pathway, PKC, and the mitogen-activated protein kinase
pathway14. These kinase pathways activate one or more transcription factors including AP1,
NF-κB and FOXOs. Some of the genes induced by neurotrophic factors include those encoding
anti-apoptotic proteins, antioxidant enzymes, and proteins involved in energy metabolism and
ion homeostasis. For example, bFGF regulates the expression of NMDA and AMPA receptor
subunits in cultured embryonic hippocampal neurons, and thereby modifies the sensitivity of
the neurons to glutamate15,16. Neurotrophic factors may also exert local transcription-
independent effects on neural cells. For example, BDNF can induce local influx of Ca2+ in
neurites of cultured neurons17, and bFGF and NGF can act directly on synaptic terminals in
ways that stabilize mitochondrial function18.

Neurogenesis
Neurons and glial cells are produced by asymmetric divisions of self-renewing neural
progenitor cells (NPC) (Fig. 1). Many different signalling pathways are involved in
determining the fate of NPC including those activated by extracellular matrix and cell adhesion
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molecules, growth factors, cytokines and neurotransmitters. Glutamate may influence NPC
either directly or indirectly by stimulating the production of neurotrophic factors and other
signalling molecules in neurons. An example of evidence supporting a direct action of
glutamate on NPC comes from studies of cultured human NPC which respond to glutamate by
increasing their proliferation rate, and by increasing their potential for neurogenesis19.
Glutamate can also stimulate neurogenesis indirectly by inducing the production of growth
factors, cytokines and other intercellular messengers in neurons and glial cells. Glutamate
stimulates the production of BDNF in neurons, and BDNF promotes neurogenesis20,21.
Interestingly, as neurons differentiate from NPC they express nitric oxide synthase, and the
nitric oxide they produce acts on adjacent NPC to inhibit their proliferation and promote their
differentiation into neurons22. Because activation of glutamate receptors stimulates nitric
oxide production, a Ca2+-mediated process, it is likely that nitric oxide mediates, at least in
part, activity-dependent neurogenesis in the adult brain.

Numerous growth factors have been identified that influence the fate of NPC. bFGF and EGF
promote the self-renewal (proliferation) of NPC in the developing and adult brain23. BDNF
and IGF-1 promote the differentiation of NPC into neurons, and promote the survival of newly-
generated neurons24,25. BDNF is particularly noteworthy for its apparent role as a mediator
of the effects of environmental factors on hippocampal neurogenesis. Levels of BDNF are
increased in the hippocampus in response to exercise26, dietary energy restriction21, and
cognitive stimulation27, all of which stimulate neurogenesis. Studies of rodents in which
BDNF levels or signalling are reduced have provided evidence for a pivotal role for BDNF in
basal and stimulated hippocampal neurogenesis21,28. Conversely, reductions in BDNF
production may contribute to the impaired hippocampal neurogenesis associated with diabetes
and clinical depression29,30.

Neurite outgrowth and Synaptogenesis
Glutamate, released from growth cones in an activity-dependent manner, can act on the
growing dendrites of adjacent cells to alter their outgrowth and promote synaptogenesis (Fig.
1). In cultured embryonic hippocampal neurons glutamate selectively inhibits the outgrowth
of dendritic (but not axonal) growth cones31. The latter study showed that glutamate-induced
inhibition of dendrite outgrowth is mediated by Ca2+ influx in the dendrites. Glutamate released
from the axons of entorhinal cortex neurons inhibits dendrite outgrowth of, and promotes
synaptogenesis with, target hippocampal neurons32. Similar roles for glutamate in regulating
synaptogenesis in the developing visual system have been reported33. Glutamate regulates
neurite outgrowth by affecting cytoskeletal dynamics in the growth cone and neurite shaft.
Glutamate-induced Ca2+ influx may cause a rapid local polymerization of actin to form
filopodial extensions of growth cones, while inhibiting tubulin polymerization and hence
neurite elongation34. Sustained elevation of intracellular Ca2+ in response to glutamate
receptor activation can result in depolymerisation of microfilaments and microtubules resulting
in dendrite outgrowth cessation and regression.

