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Abstract
Background: KRAS and BRAF mutations appear of relevance in the genesis and progression of
several solid tumor types but the co-occurrence and interaction of these mutations have not yet
been fully elucidated. Using a microsatellite stable (MSS) colorectal cancer (CRC) cell line
(Colo741) having mutated BRAF and KRASWT, we also aimed to investigate the KRAS-BRAF
interaction. Gene expression profiles for control KRASWT, KRASG12V and KRASG12D transfected cells
were obtained after cell clone selection and RT-PCR screening. Extensive qPCR was performed to
confirm microarray data.

Results: We found that the KRASG12V state deregulated several genes associated to cell cycle,
apoptosis and nitrogen metabolism. These findings indicated a reduced survival and proliferation
with respect to the KRASWT state. The KRASG12D state was, instead, characterized by several other
distinct functional changes as for example those related to chromatin organization and cell-cell
adhesion without affecting apoptosis related genes.

Conclusion: These data predict that the G12D mutation may be more likely selected in a BRAF
mutated context. At the same time, the presence of the KRASG12V mutation in the cells escaping
apoptosis and inducing angiogenesis via IL8 may confer a more aggressive phenotype. The present
results get along with the observations that CRCs with G12V are associated with a worse
prognosis with respect to the WT and G12D states and may help identifying novel CRC pathways
and biomarkers of clinical relevance.
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Background
Normal colon epithelial cells, in their way to malignancy,
may follow multiple pathways: i) the traditional ade-
noma-carcinoma sequence associated with chromosomal
instability, in which the sequential accumulation of muta-
tions in specific genes, including adenomatous polyposis
coli (APC), v-Ki-ras2 Kirsten rat sarcoma viral oncogene
homolog (KRAS), and tumor protein p53 (TP53), drives
the transition from healthy colonic epithelia through
increasingly dysplastic adenoma to colorectal cancer
(CRC) [1] ii) the serrated pathway leading to CRC associ-
ated with microsatellite instability (MSI), v-raf murine
sarcoma viral oncogene homolog B1 (BRAF) mutations
and extensive DNA methylation [2,3] and possibly, iii) a
"fusion" pathway associated to methylation of the O-6-
methylguanine DNA methyltransferase (MGMT), muta-
tion of KRAS and inactivation of the gene coding for
tumor protein p53 (TP53) [4].

KRAS is one of the most commonly activated oncogenes
since 17% to 25% of all human tumors harbor mutations
in this gene [5]. Although statistics may differ slightly
from study to study, a good estimate is that in about 30–
40% of CRC a mutated KRAS may be found [6-9]. Ras pro-
teins are small guanine-nucleotide binding proteins
(p21ras) involved in signal transduction with a GTPase
activity, which is severely reduced when the protein is
mutated in codons 12, 13 or 61. As p21ras activates down-
stream effectors in the GTP-bound state, reduction of this
activity leads to unregulated signaling and lastly to
enhanced and unregulated cell proliferation and transfor-
mation [10].

Of the multiple molecular signaling pathways initiating
from KRAS, the Raf/MEK/ERK kinases and the Ras/PI3K/
PTEN/Akt pathways are the best studied [11,12]. These
pathways are interconnected since the mutation of genes
in one pathway may influence the activity of kinases in the
other pathway and both of them also interact with the
TP53 pathway [12]. Because of these molecular interac-
tions, the effects of the activation of one of these pathways
may be very different in different cellular context [13,14]
and may result in complex functional effects including
changes in cellular proliferation, cell cycle, chromosomal
instability, apoptosis, drug resistance and prognosis
[8,12,15-17]. Also the role of the KRAS-BRAF interaction
(being BRAF an effector of RAS in the RAF and PI3K acti-
vated pathways) is far from being understood.

