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Abstract
This article presents a model of grid cell firing based on the intrinsic persistent firing shown
experimentally in neurons of entorhinal cortex. In this model, the mechanism of persistent firing
allows individual neurons to hold a stable baseline firing frequency. Depolarizing input from speed
modulated head direction cells transiently shifts the frequency of firing from baseline, resulting in a
shift in spiking phase in proportion to the integral of velocity. The convergence of input from different
persistent firing neurons causes spiking in a grid cell only when the persistent firing neurons are
within similar phase ranges. This model effectively simulates the two-dimensional firing of grid cells
in open field environments, as well as the properties of theta phase precession. This model provides
an alternate implementation of oscillatory interference models. The persistent firing could also
interact on a circuit level with rhythmic inhibition and neurons showing membrane potential
oscillations to code position with spiking phase. These mechanisms could operate in parallel with
computation of position from visual angle and distance of stimuli. In addition to simulating two-
dimensional grid patterns, models of phase interference can account for context-dependent firing in
other tasks. In network simulations of entorhinal cortex, hippocampus and postsubiculum, the reset
of phase effectively replicates context-dependent firing by entorhinal and hippocampal neurons
during performance of a continuous spatial alternation task, a delayed spatial alternation task with
running in a wheel during the delay period, and a hairpin maze task.
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The experimental properties of grid cell firing in medial entorhinal cortex demonstrate
systematic regularities that could give insight into the functional principles of entorhinal
circuits. As a rat forages in an open field, a single medial entorhinal grid cell spikes in an array
of locations making up a grid of equilateral triangles (Hafting et al., 2005; Sargolini et al.,
2006; Moser and Moser, 2008). The firing of a single neuron can be quantified by three
parameters: 1.) spatial periodicity, 2.) spatial phase, and 3.) orientation. Within a local
anatomical region, grid cells show the same spacing and orientation, but a range of spatial
phases. In contrast, at different positions along the dorsal to ventral axis of medial entorhinal
cortex, grid cells show a change in spatial periodicity; with an increase in spacing and field
size for grid cells recorded in more ventral regions of medial entorhinal cortex (Hafting et al.,
2005; Sargolini et al., 2006; Solstad et al., 2007; Brun et al., 2008; Moser and Moser, 2008).

This paper presents a new model of grid cells based on the mechanism of intrinsic persistent
spiking shown in entorhinal neurons. This model provides an alternate implementation of the
oscillatory interference model (Burgess et al., 2005; Burgess et al., 2007; Burgess, 2008) that
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is compared to the implementation using membrane potential oscillations (Giocomo et al.,
2007; Hasselmo et al., 2007; Giocomo and Hasselmo, 2008).

In standard slice preparations, most cortical neurons generate spikes during depolarizing input,
but will not continue firing after stimulation ends. However, in the presence of cholinergic or
metabotropic glutamate agonists, pyramidal cells in medial entorhinal cortex commonly show
persistent firing (Klink and Alonso, 1997; Egorov et al., 2002; Fransén et al., 2006; Tahvildari
et al., 2007; Yoshida et al., 2007) even when all synaptic input is blocked. As shown in Figure
1A, layer V pyramidal neurons of medial entorhinal cortex continue firing at stable frequencies
for an extended period after termination of current injection or synaptic stimulation. For layer
V pyramidal cells, the stable persistent firing frequency of neurons is determined by the integral
of previous input (Egorov et al., 2002; Fransén et al., 2006), whereas in layer III of lateral
entorhinal cortex individual pyramidal cells show persistent firing at cell-specific frequencies
(Tahvildari et al., 2007). Stable persistent firing has also been shown in layer III pyramidal
cells of medial entorhinal cortex (Yoshida et al., 2007), whereas layer II cells tend to show
persistent firing that turns off and on over extended periods (Klink and Alonso, 1997). The
currents underlying persistent spiking appear to be calcium-sensitive non-specific cation
currents regulated by cholinergic or muscarinic activation (Shalinsky et al., 2002; Fransén et
al., 2006; Yoshida et al., 2007). Persistent spiking is activated by 5 micromolar concentrations
of cholinergic agonists (Egorov et al., 2002) consistent with acetylcholine concentrations
measured during behaviour (Parikh et al., 2007). The mechanisms of intrinsic persistent firing
in single neurons could contribute to persistent spiking shown with unit recording during the
delay period of delayed matching to sample tasks in awake, behaving rats (Young et al.,
1997) and monkeys (Suzuki et al., 1997). Persistent spiking could also underlie persistent fMRI
activation appearing during delay periods in human memory tasks, which can be reduced by
muscarinic cholinergic blockade (Schon et al., 2004; Schon et al., 2005; Hasselmo and Stern,
2006).

Previous modeling showed that membrane potential oscillations in entorhinal neurons might
also contribute to grid cell firing (Burgess et al., 2005; Giocomo et al., 2007; Burgess et al.,
2007; Hasselmo et al., 2007; Giocomo and Hasselmo, 2008a). Entorhinal layer II stellate cells
show subthreshold membrane potential oscillations when depolarized near firing threshold
(Alonso and Llinas, 1989; Alonso and Klink, 1993; Giocomo et al., 2007). These subthreshold
oscillations can influence the timing of action potentials (Fransen et al., 2004) and network
oscillations (Alonso and Garcia-Austt, 1987; Acker et al., 2003). The frequency of membrane
potential oscillations differs systematically along the dorsal to ventral axis of the medial
entorhinal cortex (Giocomo et al., 2007; Giocomo and Hasselmo, 2008a). Previous modeling
showed how these differences in membrane potential oscillation frequency could underlie
differences in grid cell spatial periodicity along the dorsal to ventral axis (Burgess et al.,
2005; Giocomo et al., 2007; Burgess et al., 2007; Hasselmo et al., 2007; Giocomo and
Hasselmo, 2008a). The oscillations appear to be due to a hyperpolarization activated cation
current known as the h-current (Dickson et al., 2000), that differs in time constant along the
dorsal to ventral axis (Giocomo and Hasselmo, 2008b). In contrast to stellate cells, membrane
potential oscillations do not usually appear in layer II and III pyramidal cells (Alonso and
Klink, 1993), but are observed in layer V pyramidal cells, where they may be caused by M-
current (Yoshida and Alonso, 2007; Giocomo and Hasselmo, 2008a). Membrane potential
oscillations do not appear in neurons of the lateral entorhinal cortex (Tahvildari and Alonso,
2005), and grid cells do not appear in lateral entorhinal cortex (Hargreaves et al., 2005).

This paper will start with presentation of a model using a new mechanism for grid cell firing
based on input from persistent spiking neurons. The persistent spiking model provides a new
implementation of the oscillatory interference model of grid cells (Burgess et al., 2005; Burgess
et al., 2007; Burgess, 2008), that could be complementary to the implementation using
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membrane potential oscillations (Giocomo et al., 2007; Burgess et al., 2007; Hasselmo et al.,
2007; Giocomo and Hasselmo, 2008a). The interaction of head direction cell input and visual
input will be discussed with regard to sensory influences on grid cell firing. In addition to
simulating two-dimensional grid patterns in open fields, these models can replicate context-
dependent firing of entorhinal and hippocampal neurons in other tasks, as shown here using
phase reset in large scale simulations of the interaction of entorhinal cortex, hippocampus and
postsubiculum.