Neurotrophic factors typically enhance the outgrowth of axons and dendrites. For example, in
embryonic hippocampal neurons, bFGF increases the outgrowth rate of axons and dendrites,
and may also increase the complexity (branching) of the neurites35. The neurite outgrowth-
promoting effects of neurotrophic factors are likely mediated by both transcription-
independent and dependent mechanisms. Thus, the growth factors may influence local
cytoskeletal dynamics through Ca2+ and kinase-mediated mechanisms, but also induce the
expression of genes that encode cytoskeletal proteins and cell adhesion molecules, for example.
Growth factors can override inhibitory effects of glutamate on dendrite outgrowth by
modifying glutamate-induced Ca2+ responses. Importantly, glutamate and neurotrophic factors
interact in processes of activity-dependent control of neurite outgrowth and synaptogenesis.
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Thus, glutamate stimulates the production of neurotrophic factors such as BDNF which, in
turn promotes neurite outgrowth and synaptogenesis.

Activity-Dependent Neuron Survival
During development of the nervous system many more neurons are produced than ultimately
integrate into neuronal circuits and survive. The programmed cell death of neurons during
development is activity-dependent – neurons that are stimulated (by glutamate or other
excitatory transmitters) survive, whereas those that do not receive stimulation may die36. As
synapses form the local activation of glutamate receptors induces the production of
neurotrophic factors (BDNF and NGF, for example) in the postsynaptic neuron37,38. The
neurotrophic factor is then released locally at the active synapses and activates receptors in the
presynaptic neuron, resulting in upregulation of genes that encode proteins critical for cell
survival including Bcl-2 and antioxidant enzymes39, 40. In the adult hippocampus, the
production of neurotrophic factors is also increased in response to glutamate receptor-mediated
activity in neuronal circuits4, 41, and so survival of many neurons in the adult may also depend
upon activity in neuronal circuits. For example, an episode of synaptic activity can promote
the survival of neurons in the hippocampus by a mechanism involving both CREB-independent
and CREB-dependent pathways42. An activity-dependent survival mechanism is believed to
underlie the ability of exercise and intermittent fasting to prevent the death of neurons in
experimental models of stroke43,44. However, exercise and environmental enrichment did not
protect hippocampal neurons against seizure-induced death despite a stimulation of BDNF
production45.

During the process of neurogenesis in the adult hippocampus, many of the newly-generated
neurons undergo apoptosis46 (Fig. 1). Neuronal activity-dependent upregulation of BDNF
signalling may mediate the increased survival of newly-generated neurons in the hippocampus
of rodents maintained on exercise or dietary energy restriction regimens, compared to sedentary
overfed control rodents21,27–29. Although the mechanisms that determine whether or not
newly-generated neurons live or die in the adult hippocampus have not been established, it has
been reported that newly-generated neurons are particularly susceptible to apoptosis. For
example, compared to NPC and mature neurons, newly-generated neurons are hypersensitive
to DNA and telomere damage47. Although not yet established, it is reasonable to consider that
glutamate and neurotrophic factors influence the survival of newly-generated neurons by
modifying regulatory systems involved in the protection against DNA damage and
maintenance of telomeres.

Synaptic Plasticity
There has been intense interest in elucidating the molecular mechanisms that mediate the
strengthening (or weakening) of synaptic strength that occurs in response to various
behavioural and environmental changes. Studies of hippocampal synaptic transmission have
been particularly informative in revealing roles for glutamate and neurotrophic factors in
synaptic plasticity. Both AMPA and NMDA receptors are of fundamental importance for
activity-induced strengthening of synaptic strength, a process called long-term potentiation
(LTP)48. Ca2+ influx activates kinases and phosphatases that act on a variety of substrates
including ion channels and cytoskeletal proteins that mediate local remodelling of postsynaptic
spines, and transcription factors which translocate to the nucleus and induce the expression of
genes that promote neuronal survival and plasticity, including neurotrophic factors (Fig. 1).
Stimulus paradigms that induce LTP also induce the expression of BDNF and other
neurotrophic factors including neurotrophin-3 in the hippocampus49. However, LTP is only
induced when glutamatergic synapses are activated within a narrow range of frequencies and
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amplitudes. Lower levels of stimulation may result in long-term depression of the
synapses50, whereas sustained overstimulation can cause degeneration of the synapses51.

