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The movement ecology framework depicts animal movement as
the result of the combined effects of internal and external con-
straints on animal navigation and motion capacities. Nevertheless,
there are still fundamental problems to understand how these
modulations take place and how they might be translated into
observed statistical properties of animal trajectories. Of particular
interest, here, is the general idea of intermittence in animal
movement. Intermittent locomotion assumes that animal move-
ment is, in essence, discrete. The existence of abrupt interruptions
in an otherwise continuous flow of movement allows for the
possibility of reorientations, that is, to break down previous
directional memories of the trajectory. In this study, we explore the
potential links between intermittent locomotion, reorientation
behavior, and search efficiency. By means of simulations we show
that the incorporation of Lévy intermittence in an otherwise
nonintermittent search strongly modifies encounter rates. The
result is robust to different types of landscapes (i.e., target density
and spatial distribution), and spatial dimensions (i.e., 2D, 3D). We
propose that Lévy intermittence may come from reorientation
mechanisms capable of organizing directional persistence on time
(i.e., fractal reorientation clocks), and we rationalize that the
explicit distinction between scanning and reorientation mecha-
nisms is essential to make accurate statistical inferences from
animal search behavior. Finally, we provide a statistical tool to
judge the existence of episodic and strong reorientation behaviors
capable of modifying relevant properties of stochastic searches,
ultimately controlling the chances of finding unknown located
items.

animal movement � intermittent locomotion � Lévy walks �
random walks � search strategies

The movement ecology framework explicitly recognizes ani-
mal movement as the result of a constant ‘‘dialogue’’ be-

tween environment (external factors) and animal internal states.
This dialogue affects organisms’ motion and/or navigation ca-
pacities to finally produce the actual movement (1). Beyond
phenomenological descriptions of movement, the random par-
adigm (1) should seek to understand how interactions between
the four components of the movement ecology framework (i.e.,
internal states, external forces, motion, and navigation capaci-
ties) might be translated into observed statistical patterns of
movement (2, 3). In the present work, we suggest that a major
advance in bridging the gap between animal behavior (mecha-
nistic approach) and the statistical properties of search strategies
involves a statistical reinterpretation of the idea of intermittent
locomotion (4–6).

The biological principle of intermittent locomotion assumes
that animal behavior unavoidably produces observable punctu-
ations in the movement (e.g., stops, strong changes in speed).
Thus, the forces generating movement operate discontinuously,
producing pauses and speeding patterns on the move. Intermit-
tent locomotion (also known as stop-and-go movement, pause-
travel locomotion) occurs in terrestrial, aquatic, and aerial
environments, embracing very different ecological contexts, e.g.,

food search, directed travel toward hoarding sites, active pursuit
of preys, habitat assessment (4).

To understand why intermittent locomotion has evolved it is
essential to take into account all relevant costs and benefits (5).
However, an often disregarded but very general aspect of
intermittency is that, any type of abrupt change in the continuous
flow of movement (e.g., morphological changes of the body plan,
sensorial failures, pauses) allows for the possibility of breaking
down previous directional memory. Indeed, intermittence may
be closely related to turning behavior: after pauses, new direc-
tions (not correlated with the previous ones) are more prone to
be chosen, producing strong reorientations on the move. Thus,
patterns of intermittence can be mapped into patterns of reori-
entation behavior.

The existence of episodic behaviors resulting in sequential
breaks of previous-directions can strongly modify the success
of a search process. The probability distribution of time
intervals between reorientations can determine strong changes
in the diffusive properties of movement and in relevant spatial
properties of the trajectories (6, 7). These distributions may
not necessarily involve Gaussian statistics but can also involve
Lévy type of statistics (8, 9). Thus, changes in animal behavior
affecting the tempo and modes of reorientation can generate
different anomalous diffusion regimes (8–11) or involve mac-
roscopic transitions between normal and anomalous diffusion
(12, 13), which in turn, can affect the search efficiency of
random exploration processes (7, 14). When information
availability and/or searcher detection capabilities are low, and
thus, orientation mechanisms cannot be used, animals still can
improve the chances of locating targets by relying on statistical
properties provided by their motility patterns (e.g., refs.
15–17). Given the energetic costs of large-scale searching,
behavioral features favoring an intermittent locomotion that
promotes efficient search patterns may represent a real adap-
tive advantage. Hence, when exploring natural resource fields
across different scales, animals could complement fine-tuned
sensorial capabilities with the generation of efficient (e.g.,
Lévy-like) intermittency (15, 17).

