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Abstract

Although functionally related proteins can be reliably predicted from phylogenetic profiles, many functional modules do
not seem to evolve cohesively according to case studies and systematic analyses in prokaryotes. In this study we quantify
the extent of evolutionary cohesiveness of functional modules in eukaryotes and probe the biological and methodological
factors influencing our estimates. We have collected various datasets of protein complexes and pathways in Saccheromyces
cerevisiae. We define orthologous groups on 34 eukaryotic genomes and measure the extent of cohesive evolution of sets of
orthologous groups of which members constitute a known complex or pathway. Within this framework it appears that most
functional modules evolve flexibly rather than cohesively. Even after correcting for uncertain module definitions and
potentially problematic orthologous groups, only 46% of pathways and complexes evolve more cohesively than random
modules. This flexibility seems partly coupled to the nature of the functional module because biochemical pathways are
generally more cohesively evolving than complexes.
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Introduction

Phylogenetic profiling is a successful method to predict or

confirm functional relations between proteins. If the phylogenetic

patterns of two proteins are alike, they are likely to be functionally

related [1]. However, this does not necessarily mean that all

functionally related proteins have similar phylogenetic patterns. In

depth phylogenetic reconstructions of specific pathways and

complexes have yielded a number of examples of complexes and

pathways gradually gaining and losing components during

evolution [2–8]. A preponderance of flexible evolution has also

been suggested by a number of large scale studies in prokaryotes

[9–11]. Both types of studies thus reveal limited modularity or

‘cohesiveness’ in evolution of functional modules, showing that the

flexibly evolving examples are not an exception.

Recent application of phylogenetic profiling methods on

eukaryotes has not been as successful in identifying functional

relations as in prokaryotes [12]. This raises the question to what

extent, if at all, functional modules evolve cohesively in eukaryotes.

The organization of bacterial genomes into operons should

facilitate modular evolution of functionally linked proteins. In

eukaryotes however, gene order and genome organization are

unlikely to play an important role and any modular coevolution

would be the result of nongenomic, e.g. system level, properties of

the functional module. The study of evolutionary cohesiveness of

functional modules in eukaryotes may therefore enable us to shed

new light on the way functional organization influences the

evolutionary dynamics of the genome and vice versa. The recent

availability of a sufficient number of sequenced and assembled

genomes across the eukaryotic species tree, as well as the

accessibility of high throughput functional data, yield the

opportunity to look at possible cohesive evolution in eukaryotes

in a systems biological context.

Our aims in this study are twofold: we want to define and

quantify evolutionary cohesiveness of functional modules in

eukaryotes, and, given this quantification, we want to understand

the evolutionary behavior which we observe. In order to meet

these goals, we collect a diverse set of functional modules

(pathways and complexes). For each module we describe the

evolutionary dynamics of its constituents across 34 species from 6

major eukaryotic divisions. We select a measure to determine from

the dynamics whether we should consider a module to display

cohesive evolution. Once this quantification of the degree of

cohesive evolution of functional modules in eukaryotes is

established, we are able to compare cohesively with flexibly

evolving modules and gain insight in both methodological as well

as biological factors which contribute to our result.

Results

Scoring Cohesiveness
We gather 6 datasets containing protein complexes and

pathways, defined in S. cerevisiae, as our set of functional modules

(Table 1). In order to measure coevolution of the components of a

functional module, we assign all proteins which are part of a

module to orthologous groups, based on predefined euKaryotic

Orthologous Groups (KOGs) [13], for all proteins from 34

eukaryotic species (see Materials and Methods), resulting in

214.342 (out of 368.358, .58%) assigned proteins. The (partial)

presence or absence of a module in a species depends on whether

there are proteins from that species assigned to the orthologous

group to which the module components belong (Figure 1).
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No standard method exists to measure the degree to which a

module evolves cohesively. Hence we implement several scoring

schemes, both from the literature as well as newly defined. We

compare individual modules to a random background in order to

decide whether a pattern is the result of evolutionary dynamics or

could have been obtained randomly. We adopt the strategy from

Campillos et al. [11]: for each size N of functional modules, we

generate 100.000 random modules by randomly selecting N

groups from the set of orthologous groups which are part of at least

one functional module. Each functional module is assigned a

cohesiveness score defined as the fraction of random modules with

a lower ‘raw’ score. At a cutoff of 0.99, reflecting a probability to

obtain a pattern this cohesive by chance of 0.01, we regard a

functional module to evolve cohesively.

