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Abstract
We have reported previously that telomeres (ends of chromosomes consisting of highly conserved
TTAGGG repeats) were shorter in metaphase and interphase preparations in T lymphocytes from
short-term whole blood cultures of women with Down syndrome (DS) and dementia compared to
age-matched women with DS but without dementia (Jenkins et al., 2006). Our previous study was
carried out by measuring changes in fluorescence intensity [using an FITC-labeled peptide nucleic
acid (PNA) probe (Applied Biosystems; DAKO) and Applied Imaging software], and we now report
on a substantially simpler metric, counts of signals at the ends of chromosomes. Nine adults with DS
and dementia plus four who are exhibiting declines in cognition analogous to mild cognitive
impairment in the general population (MCI-DS) were compared to their pair-matched peers with DS
but without dementia or MCI-DS. Results indicated that the number of chromosome ends that failed
to exhibit fluorescent signal from the PNA telomere probe was higher for people with dementia or
mild cognitive impairment (MCI-DS). Thus, a simple count of chromosome ends for the “presence/
absence” of fluorescence may provide a valid biomarker of dementia status. If this is the case, then
after additional research for validation to assure high specificity and sensitivity, the test may be used
to identify and ultimately guide treatment for people at increased risk for developing mild cognitive
impairment and/or dementia.
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Introduction
Telomeres are chromosome ends that consist of highly conserved TTAGGG repeats and
become shorter with every cell division. Increased telomere shortening has been associated
with a variety of conditions including apoptosis and replicative cellular senescence (Allsopp
et al., 1992; Hao et al., 2004), neoplastic transformation (Plentz et al., 2004), in vivo cellular
aging (Hastie et al., 1990; Lindsey et al., 1991; Ahmed et al., 2001; Flanary et al., 2003), heart
disease (Samani et al., 2001; Benetos et al., 2004), stress (Epel et al., 2004; Damjanovic et al.,
2007), osteoporosis (Valdes et al., 2007), obesity (Valdes et al., 2005), dyskeratosis congenita
(Vulliamy and Dokal, 2007), and Alzheimer’s disease (AD) (Panossian et al., 2003). The recent
finding on UUAGGG-repeat telomeric RNAs may provide better understanding of the role of
the telomere in the above conditions (Schoeftner and Blasco, 2007).

We have previously observed quantitatively reduced telomere size in metaphase and interphase
preparations from short-term whole blood cultures of adults with DS and dementia compared
to age-matched adults with DS and no dementia (Jenkins et al., 2006; Jenkins et al, 2008). In
addition we have broadened our original study to show that telomere length is also shortened
for people with DS who exhibited cognitive declines analogous to mild cognitive impairment
(MCI) in the general population, referred to as MCI-DS in the present study. MCI is defined
as an intermediate stage between cognitive declines typical of brain aging, per se, and the
deficits that occur with dementia, during which daily living activities are generally unaffected
(e.g, Gauthier et al., 2006; Winblad et al., 2004; Petersen et al., 1999). Declines observed are
not sufficiently severe to meet criteria diagnostic for dementia (Petersen et al., 1999).
Individuals with MCI are more likely to convert to dementia than peers without MCI (Petersen
et al., 1999), especially those with memory function decline. Similar to dementia diagnosis,
MCI identification in adults with DS is complicated by lifelong cognitive deficits and
substantial inter-individual variability in baseline abilities. However, longitudinal assessments
of cognition can be used to characterize changes suggestive of MCI within this population, and
that was the procedure employed in this study (see Devenny et al., 2000; Krinsky-McHale et
al, in press; Zigman et al., 2004).

Quantitative measurement of telomere length requires the use of sophisticated and specialized
methods and equipment. Therefore, we wanted to determine if a simpler metric could
distinguish adults with dementia or MCI-DS from their unaffected peers with DS. For this
purpose, we chose counts of signals (present/absent) from fluorescently tagged chromosome
ends (employing an FITC-labeled peptide nucleic acid probe).

Materials and Methods
Human Subjects

Adult subjects with DS were recruited using an Institutional Review Board-approved protocol
with correspondent-informed consent and participant assent. A community-based sample of
234 women with DS, 45–78 years of age, and 124 men from 45–73 years of age, was obtained
through the New York State Developmental Disability Service System or direct contacts with
provider agencies in neighboring states. These people have been participating in a longitudinal
study examining changes in functioning associated with aging and dementia in adults with
intellectual disability and have been evaluated at 14–18 month intervals to determine cognitive,
functional and health status (see e.g., Silverman et al., 2004). From this larger sample, 11 pairs
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of females, as well as two pairs of males (all with complete trisomy 21) were age-matched,
one individual within each pair having dementia or MCI-DS and the other not. Samples from
females have been more available than males because of an ongoing project focused on
women’s health (Schupf et al., 2003). Table 1 indicates the age, sex and dementia status of
individuals within our sample.