Persistent spiking model of grid cells
The model of grid cell firing based on persistent firing neurons requires separate populations
of neurons showing persistent firing at the same stable baseline frequency that remains constant
in the absence of input. Figure 1A shows an example of 20 seconds of stable persistent firing
in a layer V pyramidal cell from medial entorhinal cortex after induction with a 2 second current
injection (from Figure 3a in (Egorov et al., 2002)). Stable persistent firing has been observed
in layer V neurons at a single frequency for over 13 minutes (Egorov et al., 2002). A plot of
cumulative interspike interval in data from one cell shows little variation in frequency over a
7.5 minute period (see Figure 1C2 in (Fransén et al., 2006)). In the model, the stable frequency
must be the same across the persistent firing cells providing input to a given grid cell, consistent
with evidence that some neurons consistently return to a characteristic persistent spiking
frequency (Tahvildari et al., 2007).

In the model, different persistent firing cells all send convergent synaptic input to individual
grid cells (Figure 1B). As shown in Figure 1C and Figure 2, an individual grid cell will be
brought over threshold and will spike when there is near simultaneous spiking across the
persistent firing cell populations, that is when the persistent firing cells are firing in phase with
each other.

In the model, the phase of the persistent firing cells is influenced by synaptic input coding
speed and head direction, as in the oscillatory interference model (Burgess et al., 2007). The
speed-modulated head direction signal could come from head direction cells in the
postsubiculum (dorsal presubiculum) (Taube et al., 1990; Blair and Sharp, 1995; Muller et al.,
1996; Sharp, 1996; Taube, 1998; Boccara et al., 2008), or in deep layers of the medial entorhinal
cortex (Sargolini et al., 2006) or indirectly from head direction cells in other areas such as
anterior thalamus (Knierim et al., 1998; Taube, 1998; Yu et al., 2006). The velocity dependent
depolarization causes a temporary and transient change in frequency, but does not shift the
neuron into a different stable frequency of spiking (the stable equilibrium point remains the
same). In the simple form presented here, this model does not use the capacity for shifting to
multiple different graded frequencies of persistent spiking that has been shown in data and
models of layer V neurons (Egorov et al., 2002; Fransén et al., 2006).

In the model, the phase of persistent spiking depends on the integral of velocity, due to transient
shifts in the frequency of persistent spiking. The simulation of distributed firing fields of grid
cells requires input from persistent firing cells in populations with spiking covering a range of
different phases (Figure 2), but still being restricted to only part of the theta cycle. For each
persistent firing population, firing frequency is transiently increased by synaptic input from a
population of head direction cells with a particular preference angle, and decreased by synaptic
input from a population of head direction cells with the opposite angle of preference.
(Alternately, two populations receiving separate head direction input could converge to
neurons providing input to the grid cell.)

A simple example is shown in Figures 1C and 2A for persistent spiking cells with baseline
frequency of 3 Hz. If a rat moves with heading 0 degrees, then the speed-modulated head
direction cells with preference for 0 degrees will increase the firing frequency of one population
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of persistent firing cells, while speed-modulated head direction cells with preference for 120
or 240 degrees will decrease firing frequency in two other populations. These transient changes
in frequency will cause the populations to shift in phase relative to each other. If the persistent
firing cells start out synchronized in phase with each other, then the shift will move them out
of phase with each other and the grid cell receiving input will stop firing for a period of time
until the shift is sufficient to bring the cells back into phase with each other to cause grid cell
spiking (Figures 1C and 2A). The strong rhythmicity of neural firing in this model is consistent
with experimental data on theta rhythmicity of neural spiking in entorhinal cortex (Stewart et
al., 1992; Hafting et al., 2008).

With at least two populations of persistent firing cells receiving input from head direction cells
with differences in preference angle at multiples of 60 degrees, the input from these persistent
firing cells will cause the grid cell to fire in a hexagonal array of locations (Burgess et al.,
2005; Burgess et al., 2007; Hasselmo et al., 2007; Burgess, 2008). Figure 2C shows spiking
of a simulated grid cell based on simulated persistent spiking cells as a rat runs a foraging
trajectory in a circular open field of about 185 cm diameter using data from (Hafting et al.,
2005). As shown in Figure 2C, the grid cell shows a pattern of firing similar to experimental
data on grid cells. In contrast, the persistent firing cells themselves fire throughout the
environment with an absence of spatial specificity, as shown in Figure 2B. However, the phase
of the persistent firing cells shifts in different locations as shown by the change in color (light
to dark) of dots in Figure 2B. Persistent firing is desynchronized outside of the grid cell firing
fields, and synchronized within the grid cell firing fields.

Equations for persistent spiking grid cell model
The persistent spiking model of grid cells can be summarized with the following equation:

(1)

Where g(t) is the firing of the grid cell over time. The equation takes the product Π of input to
a single modelled grid cell from multiple persistent firing neurons i characterized by a single
stable baseline frequency f. The repetitive spiking of individual persistent firing neurons is
represented by a thresholded Heaviside step function []H of a cosine function. The persistent
spiking neurons have different initial phases represented by the initial phase vector φi(0) and
they receive input from different speed modulated head direction cells hi with different
preference angles indexed by i. The frequency of each persistent firing neuron is transiently
perturbed from baseline by depolarization in proportion to speed modulated head direction,
scaled by the parameter P(z).

In the simplest form of the model, speed modulated head direction input hi is obtained by
multiplying the rat velocity vector v(t)=[Δx(t), Δy(t)] by each row i of the head direction
transformation matrix H consisting of unit vectors corresponding to each preferred head
direction:

(2)

Where θb is the baseline head direction preference angle (set to zero in most simulations) and
θi represents the relative preference angle of other head direction cells (at multiples of π/3).
The phase of the spiking across each population of persistent spiking cells (indexed by i)
changes at each time step according to the input from speed modulated head direction input
plus the baseline frequency. Thus, the change in phase across the population is represented by:
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(3)

The phase of spiking is obtained by integrating this phase equation over time to yield the t

phase representation in equation 1:  Note that this
mechanism performs path integration, integrating velocity to make phase proportional to

location because . The grid cell model in equation 1 results in grid cell firing
with orientation determined by the baseline head direction angle θb, spatial phase determined
by the initial phase vector φi(0) and spacing G = 2/3P(z) for 120 degree differences in head
direction preference (θi = ±2π/3) and G = 2/P(z) for 60 degree differences in head direction
preference (θi = ±π/3). In Figures 1C and 2A, the speed-modulated head direction input shifts
frequency according to the parameter P(z)=0.0116 cycles/cm, causing phase in group 1 to shift
by 360 degrees relative to baseline frequency over about 1/P(z)=86 cm (note shift of spiking
relative to tick marks, which represent the 3 Hz baseline frequency f). In this model, the spacing
G between the grid cell firing fields is smaller than the spatial periodicity of the phase of
persistent spiking by a factor of 2/3, giving a grid cell spacing of about 57 cm in Figs. 1C and
2A. In Figures 2B and 2C, the parameter takes the value P(z)=0.0154, causing phase shifts of
persistent spiking over about 65 cm and spacing G between grid cell firing fields of about 43
cm. Baseline frequency f is 4 Hz in Figures 2B and 2C.

A range of frequencies and spatial phases are used in the larger scale simulations used for
Figures 5-7. Note that the spatial phase of firing (that is, the relative location of grid cell firing
fields) can also be determined by the initial location x0 and the initial phase can be scaled to a
location shift xS as follows: φi(0) = f 2πBH (x⃑S). Note also that this model can account for
differences in spacing G at different positions z along the dorsal to ventral axis by changing
the frequency response to depolarization P(z). Thus, the parameter P(z) is analogous to the
parameter B(z) in the model based on membrane potential oscillations (Giocomo et al., 2007;
Burgess et al., 2007; Giocomo and Hasselmo, 2008a; Burgess, 2008).

The equations presented above use head direction cell input that goes positive and negative,
but in simulations the model was adapted to use inputs from head direction cells with rectified
cosine tuning. This represents a persistent spiking neuron receiving excitatory input from a
rectified cosine head direction cell (e.g. a preference angle of zero) and receiving inhibitory
input from a rectified cosine head direction cell with the opposite preference angle (e.g. a
preference angle of 180 degrees).