Although BRAF mutations have been observed mainly in
sporadic MSI CRC, they have also been detected in a small
percentage of microsatellite stable (MSS) CRCs [18-22]. In
particular, BRAF mutations were more often found in pre-
malignant colon polyps and in early, rather than in
advanced, CRC [18,23-25]. As concomitant KRAS and
BRAF mutations are quite rare in premalignant colon pol-

yps and early stages of CRC, they are considered as alter-
native or mutually exclusive mutations [26,27]. In a
recent study, however, it was found that the number of
concomitant KRAS and BRAF mutations increased along
with the depth of the wall invasion of sporadic MSS CRC,
suggesting that activation of both genes is likely to harbor
a synergistic effect and that KRAS could give the tumor an
invasive behavior [28]. Therefore, cells harboring a BRAF
mutation would represent a model system with a genetic
background well suited to study the specific contribution
of activating KRAS mutations to CRC progression. To this
end, we have used the colorectal adenocarcinoma cell line
Colo741, which is wild-type relatively to KRAS, MSS [29]
but harbors a mutation (V600E; single letter amino acid
code) in the BRAF locus [30], and stably transfected these
cells with constructs expressing the KRASG12V or the
KRASG12D mutated coding sequences (cds) or the KRASWT.
We selected these KRAS mutations since codon 12 is the
most affected by point mutations in CRC (more than
90%) and because, among all mutation types in sporadic
MSS CRC, G12D and G12V, they are the most frequently
observed with a frequency of about 45% and 23% respec-
tively [9].

Results
Mutated KRAS expression modifies the gene expression 
profile of Colo741 cells
The effects of mutated KRAS on gene expression were
investigated by performing GeneChip microarray studies.
Data from probed and scanned arrays (two technical rep-
licates were analyzed for the three conditions: KRASWT,
KRASG12D and KRASG12V) were normalized, filtered by
removing probe sets that were regarded as not expressed
and then analyzed by performing a multi-class of all 6
arrays using the SAM program. A change in gene expres-
sion was considered significant if the p value was less than
0.02 and increased gene expression occurred in, at least,
one out of the three conditions. We also performed a two-
class unpaired comparison for KRASG12D versus KRASWT

and KRASG12Vversus KRASWT to specify expression
changes. We chose a 2.0 fold change cutoff. Based on
these criteria, 25 probe sets were up regulated and 61
down regulated in KRASG12Dversus KRASWT. In the com-
parison KRASG12Vversus KRASWT, 88 probe sets resulted up
regulated and 56 down regulated (see Additional File 1).
Then, another two-class unpaired comparison between
the mutated KRAS-expressing Colo741 found 52 and 17
probe sets respectively up- or down-regulated (see Addi-
tional File 2). In total, irrespective of the comparison, we
found 229 regulated probe sets (Figure 1) corresponded
to 219 unique genes.

Analysis of gene expression profiles
All the differentially 229 expressed probe sets, after creat-
ing a single sample by averaging the individual expression
values from technical replicas, were then analyzed with
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the software tool TIGR MeV. Analysis of mutated KRAS-
expressing Colo741 clones by PCA revealed a distinct par-
tition among those expressing the recombinant KRASWT

and those expressing the KRASG12D and KRASG12V (Figure
2). Points in the two-dimensional plot represented the
samples. The distance between any pair of points was
related to the similarity between the two observations in
high-dimensional space. Samples that were near each
other in the plot were similar in a large number of varia-
bles, i.e., expression level of individual genes. Conversely,
samples that were far apart in the plot were different in a
large number of variables.

Differential expression among the three KRAS conditions
was visualized by hierarchical clustering (HCL) which
generates a tree (dendogram) to group similar objects
together (Figure 3).

Expression patterns and biological pathways specifically 
identified by EASE in KRAS-expressing clones
To gain a more mechanistic understanding of the main
processes affected by the KRAS, the EASE score [31] was
used to identify Gene Ontology (GO) functional catego-
ries, which were significantly over-represented (see Addi-
tional Files 1 and 2). After filtering the results to avoid
redundant and/or generic categories, statistically signifi-
cant GO terms associated with KRAS-regulated genes were
found (Table 1). This analysis identified cell cycle arrest
and apoptosis genes as being the most affected ones by

KRASG12V. When genes regulated by KRASG12D (see Addi-
tional File 1) were subjected to EASE analysis, genes
involved in cellular component organization and biogen-
esis were identified. Finally, we chose to examine the 69
probe sets differently regulated between mutated KRAS-
expressing Colo741 (see Additional File 2) in order to
compare the specific effects of the two oncogenes
KRASG12V and KRASG12D. Again, we used the EASE score to
perform ontological categorization and KEGG pathway
analysis. These analyses identified genes associated to
immune system processes and to the biosynthesis of ster-
oids as the most affected ones (Table 1).