By means of biphasic (scanning–reorientation) models of
search we explore the connections between intermittency, re-
orientation behavior, and efficient statistical patterns of search.
We develop two behavioral models of search (with and without
intermittence) and quantify the effects of Lévy intermittence in
search efficiency in relation to (i) nonintermittent animal move-
ment, (ii) non-Lévy types of intermittence, and (iii) increases in
searchers’ detection capability and cruising speed. We also
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present a statistical method based on maximum likelihood and
Akaike Information Criteria (AIC) model selection (18, 19)
capable of detecting the presence of intermittence (i.e., reori-
entations) on the basis of empirical turning angle distributions.
Our study introduces the general concept of fractal reorientation
clocks as adaptive memory losses of previous behavior, control-
ling the diffusivity and other relevant properties of stochastic
search processes.

Two Behavioral Models of Search
We present two contrasting behavioral models of animal search:
with and without intermittence. In the simplest case (without
intermittence) we model organisms’ local scanning behavior by
means of correlated random walks (CRW). CRW are a natural
way to model the emergence of angular correlations in animal
trajectories coming from local scanning behavior (2, 20–23). In
the intermittent model, we generate a class of random walks,
named Lévy-modulated CRW (LMCRW), by incorporating a
time-discrete reorientation behavior (with Lévy statistics) into
the background continuous scanning process modeled as a CRW
(7). The LMCRW generalizes the idea of Lévy walk models as
search strategies proposed by Shlesinger and Klafter (24) and
developed by Viswanathan et al. (14).

In CRW models, angular correlations are introduced on the
basis of a continuously decaying probability distribution of
turning angles (��� � � �) centered at the value � � 0
(maximum probability) (7, 21, 23). In our model, the turning
angles are selected at each step from a wrapped Cauchy distri-
bution (WCD) (25),

P��� �
1 � �2

2��1 � �2 � 2�cos(�))
,

where � � [0,1], although other distributions (e.g., circular
Gaussian, von Mises) might be as good (26, 27). The shape
parameter � of the WCD distribution controls the directional
persistence or correlation length of the random walk (20, 22, 26,
27). In the intermittent model (LMCRW), reorientation phe-
nomena are added to the above CRW model. By definition, a
reorientation breaks the directional persistence introduced by
the scanning behavior, involving a change of direction that
should be uncorrelated (or else strongly anticorrelated) to the
previous direction. For the sake of simplicity, but without loss of
generality, we have assumed that reorientation behavior gener-
ates turning angles that are not correlated to previous directions.
In statistical terms, this means that reorientation turning angles
� are being sampled from a uniform distribution (UD) � � [��,
�]. Therefore, in our model, at each reorientation time the
turning angle is no longer sampled from a WCD (scanning
behavior), but instead it is sampled from a UD (reorientation
behavior). The time intervals t between these reorientations
(UD sampling) are drawn from a power law distribution: P(t) �
t��, where 1 � � � 3. These power laws represent the tail of a
Lévy-stable distribution, so that if the power law exponent �, also
known as the Lévy index, lies in the interval 1 � � � 3, then the
tail of the corresponding Lévy stable distributions have exponent
�L � 1 � �. For � 	 3, provided the conditions of the
Generalized Central Limit Theorem (28), the tail converges to
a Gaussian distribution (29). In the latter case, the time intervals
between reorientations will show an intrinsic characteristic scale
(in this sense, intermittence is non-Lévy). To compare the role
of Lévy intermittence with non-Lévy types of intermittence we
also show the results of a search model where the time intervals
t between reorientations (UD sampling) are drawn from an
exponential distribution: P(t) � e�t/
, with characteristic time 
 �
��p, where � � [0.01, 1] and �p is the average distance (or
travel-time) between patches [see supporting information (SI)
Text].

Search Efficiency Simulations
We consider search scenarios in which random walkers look for
fixed target sites in 2D and 3D spaces with periodic boundary
conditions. To make comparable the encounter rates of diffu-
sive-like searching processes at distinct dimensional space (i.e.,
2D, 3D) the mean free path �, defined as the average Euclidean
distance between sites, is fixed at a constant value (30). For each
dimension we considered two target-density scenarios, repre-
sented by patchy landscapes with different average distances
between patches �p � 1,000 (low-resource scenario) and �p �
100 (high-resource scenario). We also consider 2D fractal-like
landscapes with the same target densities (see SI Text).