Theta phase precession properties
Both hippocampal place cells (O'Keefe and Recce, 1993; Skaggs et al., 1996) and entorhinal
grid cells (Hafting et al., 2008) exhibit theta phase precession, in which spiking activity shifts
from late to early phases of theta oscillations in the local field potential as a rat traverses the
firing field of a neuron. Similar to the oscillatory interference model (Burgess et al., 2007), the
model of grid cell firing based on persistent firing at stable frequencies can account for theta
phase precession, as shown in Figure 3, replicating the theta phase precession of grid cells in
entorhinal cortex layer II (Hafting et al., 2008). As shown in Figure 3B, the persistent spiking
model can also account for precession in the very large grid fields in ventral entorhinal cortex
(Solstad et al., 2007; Brun et al., 2008). If one assumes that the theta rhythm oscillations in the
entorhinal cortex are determined by the synaptic input arising from the full population, then
the stable baseline frequency of the population without any shifts can be assumed to be the
reference theta phase. The figure shows that the phase of firing of the convergent input to a
grid cell from a population of persistent spiking neurons (green trace) shifts relative to the
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phase of the baseline spiking frequency (blue), as shown by the timing of the spiking raster
plot (blue vertical lines) relative to the gray vertical lines indicating phase zero of the baseline
spiking frequency. The absence of theta phase precession in many grid cells in entorhinal cortex
layer III (Hafting et al., 2008) presents a difficulty for the model, but these layer III neurons
could be driven by network interactions with other grid cells. The absence of theta phase
precession in many layer III neurons also argues against entorhinal cortex driving theta phase
precession in hippocampal region CA1, but hippocampal theta phase precession could arise
separately from frequency differences between layer III and hippocampal region CA1.

Biophysical implementation of persistent spiking model
A detailed conductance-based biophysical simulation of persistent spiking in single entorhinal
layer V neurons (Fransén et al., 2006) has recently been used to test the persistent spiking
model of grid cells. The conductance based model shows the capability of shifting the phase
of persistent firing due to depolarizing head direction input to cause systematic changes in the
synchronization of different populations (Fransen and Hasselmo, 2008). Thus, the biophysical
simulation demonstrates the basic cellular properties necessary for this model of grid cells. A
paragraph describing the persistent spiking model was previously presented (Hasselmo and
Brandon, 2008) for comparison with a separate model of grid cells based on the cyclical
persistent firing present in layer II of entorhinal cortex.

Mechanism using rhythmic inhibition
Note that the crucial feature of this model is the shift in relative phase of rhythmic spiking.
This function could also be obtained via mechanisms that do not require persistent spiking
mechanisms. For example, experimental data shows that inhibitory interneurons demonstrate
theta rhythmic spiking in the hippocampus (Fox et al., 1986; Klausberger et al., 2003) and in
the entorhinal cortex (Frank et al., 2001). Rhythmic spiking of interneurons could cause
rhythmic inhibition in groups of excitatory cells, restricting spiking activity to a specific range
of phases, similar to mechanisms proposed for hippocampal theta (Stewart and Fox, 1990;
Buzsaki, 2002). If different populations of inhibitory interneurons are driven by head direction
input to exhibit different phases of spiking, then they can create phase specific firing of
excitatory neurons similar to Figure 2. Thus, a network involving different populations of
inhibitory interneurons firing at different phases due to feedback interactions is mathematically
similar to the persistent spiking model described here. Alternately, the rhythmic firing
modulated by head direction could arise from a local circuit that includes excitatory neurons
with persistent spiking or membrane potential oscillations that interact with feedback
inihibition.

Relationship to oscillatory interference model
In the simplified mathematical representation presented here, the model of grid cells based on
persistent firing strongly resembles the previously presented model of grid cells based on
oscillatory interference (Burgess et al., 2007; Burgess, 2008). The role of oscillation frequency
in the previous model is taken over by the stable baseline firing frequency of persistent spiking
cells in the new model (Egorov et al., 2002; Fransén et al., 2006). The initial model description
included possible spiking implementations (Burgess et al., 2007), but initial data supporting
the model came from data and simulations of the interference of membrane potential
oscillations (Giocomo et al., 2007; Hasselmo et al., 2007; Giocomo and Hasselmo, 2008a).

The mathematical representation of the persistent spiking model presented here differs from
the original oscillatory interference model in two features: 1. The persistent spiking model puts
the threshold function inside the product or summation sign, and 2. The persistent spiking
model utilizes direct interaction of the spiking frequencies in three populations. Thus, it does
not contain the interaction of soma and dendritic oscillations that appears in the original
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oscillatory interference model (Burgess et al., 2007). This results in the different relationship
for the scale of grid field spacing, which is G = 2/3P(z) in the persistent firing model (see Figure
2) versus  in the oscillatory interference model. Note that the use of rectified cosine
head direction inputs is similar to the oscillatory inteference model that also requires paired
inputs of opposite preference angle (Giocomo et al., 2007; Burgess et al., 2007; Hasselmo et
al., 2007). The crucial similarity of these models is the integration of velocity by phase, and
the read-out of this phase by interference between different phases, so these models will be
referred to collectively as phase interference models.

These phase interference models resemble the model of grid cells based on Moire interference
of higher spatial frequency grids (Blair et al., 2007; Blair et al., 2008). The initial Moire
interference model did not use the integration of speed-modulated head direction to map from
temporal oscillations to spatial periodicity. However, a new version of this model has been
presented with an alternate mechanism that updates frequency of subcortical oscillators based
on running velocity (Blair et al., 2008).

Biophysical differences from membrane potential oscillation model
Though the simplified mathematical representation of the persistent spiking model described
above strongly resembles the mathematical representation used in the membrane potential
oscillation model, the functional mechanism for the persistent spiking differs completely from
the mechanisms of membrane potential oscillations, both in terms of channels and dynamical
properties. Rhythmic persistent spiking arises from a tonic non-specific cation current (Fransén
et al., 2006) that does not change in response to small changes in frequency or depolarization
(See Fig. 6 in (Fransén et al., 2006)), but sets the equilibrium state of activation that determines
the baseline frequency of spiking. This channel is not voltage sensitive, but responds transiently
to small perturbations of calcium concentration. After transient changes in spiking frequency,
neurons will return to the baseline spiking frequency determined by the stable fixed point
attractor. Spiking is required to maintain the phase representation.

In contrast, membrane potential oscillations involve cyclical changes in two voltage-sensitive
currents (Dickson et al., 2000; Fransen et al., 2004): 1. the persistent sodium current, I(NaP),
and 2. the hyperpolarization activated cation current I(h). These currents cause subthreshold
membrane potential oscillations that can influence spike timing, but they are changing
constantly with voltage and do not provide an equilibrium state. Therefore, neurons showing
membrane potential oscillations do not have a stable fixed point attractor. Generation of spikes
will perturb the representation of phase, and the cell does not have a stable baseline firing
frequency. When simulating the models with cosine functions, the implementations look
similar, but if the actual underlying biophysical dynamics are represented more directly, then
the persistent spiking model and membrane potential oscillation model differ categorically.
These different molecular mechanism could allow testing of these hypotheses using recordings
of grid cells in mice (Fyhn et al., 2008) with genetic knockout of different channels.