Quantitative RT-PCR validated the Microarray data
To verify and validate the GeneChip microarray data, we
performed real-time RT-PCR (Figure 4) on a subset of sev-
enteen KRAS-modulated genes. RNA samples subjected to
RT-PCR were identical to those used for the microarray
analysis. In particular, we confirmed the regulated expres-
sion patterns of genes chosen on the basis of their associ-
ation with cell cycle arrest processes [DNA-damage-
inducible transcript 3 (DDIT3), sestrin 2 (SESN2), and
protein phosphatase 1, regulatory (inhibitor) subunit 15A
(PPP1R15A)], cellular component organization and bio-
genesis [heat shock 27 kDa protein 1 (HSPB1), sema-
phorin 6A (SEMA6A) and structural maintenance of
chromosomes flexible hinge domain containing 1
(SMCHD1)], immune system processes [bone marrow
stromal cell antigen 2 (BST2), 2',5'-oligoadenylate syn-

Venn diagrams obtained by SAM analysisFigure 1
Venn diagrams obtained by SAM analysis. Global comparison 
among the genes regulated by the KRASG12D, KRASG12V and 
KRASWT isoforms expressed by transfection in Colo741 cells. 
The number of probe sets associated to the co-regulated 
genes is reported in the overlapping areas.

Microarray analysis performed with TIGR MeV program: principal component analysisFigure 2
Microarray analysis performed with TIGR MeV program: 
principal component analysis. Microarray analysis of Colo741 
cell clones transfected with constructs expressing the 
KRASG12D (G12D), KRASG12V (G12V) and KRASWT (WT) iso-
forms. Probe sets associated to dysregulation of gene 
expression levels among the three groups were identified 
using SAM (see Materials and Methods). The corresponding 
values from two independent microarray analysis were aver-
aged. Principal component analysis (PCA) is shown to pro-
vide the 2D projections onto the plane spanned by the two 
principal components for the three different KRAS profiling 
data sets.
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thetase 1 (OAS1) and spleen tyrosine kinase (SYK)], as
well as genes known to be regulated during sterol biosyn-
thesis [farnesyl-diphosphate farnesyltransferase (FDFT1),
3-hydroxy-3-methylglutaryl-Coenzyme A reductase
(HMGCR) and 3-hydroxy-3-methylglutaryl-Coenzyme A
synthase 1 (HMGCS1)]. All validation results, on changes
in mRNA expression of these genes, were proved to be reg-
ulated coherently with the GeneChip microarray data
(Figure 4). In summary, the two methodologies (real time
PCR and microarray) produced highly consistent results,
which provided a good level of assurance regarding the
validity of the microarray data.

Discussion
The purpose of this study was to investigate by a genome
wide transcription profiling approach the specific gene
expression modulation due to the two most frequently
occurring KRAS mutations in CRC (respectively, G12V
and G12D) in BRAF mutated CRC-derived cells. The gene
expression profiles associated to these mutations trans-
fected in the host CRC Colo741 cells, characterized by
mutated BRAF and wild type KRAS and evaluated versus
the transfected WT isoform, were not overlapping and
could be clear-cut discriminated. Furthermore, the Princi-
pal Component Analysis performed in this study made it
evident that the highest degree of change in gene expres-
sion was to be associated to the G12V state.

Both G12D and G12V states appeared to co-regulate genes
associated to biological processes which are highly corre-
lated to cancer. The expression of KRASG12V, in particular,
modulated a series of genes involved in cell cycle control,
apoptosis and nitrogen metabolism so that these cells are
likely to undergo cell death and/or lower proliferation
with respect to the cells expressing the KRASWT isoform.
Thus, it appears at first sight that the expression of
KRASG12V might explain why, at least at the early stages of
CRC genesis, concomitant KRAS and BRAF mutations are
rarely occurring. However, BRAFV600E was shown to
induce genomic instability promoting the acquisition of
additional genetic defects [32] and, in the specific context
of MSS CRC, concomitant BRAF and KRAS mutation
occurrence was shown to increase with colon wall inva-
sion and metastases [28]. Interestingly, Costa and cowork-
ers reported very recently a strong link between tumor
recurrence, distant metastases, survival and BRAFV600E

plus RAS mutation in thyroid carcinoma [33]. It is tempt-
ing to suggest that specific KRAS and BRAF mutation
interaction may have a role to modulate gene expression
profiling in specific tumor types (either MSS, or MSI, or
CIN) toward a more aggressive phenotype. In our view, it
is not a single gene or a given genetic system that may con-
trol tumor progression. In fact, the gene expression pat-
terns appear modulated by the genome context coupled
with the effects of different gene mutations [34].