We observe that regardless of the specific scoring scheme

implemented, the majority of functional modules evolve flexibly

(Table 2). In the remainder of our investigation we use the score

which is most successful in separating real from random modules.

This turns out to be a two dimensional vector consisting of the

number of species in which the module is completely present and

the number of species in which the module is completely absent

(Figure 2). This score identifies 27% of all modules and 37% of all

curated modules as cohesively evolving.

An additional merit of this score is that it does not correlate with

module size, in contrast to other scores that seem to benefit larger

modules (table 2 in Text S1). This is linked to a difference between

cohesive large and small cohesive modules: manual inspection

reveals that large modules typically distinguish themselves from the

random background by being completely present in several

species, while they’re usually never completely absent. Yet small

modules distinguish themselves from the random modules by

being completely absent in at least a few species.

We carried out the quantification of cohesiveness in eukaryotes

and, similarly to what has been observed previously in prokary-

otes, we observe that the majority of functional modules evolves

flexibly: 27% evolves cohesively on average, ranging from 21%–

33% of complexes to 38%–44% of biochemical pathways. There is

a host of potential technical and biological reasons for this

observation. Are most of our pathways and complexes in fact not

functional modules? Is functional modularity defined more

appropriately on a different level (domain, protein, network)?

Can proteins be functionally related but not co-evolving, because

the intrinsic nature of their relationship makes it plastic in

evolution? Does the time-span in our orthologous groups allow for

so many duplications and subsequent independent losses that the

real evolutionary history of the module is obscured?

The effects of these potential causes are difficult to disentangle.

Nevertheless, we will attempt to assess the relative importance of

module and orthologous group definition in the remainder of this

study, in order to get a better estimate of the extent of cohesive

evolution of complexes and pathways in eukaryotes. We improve

our module definition by cross-comparison of our different

datasets and by filtering our modules with data on interactions

and cellular locations. Subsequently, we filter out those ortholo-

gous groups which are most likely to obfuscate the evolutionary

history of a module component. Finally, we will discuss differences

in characteristics between cohesively and flexibly evolving modules

in order to gain further insights into the why of this observed level

of flexibility.

Effects of Module Definition
The fractions of cohesive modules per dataset as listed in Table 2

reveal a considerable disparity in the degree of evolutionary

cohesiveness among datasets when they are different with respect

to their underlying concepts. In contrast, results on datasets of the

same category (‘pathways’, ‘curated complexes’ or ‘complexes

based on high throughput data’) are much more congruent. These

results suggest that curated datasets are of better quality compared

to high throughput data based module definitions. Hence part of

the flexible evolution observed here could be just a matter of poor

module definition, as has been suggested previously [9]. We

explicitly test this by applying different filters to enhance our

module definition and see whether the level of cohesiveness is

increased.

First we find that modules which are defined in multiple datasets

tend to evolve more cohesively than modules which are not

Author Summary

Components of a protein complex or a metabolic pathway
strongly cooperate to perform a specific function. Because
of this functional interdependence, proteins that form a
complex or pathway are expected to be present and
absent together in different species. Phylogenetic profiling
methods, in which proteins with similar presence and
absence patterns are inferred to be functionally linked, are
based on this assumption. In this report, we quantify to
what extent proteins that together constitute a complex or
pathway (a functional module) in yeast are present and
absent together (evolve cohesively) in other eukaryotic
species. We find that more than half of all complexes and
pathways are only partially present in a number of species.
It appears that evolution of functional modules is very
flexible; components are not indispensable; they can be
replaced or reused in a different functional context. This
places a limit on how well phylogenetic profiling methods
can detect functionally related proteins. Functional mod-
ules that evolve cohesively are typically involved in
biological processes such as translation and amino acid
metabolism.

Table 1. Datasets used in this study.