Circuits with combined mechanisms
A full implementation of the phase interference model for grid cells could require multiple
different cell types, including the persistent spiking cells and inhibitory interneurons described
here, as well as cells showing membrane potential oscillations. Biophysical implementations
using membrane potential oscillations within a single neuron suffer the problem that membrane
potential oscillations tend to synchronize within a single neuron (Eriksson et al., 2004; Remme
et al., 2007; Heys et al., 2008). This indicates the need to utilize interactions of spiking neurons.
However, it is difficult to use membrane potential oscillations within single neurons to regulate
a stable baseline spiking frequency. One might think that rhythmic spiking could be generated
by membrane potential oscillations, but neurons with membrane potential oscillations only
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show a small perturbation of their f-I curves at their oscillation frequency that is not sufficient
to sustain a stable spiking frequency (Giocomo and Hasselmo, 2008a; Heys et al., 2008). Thus,
stable spiking frequencies dependent upon membrane potential oscillations can only be
obtained with a network of interacting neurons.

This presents a problem for modeling the direction-dependent grid cells known as conjunctive
cells (Sargolini et al., 2006). Conjunctive cells have been modelled with directional voltage-
controlled oscillators that maintain phase everywhere but spike only when receiving specific
head direction input (Burgess, 2008). However, it may be unrealistic to assume that such
oscillators will fire at the correct phase when given a separate suprathreshold input, as cells
with membrane potential oscillations that are pushed over threshold usually fire at frequencies
higher than their oscillation frequency (Giocomo and Hasselmo, 2008a). In contrast, persistent
spiking mechanisms result in stable baseline spiking frequencies, but these cells must keep
spiking in order to maintain phase.

As a solution for conjunctive firing, input from persistent spiking neurons combined with head
direction input may be required to cause spiking that has the correct phase but fires only for
specific heading directions. As shown in Figure 4A and 4B, a cell that only spikes with
convergent input from both persistent spiking cells and head direction cells can show
conjunctive firing properties similar to data (Sargolini et al., 2006). This model could be used
to address the data that many conjunctive cells become pure head direction cells when the
hippocampus is inactivated. The grid cell model using just persistent spiking input does not
show head direction selectivity, as shown in Figure 4C and 4D.

The full implementation of the phase interference model will probably require a combination
of neurons showing persistent spiking with other neurons showing strong membrane potential
oscillations as well as inhibitory interneurons. Local circuits of these neurons can show
rhythmic firing properties that would provide the type of rhythmic spiking activity on a group
level as shown in Figure 2. Network interactions would allow the persistent firing model to be
influenced by the differences in frequency of membrane potential oscillations along the dorsal
to ventral axis (Giocomo et al., 2007;Giocomo and Hasselmo, 2008a).

General Properties of Grid Cell Models
A general model of grid cells could represent grid cell firing as a function: g(t) = g(x(t), x′(t),
θ(t), θ′(t), R(t), φ(t), φ′(t)) dependent on the location x, the velocity x′, the head direction θ, the
angular velocity θ′, the angle to visual stimuli φ, and the pattern of reward R(t). A simplified
mathematical description of the experimental data on grid cells has been used in a number of
publications (Fuhs and Touretzky, 2006; Solstad et al., 2006; Molter and Yamaguchi, 2007;
Hayman and Jeffery, 2008). This equation is not as general, but allows discussion of different
possible models:

(4)

This description combines one dimensional waves characterized by the parameters of
orientation θ, spatial phase φ and spacing between fields determined by the angular frequency
ω. H is the orientation transformation matrix described above. These waves are combined by
using a product Π or sum Σ.

A number of models can be expanded from the basic description of the experimental data in
equation 4. The dimensions of this expansion correspond to different components of the
equation. Three dimensions considered here are 1.) The stimulus used for computing the
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changing location vector x(t), 2.) The mechanism for converting the stimulus into location, and
3.) The locus of thresholding within the model.

Location from velocity
One class of models integrates rat velocity to code location. Velocity could be obtained from
head direction cells modulated by running speed. This class of model includes the phase
interference models described above (Burgess et al., 2007; Hasselmo et al., 2007). Possible
methods of integration include changes in phase of membrane potential oscillations, phase of
inhibitory neuron spiking, and phase of persistent spiking, as well as rate of persistent spiking
driving phase relative to network oscillations. These models differ mathematically primarily
by whether thresholding is applied before or after multiplication of the oscillations. In a further
variant, differential head direction firing could be obtained by integration of angular velocity
and speed could be obtained by integration of acceleration.

The above models use temporal codes for integration. As an alternative, a rate code for
integration could be provided by the tendency of layer II pyramidal cells to show cyclical
persistent firing. If the mechanism of cyclical persistent firing is directly advanced by excitatory
input currents and retarded by inhibitory input currents, the velocity input could be directly
integrated by firing rate rather than by firing phase (Hasselmo and Brandon, 2008).

Location from visual stimuli
The location vector can also be obtained by computing current location based on the distance
and angle to reference stimuli in the environment. In a familiar environment, the initial
oscillation phase can be computed from the distance and angle to a particular stimulus. The
location vector x⃑ can be determined from the distance D and absolute angle θA of a visual
stimulus x⃑ = D cos(θA), D sin(θA). The absolute angle can be determined by subtracting the
visual angle θR (retinal eccentricity) from the current head direction θH as follows x⃑ = D cos
(θH − θR), D sin(θH − θR). Note that θH is actual head direction, not preferred head direction.
The location vector x⃑ determined by this mechanism can then be used to determine the phase
vector in the model as follows φ = f 2πBHx⃑.

This provides a potential alternate mechanism for the hexagonal pattern of grid cell firing. The
head direction cells coding θH respond to the heading of the rat, but the visual angle θR for
each eye is at an approximate 60 degree offset from this heading (120 degrees relative to each
other). Thus, the phase of persistent firing neurons could be updated by the absolute angle

computed computed with visual input from each eye . The 120
degree difference in angle of visual input from each eye could therefore cause the hexagonal
grid cell firing patterns. This effect is shown in a simulation of grid cell based on the update
of position by visual angle and position as shown in Figure 4E and 4F.

As an alternative to direct computation of phase from the distance and angle to visual stimuli,
the rat could compute its velocity within the environment based on optic flow. In particular,
rats might compute their movement toward a boundary wall based on the optic flow of the
upper edge of the wall, or the flow of the border between the wall and the floor. Optic flow is
complex, but has features that could relate to the rather narrow tuning of head direction cells
relative to a cosine function. In particular, the 90 degree range of tuning with a triangular shape
in most head direction cells could relate to optic flow at different angles relative to movement.
In the center of the visual field, directly in front of the rat, optic flow will be zero. Flow increases
almost linearly for objects at greater eccentricity, up to 45 degrees, and then decreases. Thus,
head direction tuning might rescale optic flow at different points along a horizontal line across
the center of the visual field. Alternately, head direction tuning might be scaled in proportion

Hasselmo Page 9

Hippocampus. Author manuscript; available in PMC 2009 January 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



to optic flow on the ground in front of the rat. Features at a 45 degree vertical angle from the
rat heading to the ground directly below will have the greatest optic flow, and features at a
greater angle show optic flow that falls off almost linearly over angles up to 45 degrees lateral
to rat movement.

The framework for updating grid cells based on visual stimuli suggests a potential use of
conjunctive cells. Because updating based on visual stimuli requires an interaction of head
direction and visual angle, this might require conjunctive cells that respond selectively when
the rat is facing in a specific head direction, as seen in layers III, V and VI of medial entorhinal
cortex (Sargolini et al., 2006). In fact, this might reflect the visibility of specific visual stimuli.
The conjunctive grid-by-direction cells resemble the theta-modulated place-by-direction cells
observed in the post- and parasubiculum, which respond only when then the rat faces a preferred
direction while occupying a single location (Cacucci et al., 2004).