Microarray analysis performed with TIGR MeV program: hierarchical clusteringFigure 3
Microarray analysis performed with TIGR MeV program: 
hierarchical clustering. Heat map visualization obtained by 
hierarchical clustering (HCL). Ratios for each probe relative 
to the mean value (calculated from the two independent 
microarray analysis for each condition) were used to rear-
range the gene list on the basis of their expression pattern. 
Probes corresponding to genes with similar regulation trend 
were placed close to each other. The color-ratio bar indi-
cates intensity of gene up-regulation (red), down-regulation 
(green) and no change (black).
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Our data also showed that IL8 was upregulated by
KRASG12V. With this in mind, we considered of high inter-
est previous reports showing that HRASG12V-induced IL8
expression plays a critical role in tumor growth and ang-
iogenesis [35], that the degree of its expression was asso-
ciated with the CRC induction and progression including
the development of liver metastases [36,37], and that IL8
was a central element in CRC-specific gene network [38].
We are therefore tempted to speculate that the presence of
KRASG12V in those cells which might escape apoptosis may
confer an aggressive phenotype by inducing angiogenesis
via IL8 and possibly facilitate metastasis.

Our results also showed that the genes regulated by the
KRASG12Disoform were related to the cellular component
organization and biogenesis but not to apoptosis nor cell
stress but instead it downregulated indeed at least two
genes coding for chaperone proteins (HSPB1 and
CRYAB). Since we showed that the G12V mutation gener-
ated more stressful conditions favoring cell cycle arrest
and apoptosis than the G12D, it appears more likely that
the BRAF mutation is associated with G12D. Interestingly,
this observation appears in agreement with the data
reported by Costa and collaborators in thyroid carcinoma
[33] and by Oliveira and coworkers investigating the CRC
[28].

It is known that both KRAS mutations under study greatly
reduce the KRAS GTPase activity, locking the protein in a

constitutively active state [39] To our knowledge, how-
ever, the crystal structures of these two KRAS isoforms
have not yet been determined and compared. Therefore,
possible different protein-protein interactions and affini-
ties of interactions with downstream KRAS effectors can-
not be ruled out. Interestingly, these mutations were
shown to affect differently the structural conformation of
the highly related HRAS protein, suggesting that differ-
ences between the switch I region of G12D and G12V Ras
could modify interactions with downstream effectors
[39].

The present sets of genes modulated by the two KRAS
mutations investigated were quite different (as analyzed
in details in the following) and may be partly explaining
the differences observed in other studies addressing their
correlation with in vitro invasion properties [40], survival
of CRC patients [8] and chromosomal instability and ane-
uploidy [41].

Among the present downregulated genes in the two KRAS
mutations with respect to the WT isoform, we observed
SPARC, TRPM1, SEMA6A and ENO2. Reduced levels of
the gene coding for SPARC was associated with therapy-
refractory CRC [42] and inactivation of SPARC was related
to rapid progression of CRC [43]; TRPM1 expression was
found to decline with an increased degree of aggressive-
ness of the melanoma [44]; downregulation of SEMA6A
was observed in ovarian carcinoma cell lines resistant to

Table 1: Gene Ontology analysis and KEGG pathway analysis of KRAS isoform-expressing Colo741 cell clones.

System Gene Category – Term Count % P-Value Genes

KRASG12V Vs KRASWT

GO biological process
Cell cycle arrest 6 6.7 5.50E-05 DDIT3, DHCR24, GADD45A, IL8, PPP1R15A, SESN2
Apoptosis 13 14.6 3.90E-04 ANXA1, APOE, GADD45A, IFIH1, IL24, DDIT3, DDIT4, DHCR24, 

PMAIP1, PPP1R15A, SEMA6A, TNFRSF19, TRIB3
KEGG pathway

Nitrogen metabolism 3 3.4 1.50E-02 ASNS, CTH, GLS

KRASG12D Vs KRASWT

GO biological process
Cellular component organization and biogenesis 12 27.3 5.10E-02 CRYAB, EHD2, FHOD1, HIST1H1A, HSPB1, LIN7C, MAP3K11, PCDHB5, 