Dataset Number of Modules Average Module Size

SGD 106 4.56

KEGG 92 14.89

MIPS 199 5.91

Aloy 87 6.95

PE 433 4.37

Socio-affinity 461 11.15

All 1285 8.02

All curated 447 7.51

The number of modules and the average number of subunits in the modules
are listed per dataset, as well as for the nonredundant combination of all
datasets (‘all’) and of all curated datasets (‘all curated’). The SGD pathways and
KEGG datasets are curated and consist mainly of metabolic pathways. The PE
and socio-affinity datasets both result from clustering Tandem Affinity
Purification (TAP) data. The differences between these two datasets include the
fact that PE clusters are based on raw data from the study by Krogan et al. [30]
as well as from Gavin et al. [14], the similarity score (Purification Enrichment
versus Socio-affinity) and the algorithm used to cluster the proteins. MIPS and
Aloy are two curated complex datasets, the Aloy dataset is a manual selection
based on extensive literature curation, information on protein structures and
previous TAP derived protein complexes [26]. Curated datasets comprise
approximately one third of all modules.
doi:10.1371/journal.pcbi.1000276.t001

Evolution of Functional Modules in Eukaryotes
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(P = 8e-06, table 4a in Text S1). Second we probed for a functional

core that evolves more cohesively by trimming from all functional

modules the parts that do not overlap with at least one other

module definition. We observe that confirmed submodules evolve

more cohesively than the original modules (P = 0.001, table 4b in

Text S1), especially in those datasets containing large modules.

Moreover the fraction of cohesive modules increases from 27% to

36% (Figure 3 and table 4c in Text S1). The primary observation

that curated modules seem to evolve more cohesively than

modules inferred from high throughput data, is bolstered by an

increase in the extent of evolutionary cohesiveness after applica-

tion of a cross-comparison filter. The combined evidence thus

strongly suggests that part of the observed evolutionary flexibility

can be attributed to the incorrect definition of functional modules.

A physical interaction often indicates a functional relation, we

therefore next combine our module definition with Tandem

Affinity Purification (TAP) data, which is the base of our two high-

throughput derived module datasets [14,15]. We use the mean

Purification Enrichment (PE) score [15] between component pairs

for each module in order to quantify the average propensity of its

constituents to (indirectly) interact. We restrict this analysis to

complexes, because physical interactions are biologically most

relevant in that context and many pathway components (i.e.

metabolic enzymes) do not have any interaction partner in our

TAP dataset.

Cohesive complexes have a higher mean PE score than flexibly

evolving ones, but this observation is biased towards the multitude

of complexes that are automatically generated from high

throughput interaction data (P = 0.017, table 5a in Text S1). If

we look at the curated complex datasets separately, results point in

a different direction. Much to our own surprise, cohesive modules

from curated datasets tend to have a lower mean PE score than

flexibly evolving ones from the same dataset (P = 0.001, table 5a in

Text S1). Similarly, removal of subunits which are most loosely

attached to the rest of the complex, has a small and mixed effect

on evolutionary cohesiveness (table 5b in Text S1).

If we remove subunits which most likely interaction partner is

not part of the same module, we observe no significant increase in

cohesiveness (table 5d in Text S1). A strong interaction of a

module component with a protein outside the module apparently

does not indicate that this component is not part of the module, or

that it has an additional function outside the module. On the

Figure 1. Example of a flexibly evolving complex: Nup84 subcomplex of the nuclear pore complex. (A) The profile of the Nup84
complex, red indicating absence, green presence (number of paralogs in dark green). The raw score of this complex is (5,0), which means that there
are 5 species in which this complex is completely present and none in which this complex is completely absent. The cohesiveness score, which is the
fraction of random modules of the same size which score better both in the number of species in which the module is present as well as in the
number of species in which the module is absent, is 0.48. This complex from the Aloy dataset occurs also in the MIPS dataset and, with some
additional subunits, in the PE and Socio-affinity clusters, so it passes the cross-comparison filter without losing any subunits. (B) The profile after
cross-comparison with TAP data. SEC13, which is also part of the COPII complex, has the lowest PE score with the other subunits and has a higher
propensity to interact with a protein outside the module (namely with SEC31, an other member of the COPII complex) than with any other member
of this module. Removal of this protein from the module results in a subcomplex which is not evolving more cohesively than the original module. (C)
Apart from improving the module definition, we attempt to filter possible noise originating from the use of orthologous groups to describe a
modules evolutionary dynamics. KOG0845, KOG1964, KOG2271 and KOG8539 are considered unreliable because they have less than 90% overlap
with a orthoMCL derived orthologous group. Removal of those orthologous groups leads to a more cohesively evolving module, with a raw score
(24,2) and a cohesiveness score 0.87. (D) Removal of orthologous groups which are likely to have functionally differentiated (groups containing many
inparalogs, in this example KOG0845 and KOG1332) results in a submodule which we consider evolutionary cohesive: it has a raw score of (5,8) and a
cohesiveness score of 0.996. More details on this module and some additional examples can be found in Text S2.
doi:10.1371/journal.pcbi.1000276.g001