Phase Reset and Context-Dependent Firing
Entorhinal cells do not always fire as grid cells, and hippocampal cells do not always fire as
place cells. A number of studies have shown that the context of recent behaviour has a strong
influence on spiking activity in the entorhinal cortex (Frank et al., 2000; Derdikman et al.,
2006; Lipton et al., 2007) and hippocampus (Markus et al., 1995; Gothard et al., 1996; Wood
et al., 2000; Lee et al., 2006; Griffin et al., 2007; Pastalkova et al., 2008). This data potentially
counters the view of grid cells as providing a spatial map, as the context dependence suggests
that neurons do not only respond to the two-dimensional location in the environment. These
data present a broad range of phenomena that must be accounted for by models of grid cell
mechanisms. The grid cell models based on phase interference (Burgess et al., 2007; Hasselmo
et al., 2007; Burgess, 2008) can easily account for both context-dependent firing and regular
grid cell firing in the open field. The simulations presented here demonstrate how context-
dependence could arise from resetting the phase of persistent spiking at specific locations (e.g.
stopping locations, reward locations or turning locations), either by shifting the phase of one
population, or turning off the current population and turning on a new population of persistent
spiking neurons. These context-dependent responses would also need to be addressed by
network models of grid cells (McNaughton et al., 2006; Fuhs and Touretzky, 2006; Kropff and
Treves, 2008).

The possibility of reset was mentioned in the original oscillatory interference model
presentation (Burgess et al., 2007), but there is a further division of models based on the
mechanism of phase update (Hasselmo, 2007). In the original Euclidian model, a two-
dimensional representation of space results from phase integration of input from speed-
modulated head direction cells. Without reset these models show spiking dependent on two-
dimensional location. Reset results in separate two-dimensional maps for different phases of
a task. In an alternative model, referred to here as the Arc-length model, the phase of spiking
or oscillation can be shifted by running speed alone, independent of head direction (Hasselmo,
2007). In this case, the integration of speed by phase results in firing dependent upon the one-
dimensional arc length of a trajectory (Hasselmo, 2007). In the arc length model, reset results
in firing dependent on arc length from the last reset location. The arc length model generates
different predictions, such as the absence of mapping to a hexagonal array of firing fields, and
the mirror symmetry of firing for different directions of running along a linear track with reward
at both ends. In a final model, referred to here as the Time Interval model, the phase is not
shifted by any external input and interference depends on time interval alone. Reset results in
firing dependent on the time interval since the last reset location.

Resetting of phase can be represented in the equation by changing phase according to a reset
function R(x) that could reflect stopping at reward locations, but could also reflect sensory
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input such as a strong angular velocity signal or change in visual features at a hairpin turn. In
the first two simulations presented below, phase is reset to a zero vector each time reward is
received. Note that though the reward is presented at different locations, the phase is reset to
the same zero vector. In contrast to a previous paper about the arc-length model (Hasselmo,
2007), these simulations use input from speed-modulated head direction cells (the Euclidian
model) rather than using one dimensional speed input. Also, the simulations presented here
include separate populations of entorhinal neurons and hippocampal neurons and address two
additional tasks: spatial alternation with running in a wheel during delay (Pastalkova and
Buzsaki, 2007; Pastalkova et al., 2008), and the hairpin maze task (Derdikman et al., 2006).

In these simulations, the activity of entorhinal neurons was determined by the older oscillatory
interference model using simple non-thresholded cosine functions. These simulations used
interacting populations of 75 entorhinal cells and 400 hippocampal cells, as in a recent model
of temporally structured replay (Hasselmo, 2008). The population of 75 entorhinal neurons
was modelled as three groups of 25 neurons with different baseline oscillation frequencies of
2, 4 and 6 Hz. In each group of 25 entorhinal neurons, a full range of spatial phases were
selected by choosing appropriate values of φi at 5 different initial phases in two dimensions.
The whole population shared the same orientation θb=0.

The activity of individual cells within a population of 400 hippocampal cells was simulated by
randomly selecting groups of three entorhinal grid cells and plotting spiking that would occur
based upon simultaneous spiking in all three entorhinal cells (Hasselmo, 2008). The population
of hippocampal cells was selected at the start of the simulation based on the variance of spiking
location falling below a numerical limit. After selection of each hippocampal cell, Hebbian
modification strengthened synapses from the three selected entorhinal cells to the selected
hippocampal cell. This created a matrix of synaptic connectivity WEH allowing the 75
entorhinal cells with activity g(t) to cause spiking in 400 hippocampal cells with activity p(t)
as follows: p(t) = WEHg(t). Many other papers have explored how convergent input from grid
cells causes place cell activity (O'Keefe and Burgess, 2005; Solstad et al., 2006; Blair et al.,
2007; Franzius et al., 2007; Blair et al., 2008; Hayman and Jeffery, 2008).

Without resetting, entorhinal cells fired as grid cells and hippocampal neurons fired as place
cells. Resetting shifted the spatial phase of the entire entorhinal population, and thereby shifted
the spatial phase of the hippocampal cell firing, so that both populations showed strong context-
dependency caused by reset (Figures 5-7).

Continuous spatial alternation
The first simulations shown here moved the virtual rat through a continuous spatial alternation
task and replicated data in this task on firing of entorhinal cells (Lipton et al., 2007) and
hippocampal cells (Wood et al., 2000; Lee et al., 2006). Without resetting, the network shows
spatially consistent firing, with entorhinal cells firing in locations on the linear track that fall
within the firing fields of a grid cell, as shown in Figure 5A (left), and hippocampal neurons
showing the spatially consistent firing of place cells, as shown in Figure 5A (right). In
particular, cells respond in the same location in the stem for both left to right and right to left
trajectories. In contrast, with reset of phase at reward locations, simulated entorhinal neurons
show context-dependent firing on the stem that differs between the left-to-right trajectory and
the right-to-left trajectory, as shown in Figure 5B (left). This is consistent with physiological
recordings showing context dependent entorhinal activity during this task (Lipton et al.,
2007; Eichenbaum and Lipton, 2008). The input from these entorhinal neurons results in
context-dependent firing of hippocampal neurons on different trajectories, as shown in Figure
5B (right). This is most evident on the stem of the maze, where reset results in different firing
on left-to-right versus right-to-left trajectories, consistent with previous recording of context-
dependent hippocampal spiking on the stem during spatial alternation (Wood et al., 2000; Lee

Hasselmo Page 11

Hippocampus. Author manuscript; available in PMC 2009 January 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



et al., 2006). The Euclidian model reset resembles previous simulations using arc length coding
with reset (Hasselmo, 2007). This model could be used to simulate the differential firing of
place cells when an open field foraging task is replaced with repetitive running between
different goal locations (Markus et al., 1995).

Spiking in running wheel during delay
An exciting prediction of these interference models is that they can show firing dependent on
running alone, thereby decoupling neuronal firing from shifts in actual spatial location. Because
the phase of these models integrates velocity input, the phase will continue to be updated when
a rat runs in a running wheel, as long as the perception of velocity is based on proprioceptive
feedback rather than visual input. Thus, with simulation of a rat running in a wheel, the model
generates spiking at specific reproducible intervals from the start of running, replicating recent
experimental data using such a task (Pastalkova and Buzsaki, 2007; Pastalkova et al., 2008).
The structure of the task is illustrated in Figures 6A and 6B. During each trial, the simulated
rat runs the left side of a spatial alternation task, then runs in the running wheel at a constant
speed for a fixed time period (straight lines on left side of each plot), then runs the right side
of the spatial alternation task, then runs in the running wheel at a constant speed for a fixed
time period (straight line plots on right side). The figure shows activity of 4 representative cells
out of the 75 cells in entorhinal cortex and 4 representative cells out of the 400 cells in
hippocampus. With phase resetting at reward location, the model shows differential firing in
the running wheel after left versus right side runs. In addition, the firing appears at specific
time points during wheel running that are consistent across the 7 trials shown in Figure 6C
(corresponding to the perceived distance or arc length of the wheel run). The hippocampal
neuron at the top of Fig. 6C shows firing only during the middle period of wheel running after
the left side of the track. The third hippocampal neuron in Fig. 6C shows firing only during
the middle period of wheel running after the right side of the track.