Critical roles for neurotrophic factors in LTP and learning and memory are suggested from
numerous studies in rodents. Hippocampal LTP is impaired in mice lacking BDNF in their
neurons52, and BDNF enhances LTP in the hippocampus53 and visual cortex54. Interestingly,
BDNF released from neurons during LTP may be recycled and used for LTP maintenance55.
In addition to BDNF, several other neurotrophic factors are believed to play roles in synaptic
plasticity. For example, NGF is involved in LTP in the hippocampal dentate gyrus56, bFGF
receptors are required for hippocampal LTP and memory consolidation57, and a secreted form
of amyloid precursor protein enhances LTP at hippocampal CA1 synapses58. Consistent with
important roles for neurotrophic factors in LTP and learning and memory are data showing
that environmental manipulations that enhance LTP and cognition also increase production of
one or more neurotrophic factors. For example, dietary energy restriction (which enhances
synaptic plasticity) increases the production of BDNF and glial cell line-derived neurotrophic
factor21,59, while depression, diabetes and chronic psychosocial stress (which impair learning
and memory) decrease the production of BDNF60–62.

Excitotoxicity and Epilepsy
Excessive sustained activation of glutamate receptors can kill neurons, particularly under
conditions of reduced energy availability and increased oxidative stress51, 63. This
phenomenon, which is called excitotoxicity (Fig. 2), can be dramatically demonstrated by
exposing cultured neurons to high concentrations of glutamate and by exposing animals to
excitotoxins such as kainic acid and domoic acid which, in contrast to glutamate, induced non-
desensitizing ion currents and are not actively removed from the extracellular space64. There
are at least two distinct mechanisms of excitotoxicity. Excitotoxic necrosis involves
uncontrolled influx of Na+ resulting in rapid cell swelling and lysis. Excitotoxic apoptosis is
mediated by excessive Ca2+ influx which causes alterations in the endoplasmic reticulum and
mitochondria resulting in the activation of caspases and nuclear chromatin condensation and
fragmentation. Glutamate-induced calcium influx may trigger apoptotic cascades in dendrites,
but may also simultaneously elicit changes that prevent necrosis. Calcium influx activates the
actin-severing protein gelsolin resulting in actin depolymerisation and reduction in calcium
influx through NMDA receptor channels65. Glutamate induces caspase activation in dendrites
and the caspases can cleave AMPA receptor subunits, thereby reducing Na+ influx and
preventing excitotoxic necrosis66–69.

Mechanisms by which neurons are protected against excitotoxicity include the activities of
ATP-dependent Na+ and Ca2+ pumps and the expression of Ca2+-binding proteins51. When
cellular energy levels are low, as occurs during cerebral ischemia, the ion-motive ATPases
may be compromised, thereby rendering neurons vulnerable to excitotoxicity. Similarly,
oxidative stress as occurs during normal aging or in neurodegenerative disorders, impairs the
function of glucose and glutamate transporters, as well as ion-motive ATPases.

Several different neurotrophic factors can protect neurons against excitotoxicity. Basic FGF
protects cultured hippocampal and cortical neurons against glutamate toxicity by mechanisms
involving changes in the expression of NMDA receptors15 and antioxidant enzymes40 (Fig.
2). BDNF and TNF protect neurons against excitotoxicity through a signaling pathway that
activates the transcription factor NF-κB which induces the expression of antioxidant enzymes
such as Mn-SOD and anti-apoptotic proteins such as Bcl-2 and inhibitor of apoptosis proteins
(IAPs)70–73. Insulin-like growth factors, signaling via the PI3 kinase – Akt pathway can
protect neurons against excitotoxicity in cell culture74 and in vivo75. NGF76 and
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neurotrophin-373 have also been reported to exert excitoprotective effects on cultured cortical
and hippocampal neurons.