Evolution of Functional Modules in Eukaryotes
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contrary: it may be its function within the module to interact with

other parts of the system. These results indicate that a probable

physical interaction is neither a necessary nor sufficient condition

for a functional relation. Even given the fact that the TAP

experiments are not exhaustive with respect to different growth

conditions and there are probably many more interactions than

those we know about, it is clear that functional relations extend

physical ones.

Orthologs and Inparalogs
We have established that reducing the conceptual and technical

ambiguity in functional module definition increases the observed

evolutionary cohesiveness. Now we test the robustness of our

results to the definition of orthologous groups. We run orthoMCL

[16] with default parameters on our set of species. Using this

orthology as sole data source, the fraction of cohesive modules and

the average cohesiveness scores are qualitatively the same as when

we use our KOG-based orthology assignments (table 6a in Text

S1).

More importantly, we can cross-compare our original KOG-

based orthologous groups with the groups defined by the

orthoMCL method. If we trust only those orthologous groups

with 90% overlap with an orthoMCL group, removing the

unreliable orthologous groups results in an increase in cohesive-

ness, except for the datasets which contain large modules: KEGG

and the socio-affinity clusters. The orthologous groups deemed

unreliable typically contain more species than the trusted ones

(P = 0.0). Discarding unreliable orthologous groups means we

remove components which are present in many species, which,

within our scoring scheme, has more negative impact on the

evolutionary cohesiveness of large modules than of small modules.

If we compare submodules to original modules we find no

significant increase in cohesiveness, except for the datasets derived

from high-throughput experiments (table 6b in Text S1).

However, the overall fraction of cohesiveness increases from

27% to 31% (Figure 3 and table 6c in Text S1), an increase which

mainly results from removing modules which consist solely of

unreliable KOGs. As was the case with module definitions, we

Figure 2. Scores and random background. This figure shows the raw scores for modules composed of six subunits from all datasets, with the
Nup84 complex from Figure 1 highlighted in green. The random background density for all score bins is shown in shades of blue, turning darker as
the number of random modules with a score in that particular bin increases.
doi:10.1371/journal.pcbi.1000276.g002

Table 2. Fraction of cohesive modules for different datasets and different scoring schemes.

Dataset
Average
Cooccurrence

Average Deviation from
Modular

Homogeneous
Columns

Species
Absent

Species
Present

Species Absent,
Species Present

SGD 0.14 0.15 0.09 0.06 0.03 0.44

KEGG 0.24 0.24 0.17 0.08 0.16 0.38

MIPS 0.17 0.17 0.15 0.05 0.1 0.33

Aloy 0.21 0.23 0.16 0.02 0.1 0.31

PE 0.08 0.08 0.06 0.03 0.05 0.21

Socio-affinity 0.27 0.3 0.2 0.01 0.19 0.24

All 0.18 0.2 0.14 0.03 0.12 0.27

All curated 0.19 0.19 0.15 0.06 0.1 0.37

Average Cooccurrence: for each pair of module subunits we calculate the fraction of species in which both subunits are either present or absent together. We average
over all component pairs to obtain a score per module. Average deviation from modular: the sum of the deviation of the number of components of the functional
module for each genome to the average number of module components per genome, adopted from Snel et al. [9]. Homogeneous Columns: the number of species in
which a module is either completely present or completely absent, adopted from Gavin et al. [14]. Species Present, Species Absent: the number of species in which a
module is completely present and the number of species in which the module is completely absent. Those two values together make up the raw score which is used
throughout the article.
doi:10.1371/journal.pcbi.1000276.t002

Evolution of Functional Modules in Eukaryotes
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observe that a more conservative definition of orthologous groups

results in a higher degree of cohesiveness.