This simulation matches experimental data showing similarly reproducible time-locked firing
in the running wheel during the delay period of a spatial alternation task (Pastalkova and
Buzsaki, 2007; Pastalkova et al., 2008). This task provides another potential test for comparing
the two-dimensional Euclidian model, which predicts differences in firing for running wheels
oriented at different angles, versus the one-dimensional arc length model (Hasselmo, 2007)
which predicts that firing in the running wheel will not depend upon the orientation of the
running wheel, but will depend on running speed, and the Time Interval model which predicts
firing independent of orientation or running speed. The data shows evidence for changes in
firing with different directions of running (Pastalkova and Buzsaki, 2007; Pastalkova et al.,
2008), supporting the Euclidian model. Neural firing in the running wheel is not as selective
when the rat runs in its home cage, outside of the task. This indicates that activity in the running
wheel might partly be determined by training-dependent strengthening of associations between
the current grid and place cell activity and the associated speed-modulated head direction
activity that shifts firing. Thus, mechanisms used in a recent model of temporally structured
replay (Hasselmo, 2008) could be active during waking to contribute to these differences in
firing. The presence of these associations could drive shifts in entorhinal and hippocampal
firing during wheel running, and thereby allow selective time-dependent firing.

Hairpin task
The simulation has also been used to address data from running of a hairpin maze. This was
motivated by data from cells that show grid cell firing properties in an open field but shift their
pattern of firing in a hairpin maze in the same environment (Derdikman et al., 2006). Rather
than firing in locations corresponding to the two-dimensional location of a grid cell firing field,
the neurons fire at regular intervals relative to the starting point of each segment of the hairpin
maze. This pattern can be obtained in the simulation by resetting the phase of the oscillations
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at each turning point, as shown in Figure 7B, in contrast to the grid cell pattern that appears
without reset (Figure 7A). This model accounts for the pattern of firing of both entorhinal cells
and hippocampal cells, which show firing dependent upon distance from turns in this task
(Derdikman et al., 2006). This simulation also accounts for the pattern of firing observed in
entorhinal cortex in earlier studies in a U maze and W maze (Frank et al., 2000). These data
provide an important opportunity for testing reset of the one-dimensional Arc-length model
based on running speed alone versus the two-dimensional Euclidian model based on speed and
head direction. As noted above, the one-dimensional model could generate mirror-image
symmetry of firing for trajectories going from left to right versus right to left. The two-
dimensional model would not generate the same type of mirror symmetry.

The reset at turning points that induces this pattern of firing could be due to the strong drop in
running speed at the turning point, to other cues such as the increase in angular velocity at
turns, or to the abrupt change in visual stimuli before and after the turn. This could also reflect
the creation of intermittent goal representations for guiding sequential behaviour in the maze,
which could guide behaviour at each point based on a goal vector created by integration of
movement between each reset location (Hasselmo and Brandon, 2008). The loss of grid cell
firing could result from the barriers on each segment shutting off forward retrieval (or planning)
based on any action other than along the one-dimensional trajectory of the task. In contrast,
the grid firing in open fields might result from retrieval (or planning) of multiple possible
directions of movement.

The forward retrieval (or planning) mechanism could involve the representation of location by
phase in grid cells, which provides a continuous representation of location appropriate for
trajectory encoding and retrieval. A recent model encodes trajectories by strengthening
synaptic connections between place cells and head direction cells during encoding (Hasselmo,
2008). During retrieval, place cells drive persistent spiking in head direction cells that update
the phase of grid cells, causing the internal state to advance along the previously experienced
trajectory. Persistent spiking has recently been shown in the postsubiculum (Yoshida and
Hasselmo, 2008), where head direction cells are commonly recorded. A model of this circuit
allows simulation of activity during REM sleep that shows temporally structured replay of
place cell activity that occurred during previous waking periods (Hasselmo and Brandon,
2008; Hasselmo, 2008). This model predicts replay of head direction activity during REM sleep
which has been shown experimentally (Brandon et al., 2008).

Discussion
The model presented here effectively simulates the firing properties of grid cells based on
intrinsic persistent spiking of entorhinal neurons (Figures 1-4). The model can be simulated
with compartmental biophysical simulations of persistent firing (Fransen and Hasselmo,
2008), avoiding the issue of synchronization within a single neuron that affects the grid cell
model based on membrane potential oscillations (Giocomo et al., 2007; Hasselmo et al.,
2007). The persistent spiking and membrane potential oscillation models could be combined
at the circuit level. As shown in Figures 5-7, models using phase interference have an advantage
over network models because, with addition of reset, they can account for context dependent
firing properties of entorhinal and hippocampal neurons observed in a range of different tasks.

The discussion below will evaluate some of the strengths and weaknesses of different types of
grid cell models. Though the models are contrasted here, the evidence strongly suggests that
the correct model of grid cell firing properties will depend upon a combination of phase
interference mechanisms and network attractor dynamics. The important question is how the
network properties interact with the interference properties.
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This section will focus on the oscillatory interference model, and compare it with the persistent
spiking model that shares many features, as well as recurrent attractor models.

Strengths of phase interference models
1. Simplicity—The oscillatory interference model has the advantage of simplicity, as it can
be described with a single equation (Burgess et al., 2005; Burgess et al., 2007; Giocomo and
Hasselmo, 2008a; Burgess, 2008). A single simulated neuron with three head direction inputs
effectively simulates the pattern of spiking observed during unit recording from awake
behaving animals. The persistent spiking model presented here uses four neurons, but the
equation is similar (see Equation 1). These phase interference models have only three
parameters: A. Spatial frequency, which can be directly scaled to intracellular membrane
potential oscillation frequency or persistent spiking frequency, B. spatial phase, which relates
to initial phase of oscillations or spiking, and C. orientation, which can be linked to head
direction cell orientation.

2. Theta phase precession—The oscillatory interference model of grid cells (Burgess et
al., 2007) arose naturally out of models simulating the theta phase precession of hippocampal
place cells (O'Keefe and Recce, 1993; Lengyel et al., 2003; O'Keefe and Burgess, 2005;
Burgess et al., 2005; Burgess et al., 2007), and effectively models theta phase precession in
entorhinal cortical neurons (Burgess et al., 2007; Hasselmo and Brandon, 2008; Burgess,
2008). In fact, these place cell precession models automatically generated multiple firing fields,
and had to be modified to prevent multiple fields. As shown in Figure 3, the persistent spiking
model also generates precession. In contrast, recurrent attractor models of grid cells do not
require theta rhythm and published attractor models do not yet simulate theta phase precession.

3. Prediction of spatial scaling mechanism supported—The oscillatory interference
model already generated a prediction that differences in spatial scaling of grid cells along the
dorsal to ventral axis of entorhinal cortex arises from differences in intrinsic oscillation
frequency (O'Keefe and Burgess, 2005; Burgess et al., 2007). This explicit prediction has been
supported by experimental data showing differences in membrane potential oscillation
frequency along the dorsal to ventral axis of entorhinal cortex (Giocomo et al., 2007; Hasselmo
et al., 2007; Giocomo and Hasselmo, 2008a). As shown in (Giocomo and Hasselmo, 2008a),
oscillation data fits the additive version of the model (Burgess et al., 2007; Giocomo
andHasselmo, 2008a) and provides the parameter B(z) that accounts for both the scaling of
field size and spacing along the dorsal to ventral axis (Giocomo and Hasselmo, 2008a).
Simulations of the model (Giocomo and Hasselmo, 2008a) also effectively account for the very
large grid cell scale in very ventral regions of medial entorhinal cortex (Solstad et al., 2007;
Brun et al., 2008). The simulation of both field size and spacing with the same parameter differs
from recurrent attractor models of grid cells that model grid field size with the pattern of
synaptic connectivity, but model spacing with the gain of velocity input. As an alternate
mechanism, the biophysical time scale of adaptation has been shown to account for differences
in grid cell spatial scaling (Kropff and Treves, 2008).