Along each step the walker ‘‘scans’’ for circular targets of
radius rt with a detection radius rd. The walkers perform CRW
(nonintermittent model) or LMCRW (intermittent model) with
steps of fixed length (�0 � 0.5). Taking into consideration some
variability in � through Gaussian or exponential distributions of
move lengths does not change qualitatively the results. In CRW
the turning angles are sorted from a WCD at each step. In
LMCRW, the turning angles are sorted from a WCD and
following Lévy time intervals from a UD. If it finds a target, i.e.,
if the distance between the walker and the target is equal or less
than the detection distance R, the step is truncated because
detection has occurred. Once detected, with probability P � 0.5,
the walker can capture the target. If the walker captures the
target, it proceeds to the target location, and the number of
encounters increases by one. If it does not, the number of
encounters remains the same. Whether there is capture or not,
after detecting a target, the walker draws a turning angle from
a UD in both models, which assumes that target detection always
forces subsequent reorientation. A full run ends after the walker
travels a total of N � 107 steps. To ensure stationary averages
throughout the simulations, we delete targets once they are
found (local depletion) but we maintain global target densities
by randomly adding a new target each time an encounter is
computed. Targets are relocated, preserving the basic statistical
properties of the initial landscape structures (see SI Text).

We define the search efficiency function  � ne/dtotal as the
ratio of the final number of target sites visited ne to the total
distance traversed by the searcher dtotal, and we scale the whole
search process in terms of the mean free path between patches
�p, which represents the average distance between two patches
(see SI Text). Results of the search efficiency simulations are
presented as the percentage of relative change on search effi-
ciency (i.e., �) of the intermittent behavioral model (I), which
can be Lévy or non-Lévy (i.e., exponential), against the nonin-
termittent model (G), that is,

� � �I � G

G
� � 100.

Statistical Analysis of Trajectories: Detecting Intermittent
Behavior
In animal movement data, the common assumption that the
behavior of a random variable (related to movement) can be
described with the same probability distribution throughout all
its range cannot be guaranteed a priori. This is so because the
underlying mechanisms of movement differ on different scales,
or alternatively because the same core mechanism generates
different outcomes at different scales. For instance, one usually
assumes that turning angles follow an exponential-like or a
Gaussian-like distribution, decaying from small (�0°) to large
values (�180°). However, if intermittence exists, the observed
probability distribution of the turning angles would arise as a
combination of the turning angles generated by (at least) two
behaviors, scanning and reorientation. On the average, scanning
turning angles (gleaned in our models from a WCD) are smaller
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(closer to 0) than reorientation turning angles (gleaned in our
models from a UD). Because of that, the effect of reorientation
behavior on turning angle distributions should be particularly
conspicuous at the ‘‘tail’’ of the distribution.

We compute the turning angle distributions of two trajectories
(N � 103) generated with the nonintermittent (� � 0.9) and the
Lévy intermittent model (� � 0.9, � � 2), and we perform
AIC-based pointwise model selection tests (PWMS) to deter-
mine whether the tail of the respective turning angle distribution
is uniform. PWMS is a rigorous method to: (i) identify different
qualitative regimes within statistical data and (ii) select the
probabilistic model that suits better the different regimes. The
model selection is based on Akaike Information Criteria weights
corrected for small data samples (wAICc) (18, 19) (see SI Text).
In particular, we run tests where an exponential distribution (the
simplest decaying function) and a UD are confronted to fit the
turning angle data from the two behavioral models of search.
The data are ranged in ascending order and the model selection
tests are done sequentially from the smallest to the largest angle
values.

Results
Plots of the search efficiency gain � (Fig. 1) show that
exponential intermittence (Fig. 1 A and B) does not impact