Apart from obvious problems with incorrect assignments, which

we tried to tackle by cross filtering with orthoMCL, there are more

ways in which the use of orthologous groups to infer presence and

absence of module components in different genomes distorts the

quantification of cohesive evolution. A module which is completely

absent in a certain species could have retained a functionally

differentiated recent duplicate of one of its components. In the

phylogenetic profile this would correspond to a column of all zeros

and a one, while the actual module is completely missing. This

phenomenon of functional differentiation is more likely to occur as

a family has more duplications and we expect that components of

cohesive modules are generally assigned to orthologous groups

with few inparalogs.

We find that indeed cohesively evolving modules tend to be

composed of orthologous groups which contain few inparalogs

(P = 5e-07, table 7a in Text S1). We adopt the approach described

by Snel et al. [9] and remove the 50% orthologous groups

containing most inparalogs from our datasets. The resulting

submodules evolve more cohesively than the original modules

(P = 0.02, table 7b in Text S1) and the fraction of cohesive

modules across all datasets increases from 27% to 33% (table 7c in

Text S1). Datasets which comprise mainly of large modules do not

show an increase in cohesiveness. We can explain this by the fact

that large modules are often distinctively cohesive by virtue of

Figure 3. (Combined) effect of different filters on the fraction of cohesive modules. On top of each bar we show the number of
(sub)modules passing the filter.
doi:10.1371/journal.pcbi.1000276.g003

Evolution of Functional Modules in Eukaryotes
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being completely present in a large number of species. Removing

presence which is possibly but not necessarily spurious, is therefore

not likely to increase the measured evolutionary cohesiveness in

large modules.

The paralogy filter strongly suggests that on the level of protein

families, functional divergence is likely to be one of the factors

influencing evolutionary cohesiveness. However, whether this

caused by the fact that sometimes a functionally diverged duplicate

is present, while a duplicate which retained the original function is

lost, or whether it is the case that large families typically are not

part of cohesive modules, remains debatable.

We tested multifunctionality on the level of individual proteins

by integration of high throughput and literature derived functional

information (Text S2). However, we have not been able to show

convincingly that multifunctionality of a protein plays an

important role in explaining the observed evolutionary flexibility.

Cohesively versus Flexibly Evolving Functional Modules
and Pathways versus Complexes

Given the fact that some modules evolve cohesively and others do

not, one of the questions we want to answer is whether, and if so, in

what respects cohesively evolving modules are different from flexibly

evolving modules. Cohesively evolving modules tend to have a

lower rate of sequence evolution (P = 0.0009, comparing Dn/Ds

rates from [17] of cohesively versus flexibly evolving modules),

reflecting that they’re subject to stronger negative selection pressure.

As mentioned above, components of cohesively evolving modules

tend to duplicate less often than components of flexibly evolving

modules. We compared the average propensity of module

components to interact with each other between cohesively and

flexibly evolving modules. We found to our own surprise, that for

the curated complex datasets, components of cohesively evolving

complexes actually were less likely to interact among each other

than components of flexibly evolving complexes.

Another interesting question is whether cohesive evolution is

more likely to occur in certain biological processes than others. We

detect overrepresented Gene Ontology (GO) categories [18] of

proteins in cohesive modules with respect to all proteins in

functional modules using the BiNGO plugin in Cytoscape [19].

(figure 8 in Text S1 and Tables S1, S2, S3). Proteins which are

part of cohesively evolving modules are involved in core processes:

amino acid metabolism, protein ribosome biogenesis, electron

transport and generation of precursor metabolites and energy.