Levels of several different neurotrophic factors are increased in response to epileptic seizures
in animal models of epilepsy including NGF, BDNF, bFGF, CNTF, transforming growth
factor-β (TGFβ) and TNFα77. The most commonly used epileptic seizure model in which
kainic acid is admistered to rats or mice has been employed to demonstrate the involvement
of endogenous growth factors in modifying neuronal vulnerability to seizures. By employing
genetically modified mice, or by pharmacological inhibition of growth factors, it has been
shown that BDNF78,79, TGF-β80 and TNF81 play important roles in protecting neurons
against seizure-induced damage and death. The potential of treatments with growth factors to
reduce seizure-induced brain damage has been evaluated in several preclinical studies in
rodents. Chronic infusion of bFGF reduced seizure-induced hippocampal damage82, grafting
of a BDNF-producing cell line protected striatal neurons against kainic acid-induced
death83, and adenoviral vector-mediated expression of GDNF protected hippocampal neurons
against seizure-induced death84.

Stroke and Traumatic Injury
A stroke occurs as the result of occlusion (clot formation at the site of an atherosclerotic arterial
lesion) or rupture of a cerebral blood vessel. As a consequence the brain cells that normally
receive their nutrients from the affected vessel suffer from a marked deficiency of glucose and
oxygen. Because of their high metabolic requirements neurons affected by the stroke may die;
many neurons in the so-called ischemic core undergo excitotoxic necrosis, whereas those in
the surrounding penumbra region (in which energy availability is compromised, but not
eliminated) may undergo excitotoxic apoptosis85. Studies of rodent models of stroke, the most
common of which is the middle cerebral artery occlusion – reperfusion model, have
demonstrated the ability of glutamate receptor (NMDA and AMPA) antagonists to reduce the
death of neurons in the ischemic penumbra and improve functional outcome86–88. However,
clinical trials of glutamate receptor antagonists in stroke patients have not proved positive, in
part because of adverse side-effects of the drugs. Ischemia results in the up-regulation of the
expression of several different neurotrophic factors in the penumbral region including
bFGF89, BDNF90 and TGFβ91. The latter and novel neurotrophic factors such as persephin
may limit the extent of the brain injury following stroke, and may also have therapeutic
potentia92–95. Interestingly, exposure of the brain to a mild ischemia prior to a full-blown
stroke, results in decreased damage to neurons. This phenomenon, called preconditioning or
hormesis96 is believed to be mediated by activation of glutamate receptors, and up-regulation
of neurotrophic factors and heat-shock proteins97.

As with other types of acute insult to the nervous system, traumatic brain injury (TBI) results
in increased oxidative stress, impaired cellular energy metabolism and overactivation of
glutamate receptors resulting in cellular Ca2+ overload98, 99. Accordingly, glutamate receptor
antagonists have been reported to be effective in limiting the extent of neuronal damage in
animal models of TBI100, 101. There is considerable evidence that activation of neurotrophic
factor signalling pathways can reduce neuronal damage and improve functional outcome in
animal models of traumatic brain and spinal cord injury102–104.

Alzheimer’s Disease
Alzheimer’s disease (AD) is an age-related disorder characterized by the dysfunction and death
of neurons in brain regions, such as the hippocampus and frontal cortex, involved in learning
and memory processes. The neurodegenerative process in AD is believed to involve
mitochondrial alterations, membrane-associated oxidative stress, altered proteolytic
processing of the β-amyloid precursor protein (APP) and accumulation of neurotoxic forms of
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the amyloid β-peptide (Aβ)105. Studies of experimental models relevant to AD have provided
evidence that Aβ and oxidative stress disrupt neuronal Ca2+, thereby rendering neurons
vulnerable to excitotoxicity and the development of cytoskeletal alterations (neurofibrillary
tangles) characteristic of dying neurons in AD106, 107. Clinical evidence supporting a role for
excitotoxicity in AD comes from the demonstration of beneficial effects of the NMDA receptor
antagonist memantine in some AD patients108.

