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Representation and analysis of complex biological and engineered
systems as directed networks is useful for understanding their global
structure/function organization. Enrichment of network motifs,
which are over-represented subgraphs in real networks, can be used
for topological analysis. Because counting network motifs is compu-
tationally expensive, only characterization of 3- to 5-node motifs has
been previously reported. In this study we used a supercomputer to
analyze cyclic motifs made of 3–20 nodes for 6 biological and 3
technological networks. Using tools from statistical physics, we de-
veloped a theoretical framework for characterizing the ensemble of
cyclic motifs in real networks. We have identified a generic property
of real complex networks, antiferromagnetic organization, which is
characterized by minimal directional coherence of edges along cyclic
subgraphs, such that consecutive links tend to have opposing direc-
tion. As a consequence, we find that the lack of directional coherence
in cyclic motifs leads to depletion in feedback loops, where the
number of nodes affected by feedback loops appears to be at a local
minimum compared with surrogate shuffled networks. This topology
provides more dynamic stability in large networks.

dynamics and topology � feedback loops � network theory

Complex systems can be abstracted to directed graphs where
physical components are represented as nodes and interactions

are represented as links. Because such systems are difficult to
visualize, system-level topological properties such as connectivity
distribution (1), clustering (2), and network motifs (3–6) are used
to characterize the global organization of such systems. These
properties, although useful, do not fully explain the underlying
topology of large directed networks. For example, although many
networks were found to display power-law connectivity distribution,
such networks can still have low or high clustering. Similarly,
characterizing small-size network motifs explains local network
organization, but not how these motifs are juxtaposed to form
higher-order structures. Enumeration of a collection of small-to-
large network motifs may provide a better overview of how global
topological properties can arise from local properties. Finding all
network motifs is nondeterministic polynomial-time (NP) hard (7)
and practically unfeasible for motifs of size greater than 10 nodes
in moderate-size networks (e.g., networks with �2,000 nodes/links).
Approaches to overcome this difficulty include sophisticated heu-
ristics (8), parallelization (9), and sampling (5).

The task of detecting network motifs involves identifying and
counting the motifs, classifying them into isomorphic groups, and
determining whether the various types of motifs appear more
abundantly in real networks as compared with shuffled networks
created from the original topologies. Classifying network motifs
into all their possible isomorphic groups quickly becomes intrac-
table because the number of possible unique configurations grows
exponentially with n. Thus, we focus here only on classifying cycles.
The number of all possible n-node configurations for cycles with 2
types of links, directional and nondirectional (neutral), scales as
3n/2n [supporting information (SI) Appendix sections S1 and S5,
Figs. S1–S4, and Tables S1–S6]. Hence, we developed a concise
description for cycles using 3 different measures: (i) Nodes in a cycle
can be ‘‘pass-through’’ (PT),‘‘source,’’ or ‘‘sink’’ nodes, if the nodes

in the cycle are not connected to a neutral link (Fig. 1). PT nodes
have 1 input and 1 output, source nodes have 2 outputs, and sink
nodes have 2 inputs. In the absence of neutral links, there are as
many sink-nodes as source-nodes in a cycle, and therefore the
number of PT plus twice the total number of source-nodes adds to
the number of nodes in the cycle. (ii) When there are nondirectional
or bidirectional links (heretofore called neutral links), as is the case
in several of the networks studied, it is convenient to introduce
another term to describe the relationship between pairs of links
along a cycle: The link–link correlation � for a node is defined with
‘‘1’’ for PT, ‘‘�1’’ for sinks and sources, and ‘‘0’’ when at least 1 link
connecting a node in a cycle is neutral (i.e., nondirectional or
bidirectional) (SI Appendix section S7). This definition is consistent
with a formal analogy between directed cycles and ‘‘spin’’ (or
magnet) systems with circular topology (Fig. 1). (iii) Using the spin
representation, we defined cycle ‘‘magnetization,’’ M, as the abso-
lute value of the disparity between clockwise and counterclockwise
links in the cycle. For spin systems, M is the magnitude of the sum
of spins over all links in a cycle. The value of the link–link
correlation � at a given node is the product of the spins coincident
at that node. This measure formalizes the notion of how much
coherence, or lack thereof, there is in the directionality of the
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Fig. 1. Cycle characterization. The spins assigned to clockwise, counterclock-
wise, and neutral links are 1, �1, and 0, respectively. The directional coherence of
the cycle on the right is characterized by having absolute value of magnetization
�M� � 3, 2 nodes with link–link correlation � � 1 (PT nodes), 2 nodes with � � �1
(source and sink nodes), and 2 nodes with � � 0 (those with impinging neutral
links).
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directed links along cycles throughout the network. Thus, an
alternative name for magnetization could be ‘‘cyclic directional
coherence.’’ Networks with a high or low density of directed
feedback loops will be characterized as ‘‘ferromagnetic’’ or coher-
ent or ‘‘antiferromagnetic’’ or noncoherent, respectively. In this
study, we first analyze this topological property across several real
networks, and then explore the functional implications of such
measurement, in particular its effect on the dynamics of networks.