It may be the case that modules engaged in these essential

processes are not particularly cohesively evolving, but just very

conserved. A comparison of the number of species assigned to

KOGs containing cohesively evolving module components assigned

to these overrepresented GO categories, to a background of all

KOGs shows that indeed proteins involved in translation, cytoplasm

organization and biogenesis, ribosome biogenesis and assembly are

more conserved than the background. In contrast, proteins involved

in the other overrepresented core processes such as, for example,

amino acid metabolism, are less conserved compared to the

background of all module components (Table S1). This shows that

there are in fact modules which do not evolve cohesively only

because all components are essential (and therefore conserved).

These modules are mainly involved in core metabolic processes.

The overrepresentation of metabolic GO categories among

cohesively evolving modules corresponds to a striking difference in

cohesiveness observed between datasets containing complexes, and

pathway datasets (Table 2). Biochemical pathways evolve more

cohesively than complexes (P = 0.00012 comparing pathways with

curated complexes, P,1e-100 comparing pathways to all

complexes). In fact, whether a module is a pathway or a complex,

is a good predictor for cohesive evolution (figure 3 and table 3a in

Text S1). The difference between pathways and complexes is more

significant among small modules, which distinguish themselves

from the random background by being completely absent in

multiple species (table 3b in Text S1).

Discussion

The present study is the first large scale investigation of cohesive

evolution of functional modules in eukaryotes. We show similar

evolutionary behavior of functional modules in eukaryotes to what is

previously observed for prokaryotes: most modules evolve flexibly

[9–11] and curated modules evolve more cohesively than modules

derived from high throughput interaction data [9]. As eukaryotes do

not contain operons that facilitate the simultaneous loss of module

components, all cohesive evolution that we observe is the result of

nongenomic properties of the functional module. Hence the system

level properties of functional modules are important in the cohesive

loss of subunits. Nonetheless a substantial level of flexibility seems

resistant to conceptual and technical filtering.

We attempt to estimate the relative importance of mistakes in

the definition of functional modules and the use of orthologous

groups to determine presence and absence of module components

in our set of genomes. We increase reliability, both of our set of

functional modules as well as our set of orthologous groups and

find that cohesiveness is increased with approximately 30%.

Removing orthologous groups which are likely to have function-

ally differentiated also increases the fraction of cohesive modules

with ,30%.

Ideally, we want to overlay all those filters on top of each other,

but if we do, we remove so many modules and module

components that we are left with less than 13% of our original

number of modules and the modules which remain are typically

very small (2 or 3 components). Even after application of all these

filters we still observe that most functional modules do not evolve

more cohesively than random (46% of modules have a

cohesiveness score.0.99). (Figure 3).

Naturally, our approach has some limitations in capturing and

classifying the diversity in possible evolutionary scenario’s

illustrated by manually curated examples [2–8], (Text S2). The

assignment of proteins to orthologous groups is neither exhaustive

nor completely correct and not all of the mistakes can be filtered

out. Moreover, there are many other ways in which proteins co-

evolve (similar rate [20], compensatory mutations [21], coduplica-

tion [22]) and our cohesiveness score is restricted to cooccurrence

only. These limitations, inherent in a large scale analysis, also

apply to the use of phylogenetic profiles to determine functional

relations between pairs of proteins. Recent evaluations of

phylogenetic profiling methods show that reliable results are

obtained at a cost of very low sensitivity, especially in eukaryotes

[23]. The evaluated methods are more advanced than simply

counting co-presence and co-absence. Nevertheless either many

functionally related pairs are not detected or many unrelated pairs

are being classified as coevolving. Strikingly, the related pairs

which can be reliably retrieved belong to functional classes

representing those cellular processes, which are fundamental for

any cell in any kingdom of life, which corresponds to what we have

observed in this study.

Manual reconstructions of the evolution of functional modules,

complex purification with missing subunits across different species

[24], as well as previous large scale investigation of evolutionary

cohesiveness of functional modules and the evaluations of

phylogenetic profiling methods all point into the same direction.

Therefore, even though the exact degree of coevolution is

Evolution of Functional Modules in Eukaryotes
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probably underestimated, we conclude that functionally related

proteins do not necessarily coevolve, and functional modules do

not need to behave as evolutionary modules.