(there is almost no effect) the search efficiency. This is true for
the 2-fold range of characteristic times 
 chosen. On the basis of
the parameter � � [0.01, 1], we choose a range of characteristic
times 
 that would represent a range from 1% to 100% of the
average travel time between patches (see SI Text). Below this
range, exponential intermittence starts to break the directional
persistence of the trajectory in excess, leading to significant
decreases in the search efficiency when compared with a non-
intermittent search. Above this range, the effects of exponential
intermittence remain insignificant. On the contrary, the incor-
poration of Lévy intermittence (Fig. 1 C–F) can produce a
substantial increase in the number of encounters at different
target densities (compare Fig. 1 C vs. D and E vs. F or Fig. S1
a vs. b), landscape dimensions (compare Fig. 1 C vs. E and D vs.
F), and target spatial distributions (compare Fig. 1 C and D vs.
Fig. S1 a and b). The overall range of search efficiency gain �
goes from �40% to 50%, but more importantly, optimal Lévy
intermittent behavior does emerge. In our scenarios the range of
optimal Lévy indexes is 1.5 � �opt � 2. Optimal values for patchy
landscapes (i.e., �opt �2) are larger than for fractal-like land-
scapes (i.e., �opt �1.5). In general, optimal Lévy indexes seem to
be more sensitive to target spatial distributions than to target
densities or dimensionality. The gain in search efficiency � is
smaller when target density increases (compare Fig. 1 C vs. D and
E vs. F and Fig. S1 a vs. b), when the system changes from 2D
to 3D (compare Fig. 1 C vs. E and D vs. F), and when target
spatial distributions go from patchy to fractal-like (compare Fig.
1 C and D vs. Fig. S1 a and b). In 2D systems, the larger the
directional persistence during the scanning process (� � 0.9 vs.
� � 0.7) the larger the benefits of intermittence. In 3D systems
(Fig. 1 E and F), even though the effects of intermittence are
reduced, Lévy intermittence always increases search efficiency
and large changes in the sinuosity of the paths (from � � 0.7 to
� � 0.9) seem not be as determinant for search efficiency as
could be in 2D systems. In any case, in low-density patchy
landscapes, the search efficiency gain caused by optimal Lévy-
intermittent behavior is comparable to the gain obtained by a
nonintermittent searcher if increasing almost 2-fold the speed
and 4-fold the size (i.e., perceptual capabilities) (2D systems),
and 1.5-fold the speed or size (3D systems) (Fig. S2).

Interestingly, in some conditions, certain classes of Lévy
intermittence can decrease the search efficiency because of an
excessive breakage of the overall directional persistence of the
walk (Fig. 1, � � 0.07, for the interval 2.5 � � � 3; Fig. S1, for
the interval 2 � � � 3). Indeed, it is well known that the Lévy
type of statistics not only increases but can also decrease
(depending on the conditions) average encounter rates (30). All
together, Fig. 1 and Fig. S1 suggest that the incorporation of Lévy
intermittence into realistic scanning/reorientation models of
search significantly modifies (either increase or decrease) en-
counter rates in different types of landscapes and different
spatial dimensions. In addition, Fig. S2 illustrates the fact that
Lévy intermittence might be of evolutionary relevance.

Even though the two ‘‘behavioral’’ search modes (Lévy-
intermittent and nonintermittent) involve large differences in
the search efficiency (Fig. 1 and Fig. S1), the realized trajectories
are almost indistinguishable (Fig. 2 A and B). Concordantly, the
resulting turning angle distributions look very similar (Fig. 2 C
and D). Only the use of powerful statistical methods (i.e.,
PWMS) can help us to distinguish the two searching modes (Fig.
2 C and D Insets). Contrary to the nonintermittent case, the
PWMS can detect uniformity in the tail of the turning angle
distribution generated with the Lévy-intermittent model. The
critical turning angle at which the regime shift from exponential
to uniform behavior occurs is �c � 0.39 rad. Turning angle values
above �c are uniformly distributed and so we can expect those to
be produced mainly because of reorientation (and not scanning)
behavior. In Fig. 2 E and F we estimate the distribution (i.e.,
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Fig. 1. Search efficiency gain � (%) comparing search processes with and
without exponential-intermittence in 2D patchy landscapes (A and B) and
with and without Lévy intermittence in 2D (C and D) and 3D (E and F) patchy
landscapes. Results are shown for �P � 1,000 (low patch densities) (A, C, and
E) and �P � 100 (high patch densities) (B, D, and F) for different scanning
behaviors: � � 0.7 (F) and � � 0.9 (E), and for different intermittent reorien-
tation behaviors: exponential-intermittent (0.01 � � � 1]) and Lévy intermit-
tent (1 � � � 3). In the former case, the � values cover characteristic time-scales
of intermittence (i.e., 
 � ��P) that go from 1% to 100% of the �P value [i.e.,
the average distance, or travel time, between patches (see SI Text)]. Dashed
lines indicate zero search efficiency gain (� � 0%).
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probability density function) of time intervals between ‘‘observ-
able’’ reorientations �R. We define an observable reorientation
�R to occur if the turning angle approximately doubles the critical
value �c, so we can ensure that we are not in the transition
regime. In our case �R 	 2�c 	 0.78 rad. Even though in our
computation we are definitely missing many reorientation-based
turning angles (�R � 0.78) and we might wrongly include some
scanning-based turning angles (� 	 0.78), we still can recover the
correct scaling exponent � � 2 that characterizes the intermit-
tent behavior of our model. As a matter of comparison, if we
compute the time-interval distribution for angles such that � 	
0.78 rad in the nonintermittent model, we do not observe a
power-law distribution for the time intervals (i.e., straight line in
a log-log plot). Instead, we obtain an exponential-like distribu-
tion consistent with what we expect to observe in the absence of
intermittent behavior. Exponential distributions can be well
characterized as straight lines in semilog plots. In a log-log plot,
the exponential-like behavior shows up as a strongly curved line
(Fig. 2E). Note that in those cases where intermittence exists
(uniform tail) but it has an intrinsic characteristic scale (� 	 3
or exponential intermittence), exponential-like behavior for the
time-interval distributions can also be observed.

