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Abstract

Background: Ets1 is an oncogene that functions as a transcription factor and regulates the activity of many genes
potentially important for tumor initiation and progression. Interestingly, the Ets1 oncogene is over-expressed in many
human squamous cell cancers and over-expression is highly correlated with invasion and metastasis. Thus, Ets1 is believed
to mainly play a role in later stages of the oncogenic process, but not early events.

Methodology/Principal Findings: To better define the role of Ets1 in squamous cell carcinogenesis, we generated a
transgenic mouse model in which expression of the Ets1 oncogene could be temporally and spatially regulated. Upon Ets1
induction in differentiating cells of stratified squamous epithelium, these mice exhibited dramatic changes in epithelial
organization including increased proliferation and blocked terminal differentiation. The phenotype was completely reversed
when Ets1 expression was suppressed. In mice where Ets1 expression was re-induced at a later age, the phenotype was
more localized and the lesions that developed were more invasive. Many potential Ets1 targets were upregulated in the skin
of these mice with the most dramatic being the metalloprotease MMP13, which we demonstrate to be a direct
transcriptional target of Ets1.

Conclusions/Significance: Collectively, our data reveal that upregulation of Ets1 can be an early event that promotes pre-
neoplastic changes in epidermal tissues via its regulation of key genes driving growth and invasion. Thus, the Ets1
oncogene may be important for oncogenic processes in both early and late stages of tumor development.
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Introduction

The stratified squamous epithelium of the skin forms a barrier

between the underlying tissues and the outer milieu to prevent the

passage of water and other substances between these compart-

ments. Keratinocytes are the principal cell type found in stratified

squamous epithelia and generate biomolecules that are necessary

for the stability and resistance of the epithelial layer to mechanical

stress. The innermost layer of this stratified epithelium, known as

the basal layer (stratum basale), consists of a proliferative

compartment of undifferentiated cells. Basal cells periodically

withdraw from the cell cycle, detach from the basement

membrane and migrate outwards to enter the suprabasal

compartment. Differentiation of keratinocytes can be monitored

by the morphological appearance of the cells and by the

expression of particular marker proteins. Based on these criteria,

the differentiated layers of the epidermis can be visualized as three

separate regions: the spinous or prickle cell layer (stratum

spinosum), the granular layer (stratum granulosum) and the

cornified layer (stratum corneum).

Squamous cell carcinoma (SCC) is a malignant tumor of skin

keratinocytes that frequently arises in response to excessive sun

exposure or to chronic irritation. Numerous mouse models of

squamous cell cancer have been developed including carcinogen-

induced SCC, ultraviolet (UV) light-induced SCC and spontane-

ous SCC in various transgenic and knockout mouse strains.

Several common genetic alterations have been detected in

squamous cell tumors, including upregulation of oncogenes and

mutation of tumor suppressor genes [1,2]. In addition, several

recent studies have reported upregulation of the Ets1 proto-

oncogene in human SCC arising in skin [3] and other stratified

epithelia [4,5,6,7,8]. Moreover, upregulation of Ets1 expression

has also been detected in animal models of oral SCC [9,10].

Expression of high levels of Ets1 is correlated with increased

invasiveness and metastatic potential in both human SCC and

animal models of SCC.

Ets1 is a transcription factor that regulates the expression of

many key genes that are involved in cell growth, survival and

invasion. Importantly, Ets1 is thought to regulate the expression of

proteases such as urokinase plasminogen activator (uPA) and

various members of the matrix metalloprotease family (MMP1,

MMP2, MMP3, MMP9 and MMP13) [11,12,13,14,15,16]. Ex-

pression of these proteases is likely required for tumor cells to

degrade the surrounding extracellular matrix, invade nearby

tissues and eventually metastasize to distant sites. In addition, to

these proteases, Ets1 is also implicated in upregulation of a wide-

variety of genes that may promote tumorigenesis including genes

that control cellular proliferation or survival (bax, bcl-2, caspase-1, c-
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myc, CDK11, Fas ligand, GADD153, JunB, mdm2, p16, p21 and p53)

[17,18,19,20,21,22,23,24,25,26,27,28] and genes involved in

responses to a hypoxic environment [29]. Furthermore, Ets1 has

been reported to directly interact with the tumor suppressor

protein p53 and modulate its transcriptional activity

[30,31,32,33,34].