4. Prediction of grid cell firing frequency—The oscillatory interference model (Burgess
et al., 2007; Burgess, 2008) predicted dorsal to ventral differences of in-field firing frequency
of grid cells and scaling of in-field frequency with running speed. Both of these predictions
are supported by experimental data (Jeewajee et al., 2008b; Jeewajee et al., 2008a). The model
also accounts for the change in network theta rhythm frequency correlated with running speed
(Maurer et al., 2005; Hasselmo et al., 2007; Jeewajee et al., 2008a).

5. Expansion in novel environments—The model (Burgess et al., 2007) predicted that
the expansion of grid fields in novel environments (Barry et al., 2008) should be accompanied
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by a reduction in network theta rhythm frequency, as supported by experimental data (Jeewajee
et al., 2008c).

6. Path integration—The same mechanism that produces the pattern of grid cell firing in
the model also performs path integration (Burgess et al., 2007; Hasselmo and Brandon,
2008; Burgess, 2008). This contrasts with recurrent attractor models in which the pattern of
firing is created by the pattern of excitatory recurrent connectivity (McNaughton et al., 2006;
Fuhs and Touretzky, 2006), and the network mechanism of path integration is a separate
velocity dependent shift in representation that works just as well with a place cell representation
(Samsonovich and McNaughton, 1997).

Weaknesses of phase interference models
1. Synchronization of oscillations within single neurons—The single cell version of
the oscillatory interference model has not yet been successfully simulated in compartmental
biophysical models of entorhinal stellate cells. Simulations demonstrate that membrane
potential oscillations within a single neuron have a strong tendency toward synchronization of
phase and frequency (Eriksson et al., 2004; Remme et al., 2007; Heys et al., 2008). This
suggests that the influence of membrane potential oscillations requires network interactions
between cells, such as those in the persistent spiking model of grid cells presented here.

2. Sensitivity to noise—All phase interference models are sensitive to noise, including both
noise in the phase and noise in the speed modulated head direction input. Experimental data
on membrane potential oscillations shows high variance that can disrupt the model grid pattern
(Giocomo and Hasselmo, 2008a). Spiking will disrupt phase in the membrane potential
oscillation model, but not in the persistent spiking model. Whole cell patch recordings of
persistent spiking show variation of spike interval (Yoshida et al., 2007), but sharp electrode
recordings of persistent spiking show remarkable stability of interspike intervals over many
minutes (Fransén et al., 2006; Tahvildari et al., 2007).

3. Requirements for initial phase and phase reset—The sensitivity to noise in the
oscillatory interference model can be counteracted by resetting of phase based on current place
cell activity (Burgess et al., 2005; Burgess et al., 2007; Burgess, 2008). However, the oscillatory
interference model requires specific phase relationships in the initial phase. A grid cell model
starting with all phases at zero will not show the same grid cell pattern if all phases are shifted
by 180 degrees (Burgess et al., 2005; Hasselmo et al., 2007). This problem is avoided if the
soma reference phase is not used, as in the persistent spiking model presented here, or if phase
is only reset at specific locations where all phases are zero. It may be simpler to reset phase in
the persistent spiking model with a single strong input.

Phase reset may be a strength of the interference models (Figures 5-7), as phase reset allows
simulation of the context dependent firing properties of grid cells (Frank et al., 2000;
Derdikman et al., 2006; Lipton et al., 2007) and place cells (Markus et al., 1995; Wood et al.,
2000; Lee et al., 2006; Griffin et al., 2007). Phase reset could also provide a mechanism for
changes in grid fields associated with changes in the size of the environment including
expansion (Barry et al., 2007) or remapping (Savelli et al., 2008).

4. Head direction preference intervals—To obtain the hexagonal pattern of grid fields,
the oscillatory interference models requires that head direction inputs have preference angles
at 60 degree intervals (Burgess et al., 2007; Hasselmo et al., 2007) or 120 degree intervals in
the persistent spiking model in equation 1. Though this could arise from self-organization,
physiological or anatomical data has not demonstrated this selective pattern of connectivity
dependent on preference angle. As noted here, the preference angle could arise from the eyes
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having a visual angle offset by 60 degrees from head direction. The assumption of head
direction input angle applies to both the persistent spiking model presented here and the
membrane potential oscillation implementation of the oscillatory interference model. This
problem specifically does not apply to the recurrent attractor models of grid cells, which obtain
hexagonal firing patterns from circularly symmetric excitatory connectivity.

5. Requires cosine function of head direction tuning—Effective path integration
requires that head direction cells fire at a rate determined by a cosine (or sine) function of actual
head direction (covering 180 degrees). However, most actual head direction cells have much
narrower tuning with a triangle shape covering about 90 degrees (Taube et al., 1990; Taube
and Bassett, 2003). In addition, head direction cells lack the negative component of the cosine
function. Head direction cells commonly do not show strong tuning to speed, though other
neurons in the same region (Sharp, 1996) or connected regions (O'Keefe et al., 1998; Sharp et
al., 2006) do show sensitivity to speed. These data suggest that an alternate representation
might utilize head direction and angle of visual stimuli as a state instead of the allocentric
location, and this suggests that updating of state might utilize angular head velocity and the
shift in viewing angle of visual stimuli.

Both oscillatory interference models and recurrent attractor models require cosine tuning of
the head direction input. The problem of the negative component of firing has partly been
solved by using a rectified cosine function, but this requires coupling pairs of head direction
inputs that are tuned at 180 degree differences. This modification allows simulation of theta
phase precession that shows the correct phase shift (from late to early) regardless of the
direction that the rat runs through the place field (Burgess et al., 2007; Hasselmo and Brandon,
2008; Burgess, 2008). Otherwise, the model shows a phase shift from early to late. However,
this version requires even more selective connectivity in the form of pairs of inputs to individual
neurons, and does not avoid the need for cosine tuning of head direction cells.

Strengths and weakenesses of attractor models
Some network models obtain grid cell firing through attractor dynamics of recurrent
connectivity (Burak and Fiete, 2006; McNaughton et al., 2006; Fuhs and Touretzky, 2006;
Welinder and Fiete, 2008; Fiete et al., 2008). These attractor network models have certain
strengths that support the idea of combining the interference models and the attractor models.
In particular, the network models are less sensitive to noise. Inclusion of network interactions
within a population could enhance the stability of phase responses in an interference model.
In addition, the network models provide a mechanism to ensure an even distribution of different
spatial phases within a single region, as single neuron models cannot directly account for this.
Because network models do not use oscillations, they do not have the requirements for specific
phase relationships among oscillations that the interference models have. The hexagonal
pattern of firing in network models appears due to the pattern of recurrent excitation and
inhibition (McNaughton et al., 2006; Fuhs and Touretzky, 2006). This avoids the problem of
head direction input with specific preference angle relationships, but replaces it with the
requirement of specific synaptic connectivity. An alternate network model avoids the need for
specific recurrent connectivity by obtaining hexagonal patterns of synaptic input by self-
organization of afferent input regulated by the time course of neuronal adaptation (Kropff and
Treves, 2008).