Discussion
The general idea that animals exhibit a set of different behaviors
(movement modes) that are statistically distinguishable (31) can

also be applied to the search behavior. By definition, in the
search mode animals do not have much environmental infor-
mation, and learning from the environment should represent a
challenge. As such, the search mode should be distinguished
from other movement modes driven by strong environmental
cues (e.g., ref. 32) or by learning processes occurring in predict-
able and static ecological conditions, which typically generate
highly repetitive and cyclical movement behavior (e.g., ref. 33).

An efficient search mode not only would involve the existence
of specific search strategies that can be effective in particular
situations but, more generally, the flexibility to deal efficiently
with a changing environment (4). It is within this ecological and
evolutionary framework that we propose the existence of back-
ground reorientation mechanisms (i.e., fractal reorientation
clocks) that can generate Lévy intermittence, efficiently alter-
nating scanning (whether continuous or not) and reorientation
behavior. Such mechanisms might co-occur with more localized/
specialized scanning mechanisms and could substantially im-
prove the search efficiency across natural exploration scales
(e.g., refs. 15 and 17). Our results in Fig. 1 and Fig. S1 show that
such a set of reorientation mechanisms could strongly modify
encounter rates by amounts that depend on: (i) the dimension-
ality of the system (i.e., 2D, 3D), (ii) the type of landscape (i.e.,
spatial distribution and target densities), (iii) the background
scanning behavior (i.e., correlation length of the walk), and (iv)
the specific scaling exponent (i.e., Lévy index) governing the
time-interval distribution between reorientations. Considering
the energetic costs associated with enhancing search efficiency
by increasing the cruising speed and/or the perceptual capabil-
ities (see Fig. S2), the ‘‘timing’’ of specific reorientation mech-
anisms surely must be a strong target for natural selection.

Scanning, Reorientations, and Lévy-Intermittent Behavior. From a
purely statistical perspective, scanning behavior can produce dif-
ferent amounts of angular correlations during a walk. These cor-
relations depend mainly on local environmental features, and thus,
represent an emergent property from the complex mechanic-
sensorial responses of animals to the local environment. The
emerging statistical patterns produced by scanning behavior cannot
be considered as part of a large-scale search strategy ruled by the
animal. First, it is difficult to imagine a scanning mechanism evolved
to mold angular statistical correlations at scales much larger than
the scales of the detection process itself. Second, and more impor-
tantly, several studies suggest that if animals have some degree of
control on angular correlations, this aptitude would only be relevant
at short scales (e.g., patch exploitation) (27, 34, 35). In the long run,
the correlations generated by scanning behavior can either vanish
(as in CRW processes; e.g., refs. 7, 21, and 23) or else be retained
mainly because of the constant feedback between scanning behav-
ior and the landscape (as is assumed in composite Brownian walks;
e.g., refs. 36 and 37).

During a search process, scanning behavior can be continuous
or discontinuous (i.e., saltatory or intermittent search). In the
latter case, the proportion of time spent in relocation displace-
ments and scanning phases also affects the search efficiency (38,
39). However, either if the exploration of space is based on
continuous scanning behavior (e.g., refs. 7, 14, and 30) or a
saltatory process (e.g., refs. 38 and 39), the key element impact-
ing on the efficiency of stochastic searching is the generation of
Lévy-like reorientation patterns (7, 30, 40, 41).