Because Ets1 regulates the expression of a large cohort of target

genes that influence cellular proliferation and survival, Ets1 might

play an important role in early stages of the carcinogenic process

in addition to its better known role in tumor invasion and

metastasis. To investigate the ability of Ets1 to drive neoplastic or

pre-neoplastic changes in stratified squamous epithelial cells, we

developed a transgenic mouse model that allows us to inducibly

express high levels of Ets1 protein in skin epithelium. Using this

inducible model system, we have explored the role of Ets1 in SCC.

Results

Ets1 is expressed predominantly in the proliferative basal
layer of the stratified squamous epithelium

Although Ets1 has previously been reported to be expressed in

embryonic mouse skin [35], the exact expression pattern of this

transcription factor during epidermal keratinocyte differentiation

has not been determined. We performed immunostaining for Ets1

protein in the skin epithelium of newborn and adult mice, which

showed that expression of Ets1 is predominantly restricted to the

nuclei of proliferative basal layer keratinocytes of the epidermis

and hair follicles of newborn mice (Fig. 1A). In contrast, more

differentiated suprabasal cells expressed little or no Ets1 protein. A

similar pattern of expression was detected in adult mice, with the

majority of Ets1 positive cells being localized to the basal layer and

to the hair follicles (Fig. 1A). We conclude that in mice Ets1 is

mainly expressed in undifferentiated keratinocytes of the skin and

its expression is downregulated as cells commit to the terminal

differentiation program. A similar pattern of expression of Ets1 in

basal cells, but not suprabasal differentiated cells, has been

detected in human skin samples [3].

Development of an inducible Ets1 transgenic model
As discussed in the Introduction, high levels of Ets1 expression

have been detected in SCC in humans and rodents. These

observations along with the expression pattern of Ets1 in the

proliferative compartment of the skin suggest that Ets1 may play a

role in keratinocyte proliferation. However, Ets1 knockout mice do

not display any obvious defects in the proliferation or differenti-

ation of skin keratinocytes, although they are characterized by a

Figure 1. Development of an inducible transgenic model to express Ets1 in differentiated epidermal keratinocytes. (A) Immuno-
histochemical localization of Ets1 in the nuclei of epidermal keratinocytes in newborn and adult mice. (B) Schematic representation of the
tetracycline-inducible Ets1 transgenic system. The system consists of two separate transgenes- the Tet driver transgene in which the tetracycline-
regulated transactivator protein (tTA) is under the control of the involucrin promoter and enhancer elements and the Tet responder transgene in
which an HA-tagged version of murine Ets1 is under the control of the pTight promoter containing tet-responsive elements (TRE, which are tTA
binding sites). When Tet driver and Tet responder mice are crossed, BT offspring are produced. Maintaining these BT animals on Dox
supplementation inhibits transgene expression, whereas withdrawal of Dox supplementation causes induced expression of the Ets1 transgene in cells
that normally express involucrin (upper spinous and granular layers). (C) Western blot analysis of transgene expression in skin extracts from newborn
wild-type and BT mice using anti-Ets1 and anti-HA antibodies. GAPDH serves as a loading control. (D) Immuno-histochemical localization of transgene
expression using antibody against the HA epitope tag.
doi:10.1371/journal.pone.0004179.g001
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previously-unreported white-spotted coat color, suggesting a defect

in melanocyte proliferation, survival or migration (Fig S1A–C).

The lack of an obvious keratinocyte phenotype in Ets1 knockout

mice may be due to functional compensation by other Ets family

members, a number of which are expressed in skin. Indeed, the

closely related Ets2 protein is highly expressed in skin and has been

shown to play a role in hair follicle morphogenesis [36].

Although Ets1 is not essential for epidermal homeostasis under

physiological conditions, it may contribute to oncogenic transfor-

mation of these cells by promoting proliferation, epithelio-

mesenchymal transition (EMT) and/or invasion and metastasis.