PCDHB16, SEMA6A, SLC7A11, SMCHD1

KRASG12D Vs KRASG12V

GO biological process
Immune system process 14 32.6 3.50E-07 BST2, CDK6, IFITM3, IFIT1, IFI27, IFI44, IL8, IL24, MICA, OAS1, OAS2, 

OAS3, SYK, S100B
Sterol metabolic process 6 14 1.10E-06 APOE, FDFT1, HMGCR, HMGCS1, IDI1, SC4MOL

KEGG pathway
Biosynthesis of steroids 4 9.2 5.70E-05 FDFT1, IDI1, HMGCR, SC4MOL

Gene name symbols used are those approved by the Human Genome Organisation Gene Nomenclature Committee http://www.genenames.org/.
Non-redundant functional categories, number of genes contained within each category, percentages ranked by the degree of over-representation in 
the category as determined by EASE (P-value) and gene members found to be modulated by the KRAS isoforms are shown. Redundant categories 
with similar gene members were removed to yield a single representative category.
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Real-Time RT-PCR validation of microarray dataFigure 4
Real-Time RT-PCR validation of microarray data. Real-Time RT-PCR analysis performed on Colo741 cell clones trans-
fected with constructs expressing the KRASG12D (G12D), KRASG12V (G12V) and KRASWT (WT) isoforms to validate the micro-
array data. This was accomplished on randomly selected genes from Table 1 and showed, in arbitrary units, KRAS isoform-
dependent regulation of cell cycle arrest genes (A), of cellular component organization and biogenesis genes (B), of immune 
system process genes (C) or sterol metabolic process genes (D). Other KRAS isoform-regulated genes associated to miscella-
neous functions and randomly selected from Tables S1 and S2, are shown in (E). Real-Time RT-PCR and microarray data are 
respectively indicated by gray and black bars. Expression levels are relative to the expression of the housekeeping Ribosomal 
protein L19 gene (RPL19). Standard deviations of Real-Time RT-PCR data are indicated as vertical bars. Gene name symbols 
used are those approved by the Human Genome Organisation Gene Nomenclature Committee http://www.genenames.org/.

http://www.genenames.org/
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several chemotherapeutic drugs [45] and its extracellular
domain was shown to be able to inhibit angiogenesis
[46]. Concerning ENO2, literature reports indicated
upregulation in cancer [47,48] rather than downregula-
tion, as it occurred in our mutant transfected cells, but
additional studies are needed to find any specific correla-
tion of this subunit of the enolase in CRC and KRAS/BRAF
mutations.

For the other genes that presently resulted co-regulated by
the two mutated KRAS isoforms with respect to the WT
isoform, we could not find in the literature a correlation
with cancer. Consequently, we suggest that these genes
deserve a future careful investigation as they might repre-
sent possible novel CRC markers.

Among the genes upregulated by the KRASG12V, we
observed DDIT3, PPP1R15A, SESN2, APOE, DDIT3,
DDIT4 ASNS, and CTH. All these genes are known to be
induced by a variety of stressors (including unfolded pro-
tein, endoplasmic reticulum stress, DNA damage, oxida-
tive stress, amino acid deprivation, acidosis) [49-58] and
since IL24 which was also upregulated in our study, is able
to activate the unfolded protein response [59] and cell
cycle arrest [60], it is very likely that the expression of
KRASG12V in cells already expressing a mutated BRAF
unleashes a cascade of events leading to cell stress and
hence possibly to apoptosis and inhibition of cell cycle
progression. It is interesting to note that it was recently
demonstrated that HRASG12V but not BRAF V600E engages
a rapid cell-cycle arrest mediated by the endoplasmic
stress response in melanocytes [61]. The upregulation of
transcription of genes related to stress response resulting
from our experiment is in agreement with previous
reports, albeit obtained with fibroblasts expressing
HRASG12V, suggesting that Ras is part of the stress sensing
machinery [62]. Furthermore, the downregulation in cells
transfected with KRASG12V of genes involved in sterol met-
abolic processes appeared to us worth to note. Interest-
ingly, there is a large number of published studies
showing that products of the mevalonate pathway are
essential to the post-translational processing and function
of nuclear lamins, small G proteins (including Ras), and
growth factor receptors constituting a survival pathway
that when inhibited induces apoptosis and inhibits angio-
genesis [63-65]. The downregulation of the DHCR24 in
the cells transfected with the KRASG12V isoform with
respect to the WT isoform goes in the same line since this
gene was reported to be associated to resistance to oxida-
tive stress-induced apoptosis [66]. On the other hand, the
upregulation of TNFRSF19 may suggest that a caspase
independent cell death may take place in these cells, as
already shown for 293T cells [67] and that this same gene
might promote cell growth as reported for melanoma cells
[68]. The significance of an upregulation of genes impli-
cated in the immune processes in our Colo741 expressing
the KRASG12V with respect to KRASG12D was less clear.