Our results (Fig. 1, Fig. S1, and Fig. S2) suggest that the effects
of Lévy intermittence are important and robust in a variety of
landscapes, target densities, and types of scanning behavior (see
also refs. 30 and 42). This fact does not come as a surprise if one
notes that Lévy intermittence has direct impact on general
statistical properties that shape the long-term spatial pattern of
exploration (e.g., diffusivity, first-passage times, resampling
rates, returning probabilities). From a biological perspective,
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1,000, � � 0.0) (for more details on PWMS see SI Text). In F, a regression line
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in a log-log plot) is observable. In E and F note the distinction between � 	 0.78
(E) and �R 	 0.78 representing scanning-related (�) and reorientation-related
(�R) turning angles, respectively.
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what is important is that the distinction between scanning and
reorientation behavior seems crucial to understand the relation-
ships between animal behavior and statistical patterns of search
(see also ref. 6). The concept of fractal reorientation clocks,
which involves the ability to organize directive memory losses of
previous behavior/movement, brings the possibility to look for a
variety of biological mechanisms under a common perspective
and may square different types of stochastic search strategies
(i.e., area-restricted search, Lévy search strategies and saltatory
search processes) under a common framework.

Biological Mechanisms for Lévy Intermittence. To think rigorously
about Lévy-intermittent phenomena in biology, one should first
identify a precise biological mechanism of reorientation that can
be switched on and off, triggered as a response to the environ-
ment. Environmental cues acting on reorientation behaviors are
expected to be different from those acting on scanning or
‘‘detection’’ mechanisms (6). Although reorientation mecha-
nisms might be triggered by detailed, localized environmental
information such as in scanning or detection mechanisms, the
idea of fractal reorientation clocks involves the existence of a
‘‘reorientation plan of action’’ that could be triggered by coarse-
grained, landscape-level environmental cues, which need to be
integrated in time (e.g., absence/presence of food, absence/
presence of enemies) and might be closely associated to the
internal states of the animal (e.g., starvation, fatigue, sexual
attraction).

In searches where scanning is continuous, reorientation be-
havior may involve any biological mechanism capable of break-
ing apart previous directional persistence of the scanning process
itself. In saltatory searches, where scanning is discontinuous,
reorientation behavior might be linked to decision-making
mechanisms capable of stopping and/or starting relocation
moves in different directions. In both cases, the mechanisms
themselves could consist of simple internal biological programs
(6, 43) or could emerge as interactive processes with other
individuals (i.e., collective mechanisms of intermittence) or the
environment (i.e., relocation displacements). As occurs in dis-
persal processes, for example, many animals could actively take
benefit of external transportation devices (e.g., winds, ocean
currents, other animals) as part of a search strategy.

In general, any biological mechanism acting like a reorienta-
tion clock, adjustable either to environmental forcing or to
changes of the animal internal state, could be under selective
pressure to stochastically control the search efficiency. There are
some examples in the literature showing that at least for ‘‘simple’’
organisms (e.g., bacteria, f lagellates, fruit f lies) motor-related
neuronal configurations (43, 44) and biochemical paths (45)
could be responsible for a Lévy timing of reorientations (12, 13,
44, 46). Empirical evidence of such fractal reorientation clocks
at different levels of biological organization (e.g., neuronal,
biochemical, physiological, behavioral) could explain, to some
extent, the presence of Lévy flights and scale-free (i.e., fractal)
properties in the movement patterns of some animals (e.g., refs.
12, 13, and 44). However, the explicit links between reorientation
behavior and statistical properties of movement have yet to be
systematically explored.

When Lévy Intermittence Is Advantageous as a Search Pattern. When
animals find food or localize a particular environment where
resource exploitation may be predictable and profitable, they can
switch behavior to a local search mode [i.e., area-restricted
search (ARS)]. ARS explains the common observation that the
amount of time spent by animals in food rich areas is much larger
than the time spent in bare environments (e.g., ref. 47). However,
prey capture does not always induce ARS (48). If resource
patterns within food-rich areas are complex enough, the problem
of efficiently exploiting resource patches is not a matter of