In order to study the function of the Ets1 oncogene in skin

carcinogenesis, we developed a Tet-inducible Ets1 transgenic

mouse model. The full-length murine Ets1 cDNA was cloned in-

frame with an N-terminal HA epitope tag and inserted

downstream of the doxycycline-regulated pTight promoter in the

vector pTRE-Tight to generate the construct pTight-Ets1

(Figure 1B). The pTight-Ets1 construct was micro-injected into

fertilized mouse oocytes and six transgenic founders were

obtained. To test the ability of the six transgenic lines to inducibly

express Ets1, we crossed each founder with previously-described

transgenic mice expressing the tetracycline-transactivator (tTA)

under the control of the human involucrin promoter and enhancer

elements (INV-tTA mice) [37]. In the resulting bitransgenic (BT)

offspring (pTight-Ets1/ INV-tTA), HA-Ets1 can be induced in the

upper spinous and granular layers of skin and other stratified

squamous epithelial tissues when doxycyline (Dox) is withheld.

Note that this induced Ets1 expression pattern is opposite to the

normal pattern of Ets1 gene expression in the basal layer of the

epidermis.

When Ets1 expression was induced during embryonic develop-

ment by withholding Dox, BT newborn animals derived from two

of the six pTight-Ets1 founder animals, line C and E exhibited a

dramatic skin phenotype leading to a defect in epidermal barrier

formation and neonatal lethality (data not shown). In agreement

with the skin phenotype, line C and E were shown to express the

HA-Ets1 transgene by Western blotting (Figure 1C and data not

shown). The majority of the studies reported herein were

performed using the transgenic line C, but similar results were

obtained with line E.

To determine whether the transgene was faithfully expressed in

the differentiated layers of the epidermis, immunohistochemical

analysis using anti-HA antibodies was carried out. As shown in

Figure 1D, HA staining was evident in the differentiated layers of

the skin epithelium, but not in the undifferentiated basal layers.

The Ets1 transgene would also be expressed in differentiated cells

of the oral mucosa and other internal, stratified epithelia (i.e.,

esophagus, forestomach and anogenital linings) since the involu-

crin promoter has been shown to be active in these sites [37].

Transgene expression could be suppressed by supplementation

with Dox as expected and mice maintained on Dox during

embryonic development and in the post-natal period were normal

at birth, did not have an epidermal barrier defect and survived to

adulthood. Thus, we have developed a Doxycycline–regulated,

inducible transgenic model system that allows us to turn Ets1

expression on or off in the stratified squamous epithelia of mice at

different ages and for different periods of time.

Expression of the Ets1 transgene in adult mice leads to
conspicuous changes in the skin

As noted above, induction of Ets1 expression during embryonic

development leads to neonatal lethality due to a failure to establish

a normal skin barrier function. To overcome this problem, we

suppressed expression of the Ets1 transgene during the embryonic

and postnatal period by maintaining the mice on Dox supple-

mentation. After weaning, Dox was withdrawn allowing transgene

expression (Figure 2A). In adult BT mice, obvious epidermal

alterations became evident within a three- to six-week period after

Dox withdrawal (Figure 2B–D). In particular, BT mice exhibited

patchy hair loss, crusting, scaly skin and open sores covering the

body surface. The skin of the paws and tail was frequently affected.

In addition, BT mice were often very thin and wasted compared to

control littermates, potentially due to difficulties in feeding caused

by changes to the oral cavity, esophagus or forestomach. We noted

some variability in the severity of the phenotype of induced mice,

this might reflect differences in genetic background modifiers as

the pTight-Ets1 transgenic mice were initially derived from a

mixed C3H6C57BL/10 genetic background and subsequently

crossed to FVB/N mice. Alternatively, the differences in

phenotype might reflect variegation in transgene expression or

in the precise timing of transgene induction. The studies described

below assessing histological changes in the skin epidermis were

performed using samples from mice that displayed a visible

phenotype after 3–6 weeks of Ets1 induction.