To deal with the NP-hardness of identifying large cycles, we used
a previously published algorithm (10), applied a sampling approach
(6), and parallelized the code. We also implemented several
enhancements to reduce execution time and used a high-
performance massively parallelized supercomputer (BlueGene) for
program execution (11) (SI Appendix section S2). Any cluster
computer can be used to execute the motifs search program we
developed.

Results
The networks we analyzed are as follows: Saccharomyces cerevi-
siae gene regulation (12) (hereafter called yeast), Escherichia coli
gene regulation (4, 13) (E. coli), mammalian cell signaling (10)
(signaling), Caenorhabditis elegans neuronal connectivity (14, 15)
(neuronal), ecosystem food-web (16) (foodweb), functional

brain map created from fMRI images (17, 18) (brain), small
airplane air traffic control (19) (FAA), benchmark electrical
circuit (20) (electrical), and internet connectivity map (tracert).
For details and network construction and statistics see SI
Appendix section S3 and Table S7.

For all of the networks considered, we analyzed n-node cycles
with 3 � n � 15 (for some analyses 3 � n � 20). We did not
explicitly include in our analysis self-loops and 2-node loops (Table
S8). We first calculated the average of the absolute value of the
magnetization ��Mn�� as a function of the number of nodes n. For
cycles with no neutral links and random direction of links, it can be
shown that:

��Mn�� �
2k
22k�2k

k � � � �2
�

�n � o�1
n� for odd n � 1

�2
�� �n �

1

2 �n� for even n � 1,

[1]

where k is the integer part of (n �1)/2 (SI Appendix section S6
provides derivation of Eq. 1 and its generalization to the case of

Fig. 2. Directional coherence of cyclical motifs as measured by the magnetization. (A–D) Solid symbols correspond to the real networks and open symbols to the spin
modelfit. (EandF)Themagnetizationforthefoodwebandsignalingnetworks, the IODPrandomization, theTDPrandomization,andthefitfromthe independent-link
model from Eq. 1 (E) and its generalization (F).
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cycles with finite number of neutral links). Thus, for n � 3, 4, 5,
6, 7, 8, …. ��Mn�� is equal to the nondecreasing sequence 1.5, 1.5,
1.875, 1.875, 2.1875, 2.1875, … However, for the real networks,
except for the FAA, we found that the observed ��Mn�� alternates
as n increases (Fig. 2).