Dementia Status
The dementia status of each participant was determined at a consensus conference which
included all senior staff members participating in our longitudinal assessments and research
assistants who had direct contact with the participants under consideration (Silverman et al.,
2004; Zigman et al., 2004). Participants were classified based upon consideration of
information available from a detailed review of clinical records, informant interviews, and
direct assessments of selected cognitive functions, including evidence of decline over the 14-
to 20-month period between assessments. Dementia status was classified consistent with
diagnostic guidelines recommended by the AAMR-IASSID Working Group for the
Establishment of the Criteria for the Diagnosis of Dementia in Individuals with Developmental
Disability (Aylward et al., 1997; Burt & Aylward, 2000), that were based upon current ICD-10
criteria (WHO, 1992). Each case was classified as: (a) non-demented, indicating with
reasonable certainty that significant age-associated impairment was absent; (b) MCI-DS
status, indicating that there was substantial uncertainty regarding dementia status, with some
indication of mild cognitive and/or functional decline but importantly, the observed change(s)
did not meet dementia criteria; (c) possible dementia, indicating that some signs and symptoms
of dementia were present, but declines over time were not judged to be totally convincing,
although there was more certainty than for the MCI-DS status classification; (d) definite
dementia, indicating with reasonable confidence that dementia was present based upon
substantial decline over time and absence of other conditions that might mimic dementia (e.g.,
untreated hypothyroidism). For each participant who was rated as having possible or definite
dementia, findings were reviewed to establish a differential diagnosis. These were either AD
or AD in combination with possible other cause(s) (e.g., Parkinson’s disease) given the
substantial AD neuropathology characteristic of DS at these ages. Participants could also be
categorized as (e) status uncertain due to complications, indicating that the criteria for possible
dementia had been met, but symptoms might be caused by some other substantial concern,
usually a medical condition unrelated to a dementing disorder (e.g., severe sensory loss, poorly
resolved hip fracture, psychiatric diagnosis), and (f) indeterminable, indicating that the
preexisting disability was of such severity that detection of decline indicative of dementia was
not possible (e.g., profound ID with multiple handicaps). Participants in these latter two
categories were not included in the present study.

Telomere Analysis
Telomeres in metaphase spreads (T-lymphocytes from freshly collected whole blood) were
hybridized using an FITC-labeled peptide nucleic acid (PNA) probe and DAPI counterstaining
(Jenkins et al., 2006). The actual number of fluorescent signals for each metaphase was
determined by simply counting the signal number per metaphase and tabulating the number of
chromosome arms that did not exhibit an FITC signal for each participant.

Results
Figure 1 shows an image of a metaphase from a short-term whole blood culture, hybridized
with an FITC-labeled PNA probe such that telomeres are labeled at most metaphase
chromosome ends and within the interphase nucleus. The results of within-pair comparisons
of the number of chromosome arms with no fluorescent signal are given in Table 1.
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Results, summarized in Table 1, were generated by counting the number of chromosome arms
with no “visible” telomeres in each of 20 metaphase cells per subject. Overall, the distributions
of scores for individuals with dementia or MCI-DS versus their non-demented peers had almost
no overlap, t (12) = 7.18, p < .00003. In fact, all individuals with dementia or MCI-DS had
means of over 8 missing signals while that was true for only a single non-demented individual.
The difference between affected and unaffected individuals was also significant for pairings
with just demented cases or just MCI-DS cases, t (8) = 8.19, p<.0005 and t(3) = 2.99, p<.03
(1-tailed), respectively, but a mixed model analysis of variance (with diagnosis as a between
subjects variable and affected/unaffected as a within subjects variable) indicated that signal
loss was greater in cases with dementia compared to MCI-DS, F(1,11) = 6.02, p<.032 (see
Figure 2).

Discussion
While presence/absence of signal represents a relatively simple method of measurement, it is
important to note that this measure is an imperfect reflection of true telomere status. Factors
unrelated to telomere length could reduce a signal below the detection threshold of our
equipment, and therefore some telomeres may actually be present and functioning where no
signal was observed. Nevertheless, it seems safe to assume that any extraneous factors should
have equal influences on individuals with or without dementia or MCI-DS, and any differences
in signal number associated with dementia status should be a valid indication of differential
telomere length.

These results not only show that the number of “visible” telomere signals is significantly less
in people with DS and dementia versus those in age- and sex-matched controls with DS only,
and they suggest that adults with DS without dementia can be distinguished from adults with
DS experiencing cognitive decline presumably associated with the progression of AD simply
by counting the number of chromosome arms with no signal from the FITC-labeled PNA
telomere probe. If these results are confirmed in a larger sample, findings will provide the
foundation for a diagnostic procedure having both high sensitivity and specificity. As already
mentioned, shorter telomeres have been found in people with AD compared to controls
(Panossian et al., 2003; Franco et al., 2006) and in people with DS and dementia and/or MCI-
DS versus people with DS only (Jenkins et al., 2006), and recently shorter telomeres have been
observed in people with reduced immune function who are caregivers of patients with AD
(Damjanovic et al., 2007). It will be interesting and exciting to determine whether the loss of
signals that we have observed can be directly correlated with increased telomere shortening in
these conditions. Only additional research will answer this question.

Since there is as yet no clear biomarker for dementia/Alzheimer’s disease, a longitudinal study
would be useful to determine whether reduced signal number in individuals with DS precedes
clinical signs of dementia, and to determine the underlying mechanism responsible for this
association. Recognition of pre-clinical and early dementia would be very useful in this
population of adults who already have preexisting cognitive impairments. Early detection is
especially important because it would allow earlier treatment and justify the initiation of
intervention strategies soon enough to minimize damage to the central nervous system. Further,
a valid biomarker would be of great value for differential diagnosis, given the variety of
conditions that can cause behavioral or cognitive changes in older adults with DS.
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Fig. 1.
Fig. 1a: Telomeres in metaphase shown by an FITC-labeled PNA probe with DAPI
counterstaining. Examples of chromosome arms with no signal are shown by arrows. This cell
was obtained from a whole blood culture of a person with Down syndrome with no dementia/
MCI.
Fig. 1b: Similar to Fig. 1a except there are more signals (over 20) missing from this metaphase
obtained from a whole blood culture of a person with MCI-DS.
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Fig. 2.
Telomere Fluorescent Signal Loss: Interaction showing greater effect with dementia compared
to MCI-DS. Interaction effect: F(1, 11)=6.02, p=.032.
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