finding a patch and fully exploiting it, but instead involves visiting
several resource areas of potential interest at the right moments.
This fact imposes a tradeoff between constantly revisiting nearby
areas and exploring new potential resource areas. In terms of
stochastic processes, this situation resonates more with an N-
passage than with a first-passage search problem. In such cases,
the simple ARS behavior combined with ballistic-like movement
(e.g., refs. 36 and 47) would not be, in general, the most efficient
stochastic search strategy. If the exploration involves either
continuous or saltatory scanning, whenever there are potential
benefits in randomly revisiting and reexploring close areas aside
from exploring new landscape, Lévy intermittence can strongly
modify search efficiency. This main result holds for different
target spatial distributions and densities (Fig. 1 and Fig. S1).
However, the power of Lévy intermittence decreases with in-
creasing dimensionality and target densities (Fig. 1 and Fig. S1;
see also ref. 30). Of note is the fact that animals living in 2D and
3D environments actually can move in a much more reduced
spatial dimensionality (see, for example, ref. 49) enhancing the
potential effects of Lévy intermittence during a search.

The similar dependency of different stochastic search pro-
cesses (i.e., LMCRW, pure Lévy strategies, and saltatory
searches) on both target densities and dimensionality (e.g., refs.
7, 30, 39, and 50), indicates the universal character of some basic
stochastic search properties. Analogous essential properties
might explain the general result that Lévy intermittence can
strongly modify the search efficiency of N-passage stochastic
search problems. Yet if the exploration of an area can be
considered an N-passage search problem, our simulations illus-
trate the fact that in LMCRW models, other particular condi-
tions are needed for Lévy intermittence to significantly increase
the search efficiency. For example, if the scanning behavior of
the animal leads to extremely sinuous paths (� � 0.5), reorien-
tation mechanisms will not convey any effect at large scales. In
other words, the larger the sinuosity of the path, the lower the
power of Lévy intermittence. Also, as we show in Fig. 1C and Fig.
S1, the combination of certain target spatial arrangements and
densities can account for regimes of Lévy intermittence (3 	 � 	
2) that decrease the number of encounters by excessively break-
ing the directional memory that scanning behavioral processes
can provide.

Detecting Lévy Intermittence in Trajectories. Animal movement can
be understood as a sequence of scanning and reorientation
behavior, the latter also including relocation displacements (i.e.,
saltatory search). Even though a search process might incorpo-
rate Lévy intermittence, trajectories might not look as pure Lévy
walks or flights (e.g., Fig. 2B). Therefore, it is necessary to
develop new segmentation methods on trajectories capable of
recovering intermittence. The method proposed here should be
considered a step toward this goal. In fact, empirical data (i.e.,
small datasets, large sampling errors), and certain natural con-
texts (i.e., high sinuosity trajectories, high resource scenarios)
may challenge the identification of Lévy intermittence by means
of AIC-based PWMS on turning angle distributions. In some
solutions, the turns originated by episodic reorientation behavior
can be mostly screened by those coming from scanning behavior.

In addition to developing new statistical tools to analyze
recorded trajectories, it would be important to move closer
toward measurements of reorientation (i.e., proxys of reorien-
tation events) rather than try to detect reorientation signals
indirectly from the plotted track. In the near future, the detec-
tion of Lévy intermittence can be powered by the advancement
of biotelemetry, that is, the remote monitoring of the physiology,
behavior, and energetic status of free animals in combination
with the more standard tracking procedures (e.g., ref. 51).
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Challenging the Movement Ecology Framework. Beyond the quan-
titative analysis of movement, the random paradigm (1) should
provide clear rationale to link animal behavior to statistical
patterns of movement (e.g., refs. 31 and 33). We suggest that the
recognition of intermittent locomotion and the explicit distinc-
tion between scanning and reorientation mechanisms is essential
to make accurate statistical inferences from searching behavior.
Furthermore, adequate null models of search behavior could
help to build more realistic links between individual and popu-
lational scales, improving the understanding of spatially struc-
tured population dynamics (e.g., ref. 52). Therefore, a major
challenge within the movement ecology framework (1) is to
understand how reorientation mechanisms are integrated into
the set of traits enabling the execution of movement (motion
capacity) and how navigation capacity (scanning behavior)

and/or internal states of the animal can control and modify
reorientation patterns based on different external stimuli. Merg-
ing the concepts essayed in this work with the movement ecology
framework will definitely help to discriminate between different
causes for Lévy patterns in animal movement (e.g., refs. 15, 36,
53, and 54) and to know whether there could be room for
adaptive behaviors, such as those proposed here i.e., fractal
reorientation clocks, relying on essential properties of stochastic
search processes.
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