Spin Model for Antiferromagnetic Behavior of Cycles. For several
networks (e.g., yeast and E. coli), the magnetization approaches the
minimal possible values of 0 for even cycles and 1 for odd cycles.
This observation is inconsistent with the nondecreasing trend of Eq.
1, which assumes independence between neighboring links. To
account for the dependence between neighboring links, we mod-
eled the cycles as a system of interacting spins. Using statistical
physics, an energy function H (21) can be defined as:

H � � J�
i�1

n

sisi�1 � h�
i�1

n

si � ��
i�1

n

�1 � si
2�, with sn�1 � s1,

[2]

where the ss are the spins (0, �1, �1), J is the parameter that
determines the nature of the interaction between links (magnetic
coupling), h is an external magnetic field, and � is the chemical
potential for neutral links. Because the energy tends to be
minimized when the system is at equilibrium if J 	 0 neighboring
links are aligned, i.e., nodes in a cycle are PT (having 1 input and
1 output link), whereas when J 
 0, neighboring links are
pointing in opposite directions (sources or sinks in a cycle). In
our case, h is set to 0 because of symmetry (SI Appendix section
S4). The last term � accounts for the presence or absence of
neutral links in cycles.

We analytically computed �Mn
2� as a function of J and � for each

network and fitted the best values over the range of cycle lengths
3 � n � 15. The results show that with the exception of the FAA
network (J � 0, no link–link interactions), all other real networks
have negative J (Table 1), indicating that cycles in real networks
exhibit low magnetization and are antiferromagnetic; in other
words, cycles tend to be ‘‘anticoherent’’. The average of the absolute
value of the magnetization as a function of cycle length for all of the
networks, along with the spin model fit values taken from Table 1
are shown in Fig. 2 A–D. The fits obtained from the spin model
capture the trend of the magnetization as a function of cycle length
for all networks. However, with the neuronal, brain, and signaling
networks, the fit is less precise. This discrepancy can be explained
because of the abundance of neutral links in these networks. Except
for the FAA (J � 0), the negative values of J suggest that nodes

along cycles tend to be either sinks or sources. This hypothesis is
confirmed by the histograms of � (Fig. S5). The result for the FAA
(J � 0) is because of the fact that planes coming into airports are
balanced with planes leaving airports.

The realization that most real networks can be described by using
a negative J suggests that nodes with high degree (hubs) are either
mostly source or sink nodes. To confirm this conjecture, we defined
a measure, the exclusion degree, that assesses the extent to which
a node is exclusively a sink or a source: The difference between the
in-degree (din) and out-degree (dout), normalized by the maximum
of din and dout (neutral links are not included in this calculation). If
nodes are purely sinks, having exclusion degree of x � 1, or purely
sources x � �1, the average of the exclusion-degree coefficient �x2�
would be 1. Alternatively, if the directionality is random, �x2� would
be 0.33. The rightmost column in Table 1 shows �x2� for hubs,
defined as nodes in the top 10th percentile based on connectivity
degree (Figs. S6 and S7 and SI Appendix sections S8 and S9). Table
1 shows that a high exclusion degree corresponds with a high
antiferromagnetic coupling (e.g., E. coli, yeast, and brain networks,
with J 
 �1). Hence, source and sink hubs contribute to the
antiferromagnetism observed in real networks (Fig. S8). However,
it is possible that networks can still have a relatively high antifer-
romagnetic trend while displaying low �x2� as observed for the
electrical and tracert networks.

To further explore additional contributions to the antiferromag-
netism besides the bias of hubs, we compared the magnetization
obtained in real networks with networks randomized by 2 different
methods: (i) total degree-preserving (TDP) randomization, in
which we keep the degree for each node and shuffle both the targets
of sources’ nodes and the directionality of links; and (ii) in- and
out-degree-preserving (IODP) randomization, in which we keep
the in- and out-degree for all nodes, shuffling only the targets (22)
(SI Appendix section S10). These 2 methods of randomization
preserve nodal-connectivity degree while destroying the global
structure of the original networks. In particular, IODP conserves
�x2�, which is useful for exploring the contribution of other factors
to antiferromagnetism. We compared the real and randomized
network magnetization for all networks (Fig. 2 E and F and Fig. S9).
Except for the FAA network, the magnetization level of the real
networks is lower than the magnetization observed in all random-
ized networks. For the TDP randomization, the magnetization
coincides with the model with statistically independent directed
links in a cycle. This agreement is expected because directionality
is completely destroyed with TDP randomization. The observation
that real networks are more antiferromagnetic than networks with
IODP randomization, which have a �x2� identical to that of the real
networks, indicates that there are additional factors besides the
hubs exclusion that contribute to the antiferromagnetic observa-
tion. Another contributing source to antiferromagnetism may be
redundancy through bifans [motifs made of 2 source nodes target-
ing 2 target nodes (3)]. Using FANMOD (23), we confirmed that
bifans are enriched in most networks (Fig. S10).