Among the genes associated with the KRASG12D we
observed two genes, HIST1H1A [69] and SMCHD1[70],
related to chromatin organization; PCDHB5 and
PCDHB16 [71] and LIN7C [72] implicated in cell-cell
adhesion; CRYAB [73] and FHOD1 [74] in cytoskeleton
organization; EHD2 [75] in receptor internalization;
SLC7A11 [76] in amino acid transport; HSPB1 [77,78] in
cellular stress response; MAP3K11 [79] in invasive activ-
ity; SEMA6A [80] in axon guidance and retrograde signal-
ing. Given the variety of processes that may be affected by
the KRASG12D isoform gene expression modulation, the
interpretation of our data appears quite complex. Never-
theless, since reduction of MAP3K11 and increase of
LIN7C have been shown to facilitate respectively the in
vitro invasive activity [79] and the oncogenic activation of
PI3K [72], we suggest that the concordant modulation of
these genes by the KRASG12D isoform in Colo741 cells may
be functional to an higher aggressive phenotype with
respect to the sole presence of the BRAF mutation. The
downregulation of SEMA6A points to the same direction
(see also above). Moreover, the downregulation of EHD2
may lead to increasing the growth signaling at the cell
membrane by reduction of the internalization of growth
receptors. Similarly, the downregulation of the proteins
involved in cell-cell adhesion (PCDHB5 and PCDHB16)
could possibly promote cell delamination and cell migra-
tion.

A further comment on our present expression data is that
Colo741 cells expressing the KRASG12D isoform were not
apoptosis-prone or stressed cells since they did not upreg-
ulate genes induced by cellular stressors with respect to
cells expressing the KRAS WT isoform. Conversely, they
downregulated indeed at least two genes coding for chap-
erone proteins (HSPB1 and CRYAB).

In relationship with all these observations and list of
genes that we have specifically considered, it is clear that
specific experiments are definitely required to better clar-
ify the role of these genes in our present CRC model.

Conclusion
Our data support the hypothesis that the presently inves-
tigated KRAS mutations elicit, in the host BRAF mutated
cells under study, biological consequences which may
help explaining previous observations in CRC and con-
tribute to identify novel pathways and biomarkers of
potential clinical relevance.

Methods
Generation of stable Colo741 cell clones expressing WT, 
G12V and G12D KRAS mutants
The procedures for the generation of Colo741 cell clones
stably transfected with construct coding for the KRAS WT
and mutant isoforms, as well as the experiments needed
to assess their expression and the activation of the KRAS
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pathway were performed according to standard protocols
(see Additional Files 3, 4, 5 and 6).

RNA extraction and quality analysis
Total RNA was isolated using RNeasy® MinElute columns
(Qiagen). RNA concentration and purity were determined
from measuring absorbance at 260 and 280 nm; 2 μg total
RNA was run on a 1% denaturing gel and 100 ng were
loaded on the 2100 Bioanalyzer (Agilent, Palo Alto, CA)
to verify RNA integrity.