Reduced levels of BDNF have been documented in studies of post-mortem brain tissue from
AD patients, suggesting a potential role for compromised neurotrophic support in neuronal
susceptibility to AD109. Several studies have provided evidence that neurotrophic factors can
protect neurons against Aβ toxicity and the pathogenic actions of mutations in presenilin-1 that
cause some cases of early-onset inherited AD. For example: bFGF can protect cultured
hippocampal neurons from being killed by Aβ110; NGF and bFGF can protect cortical
synapses against Aβ-induced damage18; and a secreted form of APP can protect neurons
against excitotoxicity and Aβ toxicity111; and bFGF and activity-dependent neurotrophic
factor can counteract the pro-excitotoxic actions of a presenilin-1 mutation112, 113. Also of
interest in regards to the roles of glutamate and neurotrophic factors in AD are data showing
that exercise, cognitive stimulation and dietary energy restriction reduce the risk of AD114,
and these same environmental factors increase BDNF production and enhance learning and
memory, synaptic plasticity and neurogenesis115.

Parkinson’s Disease
Dopaminergic neurons in the substantia nigra, which control body movements, are among the
most prominent populations of neurons to degenerate in Parkinson’s disease (PD). Oxidative
stress due to aging and dopamine oxidation, and mitochondrial dysfunction due to complex I
impairment, may render neurons dopaminergic neurons vulnerable to excitotoxicity in
PD116, 117. Indeed, activation of glutamate receptors is required for the neurotoxic actions of
mitochondrial complex I inhibitors towards dopaminergic neurons118. Several different genes
have been identified in which mutations cause rare inherited forms of PD and, in several cases,
data suggest that the mutant proteins may render neurons vulnerable to excitotoxicity. Wild-
type α-synuclein, parkin and DJ-1 have been suggested to serve neuroprotective functions that
may be compromised by disease-causing mutations119–121. Three neurotrophic factors that
have been suggested to protect dopaminergic neurons against PD are GDNF, BDNF and bFGF.
Levels of BDNF and bFGF are decreased in the substantia nigra in PD122–124. Intrastriatal
administration of GDNF and BDNF have proven effective in increasing dopamine levels and
improving functional outcome in animal models of PD125, 126 and clinical trials of GDNF
infusion into the striatum of PD patients have been performed, but with limited success thus
far127, 128. From a disease prevention perspective, it was reported that caloric restriction can
preserve striatal GDNF and BDNF levels, reduce dopamine depletion and improve function
outcome in a monkey model of PD59.

Huntington’s Disease
Huntington’s disease (HD) is a particularly interesting neurodegenerative disorder in regards
to the involvement of glutamate and neurotrophic factors. HD is characterized by the
degeneration of striatal, cortical and brainstem neurons resulting in characteristic continuous
involuntary motor movements and cognitive and autonomic dysfunction. HD is an inherited
disorder caused by polyglutamine expansions in the huntingtin protein. The population of
medium spiny striatal neurons that degenerate in HD patients are particularly vulnerable to
NMDA receptor-mediated excitotoxicity129. Toxin-induced impairment of the function of
mitochondrial succinate dehydrogenase results in selective excitotoxic degeneration of striatal
medium spiny neurons in animal models130. Studies of huntingtin mutant mice have provided
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support for an excitotoxic mechanism of neuronal death in HD. Huntingtin mutations perturb
mitochondrial function and cellular calcium homeostasis and sensitize neurons to NMDA
toxicity131, 132. Mutant huntingtin may also promote excitotoxicity by impairing glutamate
transport133. Studies of huntingtin mutant mice suggest a potential for NMDA receptor
antagonists for the treatment of HD134.