A further indication that the exclusion principle and the abun-
dance of bifans contribute to the antiferromagnetic behavior of the
networks studied was obtained by applying a protocol where in- and
out-degree hubs and bifan are gradually removed (SI Appendix
section S13). Indeed, we observed that surrogate networks gener-
ated by excising links from high-degree hubs display consistently
higher magnetization than the original networks with all of the links
implemented (Figs. S11 and S12). This trend is also present when
nodes with high bifan degree are excised (Figs. S13 and S14), which
emphasizes that antiferromagnetism is both a local and a global
topological property.

Depletion of Feedback Loops. The presence or absence of feedback
loops can have profound effects on the dynamical behavior of
systems (24–27), whereas a cycle that is not a feedback loop, having
sinks and sources, is always linearly stable (Fig. 3A). A feedback

Table 1. The parameters J and � fitted for the real networks
using the spin-system representation for the cyclic motifs and
the exclusion degree �x2�

Network J �

�x2� in 10%
most-connected nodes

Brain �2.2 1.10 0.93
E. coli �1.55 �1.00 0.86
Electrical �1.35 �� 0.52
Yeast �1.25 �� 0.96
Tracert �1.35 �� 0.27
Foodweb �0.80 �� 0.79
Neuronal �0.65 0.20 0.32
Signaling �0.35 �0.05 0.45
FAA 0.00 �� 0.22

A negative J rewards source and sink nodes, whereas a negative � indicates
a tendency for cycles to exclude neutral links. The rightmost column is a
measure of the exclusion degree �x2� averaged for the 10% most-connected
nodes.
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loop of size 	3, even if negative, can have an infinite region of
parameter space in which it is linearly unstable (Fig. 3B and SI
Appendix section S11). The observed antiferromagnetic organiza-
tion of cycles means that cycles in real networks are mostly made
of sinks and sources, reducing the chance for forming feedback
loops. Because feedback loops can have dramatic effects on the
behavior of dynamical systems, we further explored how the
antiferromagnetic topology observed for real networks affects
dynamic stability.

Although antiferromagnetism suggests depletion of feedback
loops, negative J does not reveal how many feedback loops ‘‘sur-
vive’’. For this quantitation, we computed the number of nodes
involved in at least 1 feedback loop of size 3 or greater. For networks
with undirected/bidirectional links, we randomly assigned direction
to these links, biasing the direction based on existing in- or
out-degree, and computed the average and standard error resulting
from N � 1,000 realizations. As a control, we also computed the
number of nodes involved in feedback loops in the IODP-
randomized networks (Fig. 3C). The number of nodes affected by
feedback loops relative to the total number of nodes in the network
is the smallest for the E. coli (0.05%) and yeast (1%) networks. All
networks, biological and engineered, have a significantly smaller
number of nodes involved in feedback loops compared with their
randomized counterparts [one-tailed t test P values of 
6.3 � 10�23

(E.coli), 
1 � 10�100 (yeast), 
 1 � 10�100 (signaling), 3.3 � 10�73,
(neuronal), 
1 � 10�100 (brain), 
1 � 10�100 (foodweb), 
1 �
10�100 (electrical), 
1 � 10�100 (tracert), and 
1 � 10�100 (FAA)]
(Fig. 3C). It appears that 1 common design principle developed to
accomplish stability in biological and engineered networks could be

reduction in feedback loops, thereby lowering the potential of
destabilization of the systems.