Methods

Module Datasets
We obtained the SGD pathway dataset from the Saccheromyces

Genome Database (ftp://genome-ftp.stanford.edu/pub/yeast/

data_download/literature_curation/biochemical_pathways.tab), the

KEGG pathway datasets from the KEGG website (ftp://ftp.genome.

jp/pub/kegg/pathway/organisms/sce/sce_gene_map.tab and ftp:

//ftp.genome.jp/pub/kegg/pathway/map_title.tab), the socio-affin-

ity clusters were provided in the Supplementary Information of the

publication [14] and the Purification Enrichment clusters were

obtained from personal communication. The MIPS dataset was

downloaded from ftp://ftpmips.gsf.de/yeast/catalogues/complexcat

[25] and the Aloy dataset from http://www.russell.embl.de/

complexes/ [26].

We deleted per dataset the modules of which a submodule was

also present in that dataset. We deleted from the pathway datasets

those modules which were complexes rather than pathways (SGD

pathways: pyruvate dehydrogenase, KEGG pathways: Ribosome,

Proteasome, DNA polymerase, RNA polymerase). Modules from

which components are assigned to one orthologous group, as well

as modules which consist of only one protein or for which we could

only map one protein to a systematic ORF name were excluded.

Mapping to systematic ORF names was done via the gene registry

file from SGD (ftp://genome-ftp.stanford.edu/pub/yeast/gene_

registry/registry.genenames.tab).

Orthologous Groups
Due to dynamics of protein evolution such as protein fusion,

protein fission and domain acquisition and loss, defining ortholo-

gous groups is a nontrivial task. Therefore we choose a set of well-

established, manually curated orthologous groups from the KOG

database [13] as our starting point. A set of 34 eukaryotic species

(Figure 1), including metazoa, amoebazoa, alveolates, excavata and

plantae, is selected based on completeness and quality of annotation

of their genomes, yielding a total of 368358 proteins. We perform all

against all Smith Watermann with Paralign [27] on the protein

sequences from the selected species and ran Inparanoid [28] with

default parameters (except that we used a threshold on the score

rather than on the E-value) on this data for each pair of species.

Proteins within one Inparanoid cluster which are from different

species are connected with an edge, resulting in a graph connecting

237538 proteins. First, we assign 162250 proteins to pre-existing

KOGs from the KOG database [13] with a KOGnitor script.

Subsequently, each unassigned protein connected to at least two

proteins which are assigned to the same KOG and have an edge

between them is assigned to that KOG. This leaves us with 206108

unassigned proteins. In our large graph we identify triangles (trios of

interconnected proteins), if a triangle has two components assigned

to the same orthologous group, we assign the third component to

that group as well. In this way, another 14555 proteins were added

to pre-existing KOGs. The remainder of triangles we clustered into

5704 novel orthologous groups using CFinder [29], a program

which implements the clique percolation method to detect clusters

of fully connected subgraphs of different sizes (in this case size three).

We have assigned 214342 out of 368358 proteins to a total of 10548

orthologous groups, more than half of which is novel.

We defined an alternative for our orthologous groups by

running the orthoMCL program [16] with default parameters on

our set of genomes. We assign a total of 275953 proteins to 40239

orthologous groups.

Module Definition Filters
For our cross-comparison filter we check for each dataset, for

each module, whether there is (complete or partial) overlap with

another module in another dataset. If a module is not completely

confirmed, we remove unconfirmed subunits such that we keep the

largest overlap we have encountered in other datasets.

In order to filter the functional modules with high throughput

interaction data, we use the Purification Enrichment (PE) score

from [15]. This score integrates data from two large scale

interaction (TAP/MS) studies [14,30]. Both presence and absence

of associations are taken into account to derive a measure denoting

the likelihood two proteins directly or indirectly interact (see [15]

for further detail). We downloaded these PE scores from http://

interactome-cmp.ucsf.edu/ on February 23, 2008. For our PE

score filter, we only consider modules which components have at

least one interaction with another protein (within the module or

outside) with a confidence score higher than 0.2 [15]. We first

remove all components with a zero PE score with all other module

components and cluster the remaining components with single

linkage with 21*PE as distance. We obtain two clusters and

remove the smallest cluster.
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Text S1 Detailed description of results of different filters applied

to functional modules
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Text S2 Detailed examples of 5 different complexes and

pathways from curated datasets, illustrating different cohesiveness

scores and module filters.
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