BDNF has taken centre stage in HD. BDNF expression is reduced in affected brain regions of
HD patients and huntingtin mutant mice135–137. When HD mice were crossed with BDNF+/
− mice, the onset of neurodegeneration and motor dysfunction was hastened138. Delivery of
BDNF to the brain protects striatal neurons139 and restores synaptic plasticity140 in mouse
models of HD. Interestingly, gene expression profiling data suggest that the molecular changes
that occur in the striatum of BDNF-deficient mice are more similar to those that occur in
humans HD patients, compared to the molecular alterations in huntingtin mutant mice and
mitochondrial toxin-treated rats141. Finally, manipulations that increase BDNF production in
the striatum and cortex, including environmental enrichment142, dietary energy
restriction137 and antidepressant treatment143, forestall the neurodegenerative process in
huntingtin mutant mice.

Amyotrophic Lateral Sclerosis
The only treatment that has thus far proven effective in slowing the progression of lower motor
neuron degeneration and paralysis in amyotrophic lateral sclerosis (ALS) is drug called riluzole
that protects neurons against excitotoxicity144. The available evidence suggests that glutamate
transport is impaired in ALS and may contribute to excitotoxic death of motor neurons145.
Mutations in Cu/Zn superoxide dismutase (SOD) cause some cases of inherited ALS, and
transgenic mice expressing mutant human Cu/Zn-SOD exhibit progressive degeneration of
motor neurons, paralysis and death146. The Cu/Zn-SOD mutations have been shown to
increase the vulnerability of motor neurons to excitotoxicity by a mechanism involving
increased oxidative stress and dysregulation of cellular calcium homeostasis147. The
excitotoxic death of motor neurons is believed to be mediated primarily by AMPA
receptors148. Several different neurotrophic factors have been shown to promote the survival
of motor neurons in experimental models relevant to ALS pathogenesis including IGF-1,
CNTF, BDNF and GDNF149–152. There have been several relatively small clinical trials of
neurotrophic factor treatment in ALS patients. IGF-1, CNTF and BDNF did not demonstrate
a clear clinical benefit in these trials153–155.

Psychiatric Disorders
Perturbed glutamatergic signaling has been implicated in the pathogenesis of several
psychiatric disorders including anxiety disorders and depression, bipolar disorder and
schizophrenia156–159. The bulk of the evidence supports a role for reduced levels of
glutamatergic signaling in schizophrenia including the fact that glutamatergic neurons
modulate dopaminergic neurotransmission, the ability of certain glutamate receptor antagonists
(phencyclidine, for example) to induce psychosis, and the modulatory effects of antipsychotic
drugs on glutamatergic signaling160, 161. Studies of animal models and therapeutic
intervention trials have suggested a potential benefit of glutamate receptor-modulating agents
for the treatment of anxiety and depression; with drugs that act on metabotropic and NMDA
glutamate receptors being particularly promising162–165. Reduced levels of serotonergic and
noradrenergic signaling occur in depression and, accordingly, drugs that increase synaptic
levels of serotonin and norepinephrine (serotonin and norepinephrine reuptake inhibitors) are
effective therapies for this disorder166. There is considerable evidence implicating reduced
levels of BDNF signaling in the pathogenesis of depression including: reduced levels of BDNF
in the hippocampus in animal models of depression and in the plasma of depressed human
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subjects167, 168; antidepressants increase BDNF levels, increase glutamate sensitivity and
promote neurogenesis in the hippocampus169, 170; and exercise increases BDNF levels and
has antidepressant-like actions115. Reduced BDNF signaling is also implicated in the
pathogenesis of bipolar disorder171 and schizophrenia172, 173.
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Figure 1.
Interactions of glutamate and BDNF in the regulation of developmental and adult
neuroplasticity.
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Figure 2.
Mechanisms of excitotoxicity and neuroprotection by neurotrophic factors.
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