The distribution of feedback loops of lengths 1 and 2 was also
computed and compared with larger size loops (Fig. S15). For some
of the networks (E. coli, foodweb, tracert) the distribution is a
decreasing function, with most nodes being self-regulatory, some
participating in 2-node loops, and very few being part of 3 or more
node loops. For the yeast, signaling, FAA, and electrical networks,
however, nodes are mostly affected by longer feedback loops. Even
though the inclusion of 1- and 2-node loops (disregarded in the
process of redirecting neutral links) could change the absolute
number of nodes affected by feedback loops shown in Fig. 3C, the
1- and 2-node loops are treated exactly the same when creating the
IODP-randomized networks. Therefore, the conclusion of Fig. 3C,
that feedback loops are minimized, is not changed by the exclusion
of feedback loops of sizes 1 and 2.

Dynamic Stability Because of Depletion of Feedback Loops. To test
whether real networks, having fewer nodes in feedback loops
compared with IODP randomizations, tend to be more dynamically
stable, we analyzed the networks as dynamical systems. To simulate
the dynamics of the networks, we made the assumption that each
node has an associated dynamic variable, yi. In the signaling
network, this variable could be, for example, the level of a protein
that is dynamically regulated by synthesis and degradation. We
constructed a dynamical system of the form

dyi

d

� � sinh�yi� � ��

j�1

n

Ã ij
Ty j � � i�
� [3]

for 1 � i � n (SI Appendix section S12 has justification for Eq.
3). Although this equation models the network dynamics around
a fixed point, large deviations from fixed points (if they exist) do
not produce divergences because of the dissipative nature of the
sinh term. Therefore, these equations can capture the effects of
linear instabilities on the collective dynamics of coupled nodes
beyond small perturbations around a fixed point. However,
specific behaviors such as intermittent bursts, observed in neu-
ronal networks, are not intended to be captured by this simplified
dynamical modeling.

The magnitude of the interaction between different nodes is
given by �, and the identity of the interacting nodes is determined
by the nonzero elements of the adjacency matrix Ã, which in the
case of the signaling is either positive or negative. Each node is
affected by a white-in-time noise �i(t), whose magnitude � was
chosen to be 0.05 as a mid-range value after initial parameter
variation analysis, because it provides a reasonable window within
which dynamic stability can be assessed. A representative simula-
tion for the signaling network, where undirected links were ran-
domly assigned a direction for � � 2.5, is shown (Fig. 4A). All
dynamical simulations were performed on networks where neutral
links where randomly redirected as described above. To quantify
the amount of variability in the yis around their stationary averages,
we define the quantity S2 as the sum over all of the variances
�i

2  �(yi � �yi�)2� of yis. We call S2 the disorder parameter, because
it represents the dynamical disorder of the entire network. For � �
0, it can be analytically shown that �i

2  �(yi � �yi�)2� � �2/2, and
therefore for the 599 nodes in the signaling network, we have S2 �
0.75. The S2 value for the simulation for � � 2.5 was 23.7 (Fig. 4A).
Comparing this value with the representative example simulation
for the IOPD-randomized signaling network, it is clear that the
variability in this latter case is substantially larger than that for the
actual signaling network (Fig. 4B). Indeed, S2 was 2,901 for � � 2.5.
This observation constitutes one representative example that the
real signaling network gives rise to less disordered dynamics com-
pared with shuffled networks. The average disorder parameter S2