The network models suffer disadvantages relative to the single cell models. In particular, the
network models do not use theta rhythm oscillations, and it is likely that incorporation of
oscillations will interfere with attractor dynamics, rather than enhancing them. This means that
the published attractor network models of grid cells (McNaughton et al., 2006; Fuhs and
Touretzky, 2006; Welinder and Fiete, 2008) do not yet simulate theta phase precession of grid
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cells (Hafting et al., 2008), though ongoing research is addressing this point. Network models
also do not yet account for the modulation of theta rhythm frequency by running speed. In
contrast to interference models, the mechanism of path integration is a separate process
superimposed on the network dynamics for grid firing (Burak and Fiete, 2006; McNaughton
et al., 2006; Fuhs and Touretzky, 2006; Welinder and Fiete, 2008). In addition, because the
grid pattern in network models requires particular patterns of synaptic connectivity, this might
prevent these models from being flexible in different tasks. These models do not yet account
for the immediate shift to context dependent firing of entorhinal neurons shown in linear tasks
such as the hairpin maze (Derdikman et al., 2006) or the spatial alternation task (Lipton et al.,
2007), relative to the firing in the open field. In contrast, as shown in Figures 5-7, interference
models can easily account for context-dependent firing in linear tasks with only minor
modification in the form of phase reset.
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Figure 1.
A. Example of persistent firing in a layer V pyramidal cell reprinted from (Egorov et al.,
2002). B. Schematic of circuit involved in generating grid cells from persistent firing cells.
Individual persistent firing cells (PS1, PS2, PS3) receive input from different head direction
cells (HD1, HD2, HD3). When spiking of persistent firing cells is synchronous, it causes
spiking in a grid cell via convergent synaptic input. C. Simulation of three interacting persistent
firing cells. The top cell (persistent cell 1) receives depolarizing input from a speed modulated
head direction cell with preference angle zero (HD zero). This causes spiking at a slightly
higher frequency than baseline, while persistent cells 2 and 3 are pushed to lower frequencies
by input from HD cells with preference angles of 120 and 240 degrees. (Tick marks below x
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axis indicate baseline frequency of 3 Hz). Cell 1 spiking starts out in phase with the other cells,
then shifts out of phase, then back into phase, resulting in grid cell firing at regular locations
in space (red dots).
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Figure 2.
Mechanism for interaction of persistent firing cells to cause grid cell firing. A. Spiking activity
over time of three different groups of persistent firing neurons. Here, each group consists of
three persistent spiking cells firing with a baseline frequency of 3 Hz with different phases.
Cells receive input from head direction (HD) cells with 0 degree preferred angle for Group 1,
120 degree angle for Group 2, and 240 degree angle for Group 3. Grid cell firing arises from
the convergent spiking of the three groups of persistent firing neurons. When all three persistent
firing groups fire in synchrony, the grid cell will fire (red dots). B. Persistent firing cells with
4 Hz baseline frequency in a two-dimensional circular environment. Dots indicate location of
virtual rat during each spike, showing no spatial specificity. In contrast, phase of spiking
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depends on location. Dot color (light to dark blue) indicates phase of spike relative to a single
reference oscillation. C. Grid cell spiking (red dots) occurs only when all of the persistent firing
neurons fire at the same phase, resulting in a typical grid cell firing pattern. Gray line indicates
rat trajectory from experimental data (Hafting et al., 2005).
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Figure 3.
Theta phase precession using the persistent spiking neuron model with 5 Hz baseline frequency.
A. Dorsal entorhinal cortex is simulated with parameter P(z)=0.0193, resulting in a larger shift
in persistent firing frequency (and faster shift in phase) for a given velocity. Black dots at top
show phase of spiking versus location during multiple passes through firing fields. Line 1
(green) shows the summed activity of all three populations of persistent spiking neurons,
resulting in grid cell spiking in Line 4. Line 2 shows the baseline persistent spiking frequency.
Line 3 depicts the EEG oscillation that might be expected from rhythmic spiking (with a
downward deflection during strongest excitatory input). Note that the grid cell spiking (Line
4) shifts in phase relative to the peak of the EEG oscillation shown by vertical gray lines. B.
Simulation of a more ventral entorhinal neuron using a smaller value for parameter P(z)
=0.0048. This results in a smaller shift in persistent spiking frequency (and slower shift in
phase) for a given velocity, and results in a larger grid field and a slower shift in firing phase
relative to background theta, consistent with experimental data (Brun et al., 2008; Hafting et
al., 2008).
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Figure 4.
A. Conjunctive grid cell with spiking determined by persistent spiking cells combined with
input from a single head direction cell. B. Head direction specificity of the conjunctive cell
spiking shown in red demonstrates strong directional selectivity of this conjunctive cell. Blue
dashed line shows total dwell time at different head directions. C. Grid cell generated with
persistent firing input without additional direct head direction input. D. Red line shows lack
of head direction specificity for grid cell generated with persistent spiking cells input alone.
E. Simulation of grid cell firing based on phase determined by the angle and distance of 3 visual
stimuli. F. Grid cell simulation with phase determined by visual stimulus viewed from two
eyes with 120 degree difference in visual angle.
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Figure 5.
Simulated spiking activity during continuous spatial alternation. A. In the task, rats alternate
between running from left reward, up stem to right reward (L to R) and running from right
reward, up stem to left reward (R to L). B. With no phase reset, 4 example entorhinal cells
show firing dependent upon where the linear task intersects with a grid. Input from the 75
entorhinal cells results in hippocampal cells that fire as place cells. In the stem of the maze, 4
example hippocampal cells fire the same for L to R and R to L trajectories, with no dependence
on past or future location. C. With phase reset of entorhinal neurons at reward locations,
examples of 4 of the 75 entorhinal neurons show context-dependent firing that differs between
L to R and R to L trajectories, resulting in differential firing patterns on the stem of the maze.
Input from the 75 entorhinal cells results in hippocampal cells that show context-dependent
firing. 4 example cells show different patterns of firing on the stem during L to R and R to L
trajectories.
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Figure 6.
Simulated spiking activity in delayed spatial alternation task with wheel running during the
delay period. A. Order of behaviour in the task. Rat runs up stem into left arm (a), then down
left return arm (b), then runs in wheel during delay (c), then runs up stem into right arm (d),
then down right return arm (e), then runs in wheel during delay (f). B. Spiking is plotted spatially
for left to right trials (green). Between left return and right reward, running in wheel spiking
is plotted in lines on left depicting time during each trial. Similarly, spiking is plotted spatially
for right to left trials (blue), and relative to time during wheel running in each trial. C. With
reset at reward location, the simulation generates context-dependent spiking activity during
wheel running in the delay period. Typical examples of four (out of 75) entorhinal neurons
plotted in left column show spiking in many locations and during long time segments in running
wheel. Typical examples of four hippocampal neurons plotted in right column show spiking
in discrete spatial locations and at brief restricted time points during wheel running after just
one type of trajectory. This replicates experimental data in the same task (Pastalkova and
Buzsaki, 2007; Pastalkova et al., 2008).
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Figure 7.
Simulated spiking activity during running on a long linear track with multiple hairpin turns.
A. No reset of phase results in firing that depends upon the two-dimensional location in the
environment. Firing of 5 entorhinal neurons appears in multiple grid cell firing fields and
examples of firing in 4 hippocampal neurons shows multiple place fields that match spatially
adjacent segments. B. Resetting of phase at each hairpin turn results in firing fields that occur
at specific distances from the turning points in both entorhinal neurons (firing of 5 neurons on
left) and hippocampal neurons (4 neurons on right). This firing dependent on distance from
turns is consistent with experimental recordings of entorhinal neurons and hippocampal
neurons (Frank et al., 2000; Derdikman et al., 2006).
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