Amplification of RNA and array hybridization
According to the recommendations of the manufacturer,
100 ng of total RNA was used in the first-round synthesis
of double-stranded cDNA. The RNA was reverse tran-
scribed using a WT cDNA synthesis and amplification kit
(Affymetrix UK Ltd., High Wycombe, UK). The resulting
biotin-labeled cRNA was purified using an IVT clean-up
kit (Affymetrix) and quantified using a UV spectropho-
tometer (A260/280; Beckman, Palo Alto, CA). An aliquot
(15 μg) of cRNA was fragmented by heat and ion-medi-
ated hydrolysis at 94°C for 35 minutes. Fragmented
cRNA, run on the Bioanalyzer (Agilent Technologies,
Santa Clara, CA) to verify the correct electropherogram,
was hybridized in a hybridization oven (16 hours, 45°C)
to a Human Gene 1.0 ST array (Affymetrix) representing
whole-transcript coverage. Each one of the 28,869 genes is
represented on the array by approximately 26 probes
spread across the full length of the gene, providing a more
complete and more accurate picture of gene expression
than the 3' based expression array design. The washing
and staining procedures of the arrays with phycoerythrin-
conjugated streptavidin (Invitrogen) was completed in
the Fluidics Station 450 (Affymetrix). The arrays were sub-
sequently scanned using a confocal laser GeneChip Scan-
ner 3000 7G and the GeneChip Command Console
(Affymetrix).

GeneChip microarray analysis and data normalization
Affymetrix raw data files [cell intensity (CEL) files] were
used as input files in expression console environment
(Affymetrix). Briefly, CEL files were processed using the
Robust Multi-Array Analysis (RMA) procedure [81], an
algorithm that is publicly available at http://www.biocon
ductor.org. The RMA method was used to convert the
intensities from the multiple probes of a probe set into a
single expression value with greater precision and reduced
background noise (relying on the perfect match probes
only and thus ignoring the mismatch probes) and then to
normalize by sketch quantile normalization. Quality
assessments were also performed in the expression con-
sole environment. This procedure, based on various met-
rics, allowed us to identify a chip as an outlier (see for
details Quality assessment of exon and gene arrays http://
www.affymetrix.com/support/technical/whitepapers/

exon_gene_arrays_qa_whitepaper.pdf. Significance Anal-
ysis of Microarrays (SAM), Principal Component Analysis
(PCA) of variance and Hierarchical Clustering (HCL),
after mean scaling and log2 transformation, were per-
formed with the software tool of The Institute for
Genomic Research (TIGR) MeV http://www.tigr.org/soft
ware/tm4/mev.html[82].

Individual genes with different expression levels, among
the three groups, were identified using SAM [83]. The false
discovery rate expressed as q-value was used to evaluate
statistical significance, and its threshold was set at 0.02
(2%). For comparison purposes, an arbitrary filter was
applied excluding all genes that did not exhibit a differ-
ence in expression of at least 2-fold. Genes differentially
expressed were investigated using 1) a multiclass analysis
to test differences among the three groups of cells and 2)
a two-class analysis within each pair groups to specify
expression changes.

We used PCA to reduce the complexity of high-dimen-
sional data and to simplify the task of identifying patterns
and sources of variability in these large data sets.

The results from SAM were visualized using HCL [84].

All the microarray information has been submitted to the
National Center for Biotechnology Information Gene
Expression Omnibus web site http://
www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE12398.

Pathways identification by Expression Analysis Systemic 
Explore (EASE)
Gene lists from Affymetrix results were examined using
the EASE program, accessible via http://
david.abcc.ncifcrf.gov/. EASE is a customized stand-alone
software application with statistical functions for discov-
ering biological themes within gene lists. This software
assigns genes of interest into functional categories based
on the Gene Ontology database (GO, http://www.gene
ontology.org/index.shtml) and uses the Fisher's exact test
statistics to determine the probability of observing the
number of genes within a list of interest versus the
number of genes in each category on the array. A more
detailed analysis of the genes' association with physiolog-
ical pathways was performed using the Kyoto Encyclope-
dia of Genes and Genomes (KEGG, http://
www.genome.jp/kegg/pathway.html). Each identified
process was confirmed through PubMed/Medline.

RT-PCR analysis
Starting from about 1 μg of total RNA, cDNA was synthe-
sized by using an Oligo(dT)20, random hexamers mix
and a Superscript III first-strand synthesis system super-
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mix for RT-PCR (Invitrogen). cDNAs were diluted 5 – 20
times, then subjected to PCR analysis.

Relative quantification was performed by real-time quan-
titative RT-PCR (qPCR) sybrgreen using the ABI Prism
7700 Sequence Detector (Applied Biosystems, Foster City,
CA) following manufacturer's instructions. The house-
keeping gene ribosomal protein L19 (RPL19) was used as
the endogenous control for normalization because, in the
microarray data, it showed in all conditions the steadiest
expression when normally used housekeeping genes were
compared.