over 100 different assignments of directions to undirected links
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Fig. 3. Nodes in feedback loops. (A and B) Linear stability conditions for generic
cycles without (A) and with (B) feedback loop connectivity. (C) The number of
nodes that participate in feedback loops for the 9 networks (purple bars) and
their IODP-randomizedversions (graybars).Thestemstoppedwithsolid triangles
indicate the number of nodes in the corresponding network. (Insets) Enlarge-
ments of the yeast and E. coli results. For the latter, the only feedback loop found
is shown.
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(black line), with the error bars indicating the standard errors,
shows that the average disorder parameter S2 grows from 0.75 to
707, with � ranging from 0 to 2.5 (Fig. 4C). For the IODP-
randomized networks, the variability grows from 0.75 to 1,294 for
� ranging from 0 to 2.5. The differences between the 2 curves begin
to be statistically significant with a P value of 
10�3 when � 	 1.4
(Fig. 4C). It is relevant to note that the averages of S2 come from
bimodal distributions (Fig. 4 D and E). These 2 distributions are
different at a P value of 5 � 10�3 (2-sample Kolmogorov–Smirnov
test). The bimodality of the S2 distribution indicates that there are
2 regimes of topologies: those that support relatively stable dynam-
ics with low disorder parameter (S2 
 1,000) and those that support
relatively unstable dynamics with high disorder parameter (S2 	
2,000). Approximately 80% of the topological realizations for the
actual signaling network show low disorder parameter. In contrast,
only 56% of IODP-random topologies yield the less disordered
dynamics. The IODP-randomized networks are on average twice as
often dynamically disordered compared with the real signaling
network topology. Hence, the dynamics of the real signaling
network are less chaotic than the dynamics of networks with similar
local (but not global) topological properties. Similar analyses were
conducted for all other networks. In all cases, the actual networks
were found to be dynamically more ordered (according to the
disorder parameter) than their shuffled counterparts (Fig. S16).

The stability of the dynamical system modeled using Eq. 3 cannot
be accounted for by Gershgorin’s diagonal dominance condition,
which states that if the coupling between ‘‘neighboring’’ nodes is
sufficiently small, then the system is linearly stable (28). Indeed, the
Gershogorin theorem predicts the same stability for both actual and
IODP-randomized networks; the higher disorder in the IODP-
randomized networks is because of the nonlocal topological
changes induced by the randomization.

As was previously shown, one difference between the real
networks and the IODP-randomized networks is the number of
nodes involved in feedback loops. We expect that the number of
nodes involved in feedback loops in real biological networks will be
less than their randomized counterparts. Indeed, the signaling

network has 268 nodes involved in feedback loops (Fig. 3C),
whereas the IODP network that produces the unstable dynamics in
Fig. 4B has �320 nodes involved in feedback loops. This difference
is consistent with our hypothesis that networks with fewer nodes
involved in feedback loops have a wiring configuration that gives
rise to more stable dynamics (Fig. 5).

To further investigate this claim, we performed gradual, partial
IODP randomizations of the signaling network, thereby creating an
ensemble of networks. The networks in this ensemble have nodes
participating in at least 1 feedback loop, Nfb	1, ranging from �270
to �320. For each of these networks we simulated the dynamics to
compute the disorder coefficient S2, plotted as a function of Nfb	1
(Fig. 5). A logistic relationship can be fitted (r � 0.93) to the
dependence of the average S2 as a function of the number of nodes
involved in at least 1 feedback loop. Two conclusions can be drawn
from the results: First, in all randomizations, the number of nodes
involved in feedback loops was greater than 268 (the value observed
for the real network), suggesting that real network topologies are
likely to exist at, or close to, the minimal possible number of nodes
participating in feedback loops consistent with the local connec-
tivity. A second observation is that on average, the disorder
coefficient S2 increases with the number of nodes associated with
feedback loops. Conversely, removing feedback loops has the effect
of decreasing the disorder parameter (Fig. S17). Together these
observations suggest that keeping the number of nodes associated
with feedback loops close to a minimum has a stabilizing effect on
the dynamics of the signaling network. Similar results were ob-
served for all other networks (Fig. S16).

Discussion
Biological regulatory networks may have evolved to reduce the
number of feedback loops because feedback loops, positive or
negative, can be destabilizing. It has been hypothesized that
biological networks have minimized the number of feedback
loops for driving connections in the mammalian visual cortex
(29). This observation was generalized to form the conjecture
that driving connections between cortical areas do not form
higher-order loops, because such excitatory loops would result in
uncontrolled cortical oscillations. At the same time, there are a
few circuits specifically designed to produce oscillations through
feedback loops, such as the central pattern generators required
for locomotion (30). Hence, when present, feedback loops are
required for specific system behaviors. To quantify the potential
effects of feedback loops in the dynamics of a network, we
represented the networks as a generic dynamical system resem-
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260 270 280 290 300 310
0

0.5

1.0

Number of nodes with at least on feedback loop N
fb>1

di
so

rd
er

 p
ar

am
et

er
 〈 

S
2

〉 [
10

3 ]

logistic fit

Actual

IODP

Fig. 5. Average of the disorder coefficient S2 as a function of Nfb	1, the number
of nodes in at least 1 feedback loop (open symbols), and a logistic fit (dotted line,
r � 0.93), for the signaling network and its IODP-randomized surrogates. Error
bars indicate the standard error around the mean indicated by the open symbols.

Ma’ayan et al. PNAS � December 9, 2008 � vol. 105 � no. 49 � 19239

A
PP

LI
ED

PH
YS

IC
A

L
SC

IE
N

CE
S

BI
O

PH
YS

IC
S

http://www.pnas.org/cgi/data/0805344105/DCSupplemental/Supplemental_PDF#nameddest=SF16
http://www.pnas.org/cgi/data/0805344105/DCSupplemental/Supplemental_PDF#nameddest=SF17
http://www.pnas.org/cgi/data/0805344105/DCSupplemental/Supplemental_PDF#nameddest=SF16


bling a linearized version of the full dynamics around a stationary
point saturated by nonlinearities to avoid divergences. We
observed that networks with fewer nodes involved in feedback
loops (Figs. 4 and 5 and Fig. S16) are more stable than
corresponding shuffled networks with more nodes involved in
feedback loops. It appears that carefully placing feedback loops
is a guiding design principle of complex biological networks.

Even though we have simulated a fixed network topology, it is
clear that for some of the biological networks, such as the signaling
and transcription networks where the spatiotemporal consideration
is omitted (31), our analysis still captures important qualitative
dynamical concepts. Indeed, if the entire network is antiferromag-
netic with few feedback loops, individual modules within the
network, i.e., in a particular cell compartment, or at a particular
time scale, would have to also be antiferromagnetic, because it is a
subset of the entire antiferromagnetic network assembly.

In this study, we characterized the ensemble of cyclic motifs by
using properties such as magnetization and edge–edge correlation.
This approach helped us understand higher-order structures in real
networks. Our ability to explain the topological properties of
cyclical motifs by using a 2-parameter model from statistical physics
provides a way to understand the topological organization of
large-scale real networks. The resulting antiferromagnetic order in
8 of the 9 networks we analyzed yields, as a natural outcome,
depletion of feedback loops. Such a depletion results in a modular
architecture that ensures that information processing remains local.
Overall, this architecture leads to complex systems with substantial
dynamic capabilities that are nevertheless relatively dynamically
stable.

For some of the networks studied, the interactions between
components might be time lagged (e.g., for gene regulatory net-
works). We previously showed (32) that the linear stability of
feedback loops with time delays is equivalent to the linear stability

of a longer feedback loop without time delay. Therefore, the effect
of adding time delays on the dynamics based on Eq. 3 will result in
a less stable system than a system with no time delays with the same
value of �. However, the effect of destabilizing the time delays
would be identical for both the actual networks and the IODP-
randomized networks.

It can be argued that some additional feedback loops will be at
work in the signaling network when the gene transcriptional net-
work is combined with the signaling network. However, it is
important to consider that in eukaryotic cells there is a defined
time-scale separation between transcriptional (slow) and signaling
(fast) processes. Therefore, the study of the signaling network
should be considered in a fast time scale, where the feedback
produced through transcriptional processes has not yet taken place.

Although several of the networks analyzed can be considered
completely mapped (i.e., foodweb, electrical, C. elegans neuronal),
other networks are incomplete. Our analysis indicates that the
antiferromagnetic property of many real networks is a robust
property and will likely not change as more information is acquired,
given that even incomplete networks provide considerable sam-
pling of the entire real topology.

In conclusion, our ability to identify large cycles in real networks,
using a powerful high-performance computing platform, has
helped us to characterize the ensemble of cyclic motifs in real
directed networks. Our characterization of cycles has allowed us to
relate local topological properties with global network structure and
function, thus providing an initial view of how complex biological
and engineered systems may be configured.
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