To avoid possible signal production from potential con-
taminating genomic DNA, specific primers for each gene
were designed across a common exon-exon splice junc-
tion by the Primer Express software (Applied Biosystems)
(see Additional File 7). Dissociation curve analysis
defined the specificity of the products by the presence of a
single dissociation peak on the thermal melting curve.
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Additional material

Additional file 1
Table S1. Probe sets significantly regulated by KRASG12V and KRASG12D 

Vs KRASG12WT in Colo741 cell clones. Probe sets ID, with relative gene 
symbols or Ensembl Transcript ID, significantly regulated by KRASG12V or 
KRASG12D in Colo741 cell clones, as determined by using SAM software 
with multi-class analysis. Q-values were calculated using the two-class, 
unpaired, option with the additional requirement of at least a 2-fold 
change in gene expression, relatively to KRASWT-expressing clones.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-7-92-S1.doc]

Additional file 2
Table S2. Probe sets ID significantly regulated in KRASG12V Vs KRASG12D 

transfected Colo741 cell clones. Probe sets ID, with relative gene symbols 
or Ensembl Transcript ID, significantly regulated in the comparison 
between the clones bearing the KRAS mutations (G12V and G12D). Q-
values were calculated as in table S1.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-7-92-S2.doc]

Additional file 3
Supplemental Methods. Methods for; generation of KRAS expression con-
structs, cells and cell culture, immunolocalization, establishment and 
selection of stable cell clones and Western blot analysis.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-7-92-S3.doc]

Additional file 4
Figure S1. Expression and localization of recombinant KRAS proteins. In 
vitro transcription/translation of the empty vector (lane 1), KRASWT 

(lane 2), KRASG12V(lane 3) and KRASG12D (lane 4), recombinant chi-
mera RED2:KRASWT (lane 5) and luciferase (control) expressing plas-
mids (lane 6) (A). Arrow heads point to the position of molecular mass 
standards whose sizes are expressed in kDa (A). Cells after 48 hours from 
transfection with CFP-KRASG12V construct (B-G). Immunolocalization by 
an anti-pan-Ras antibody (F, G) and an Alexa514-conjugated secondary 
antibody giving a green signal (C, D, F, G,), direct visualization of the 
cyan signal pseudocolored in red (B, D, E, G) and direct visualization of 
the signal displayed by the nuclear dye 7-Amino Actinomycin D pseudo-
colored in blue (D, G). The merged fluorescence signals are shown in (D, 
G). Magnification of the area in the white rectangles are shown in the 
lower left insets of (E-G). Arrow heads point to some of the cell membrane 
regions displaying colocalization of the pan-RAS and CFP-KRASG12V sig-
nals. Gamma adjustment was applied to each panel to adapt color render-
ing in the CMYK process. Scale bar = 50 mm.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-7-92-S4.pdf]

Additional file 5
Figure S2. Screening by semiquantitative RT-PCR analysis of Colo741 
cell clones transfected with constructs expressing KRASWT (WT), 
KRASG12D (G12D) and KRASG12V (G12V) mRNA isoforms. For each 
construct both cell clones expressing the transgene (1D8-3C7-4D3) and 
cell clones not expressing the transgene (2G7-1H2-1B3) are shown. The 
latter were discarded from further experiments. For all the assayed sam-
ples, a reverse transcription PCR assays, performed omitting the reverse 
transcriptase, was also carried out to exclude from further analysis clones 
yelding a KRAS amplicon resulting from a plasmid integrated in the 
genomic DNA (false positive samples). In this example no amplicons were 
detected in minus reverse transcriptase assays. Primers for GAPDH were 
used to normalize the results.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-7-92-S5.pdf]

Additional file 6
Figure S3. Western blotting analysis of selected Colo741 KRAS-expressing 
clones. Vector-transfected clones (lane 1), KRASWT (lane 2), KRASG12V 

(lane 3), KRASG12D (lane 4) and senescent human bone marrow stromal 
cells (lane 5) were subjected to immunoblotting to establish the global Ras 
expression (pan-Ras) (A) and the phosphorylation status of AKT (B) and 
ERK1/2 (C). Arrow points to the pAKT protein.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-7-92-S6.pdf]

Additional file 7
Table S3. Sequences accession numbers and primers.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1476-
4598-7-92-S7.doc]
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