Histological examination of BT mouse skin revealed striking

hyperplastic and dysplastic alterations when compared to single

transgenic or non-transgenic control mice. The epidermal changes

were most prominent in sections of the affected dorsal trunk, ear

and tail skin (Figure 3A–C). The BT epidermis was dramatically

thickened and hyperkeratotic when compared to control mice and

was composed of predominantly large, pleomorphic cells with

eosinophilic cytoplasm, suggesting that the expanded cell popu-

lation was spinous in nature (acanthosis). Some keratinocytes of

the stratum corneum, though cornified, retained nuclei (paraker-

atosis) indicating a partial block to terminal differentiation. The

alteration of the normal pattern of keratinocyte differentiation was

also apparent from the presence of keratin pearls scattered

throughout the skin. In addition, there was an extensive invasion

of the underlying dermis by the hyperplastic epidermal cells. The

keratinocytes invaded the dermis in the form of large cohesive

masses or thick downgrowths (10–20 cells across) often enclosing

islands of dermal tissues within them. In some cases, enlarged

sebaceous glands and the proximal end of hair follicles formed the

leading edge of the invasive front. As a secondary response to the

epidermal alterations, inflammatory reaction typified by leukocytic

infiltration was also observed. Closer examination showed an

increase in nuclear-to-cytoplasmic ratio, hyperchromatic nuclei

and prominent nucleoli in the keratinocytes (Figure 3D). The

proliferative capacity of the affected epidermis was augmented as

evidenced by increased number of mitotic cells. Interestingly, these

actively dividing cells were not restricted to the proliferative basal

compartment of the epidermis, but were present in the suprabasal

layers too. This suggests that some partially-differentiated

keratinocytes retained or acquired proliferative capability in the

supra-basal layers. A number of these dividing cells had atypical

(tripolar) mitotic spindles, a feature often associated with

transformation (Fig. 3E). Therefore, induction of Ets1 in

differentiating keratinocytes leads to extensive hyperplasia associ-

ated with dysplastic differentiation and downgrowths of chords of

keratinocytes into the dermal compartment.

The keratinocyte differentiation program is disrupted in
epithelia expressing Ets1

The histological analyses described above suggested that the

normal differentiation program of epidermal keratinocytes was

disrupted by expression of Ets1 in the differentiating layers of the

skin. To confirm this result, we stained sections of the dorsal skin of

BT and control mice with antibodies specific for marker proteins

Ets1 in Squamous Neoplasia
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associated with particular differentiated layers of the epidermis. As

shown in Figure 4, keratinocytes in the skin of BT mice

demonstrated significant alterations in the expression of these

markers. In particular, expression of cytokeratins typically

localized to the basal layer (K5 and K14) was expanded such

that most of the cells in the epidermis stained positive for these

proteins (Figure 4A and data not shown). In addition, most

suprabasal cells in the epidermis of BT mice expressed K10, a

cytokeratin normally restricted to the spinous layer (Figure 4B). In

contrast, the expression of markers such as loricrin, filaggrin and

involucrin, which are normally restricted to the granular layer of

the epidermis, was decreased (Figure 4C and data not shown).

Figure 2. Ets1 expression results in dramatic alterations to skin homeostasis. (A) Time course of transgene induction. Ets1 expression is
suppressed prenatally and postnatally by feeding the mothers a Dox-containing diet. After weaning at the age of 3 weeks, the Ets1 transgene is
induced by switching the mice to a diet lacking Dox. The phenotype can be observed within 3–6 weeks after diet change. (B–D) Gross phenotype of
several sets of adult WT and BT mice. Arrowheads point to sores, ulcers and crusting on the skin and paws of BT mice. Note that BT mice are
substantially thinner than their wild type littermates.
doi:10.1371/journal.pone.0004179.g002
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These results were confirmed by Western blotting (Figure 4D and

data not shown). The reduced expression of loricrin, filaggrin and

involucrin in skin of BT mice likely results in abnormal barrier

function in the affected epidermis. In summary, these studies

indicate that epidermal differentiation of keratinocytes in BT mice

is disrupted with an expansion of keratinocyte populations

expressing early differentiation markers and a reduction in

keratinocyte populations expressing late differentiation markers.

Keratinocytes in epithelia expressing Ets1 undergo
enhanced proliferation and induce the growth of local
blood vessels

As described above, the epidermis of BT mice expressing Ets1

exhibits a dramatic hyperproliferation accompanied by increased

numbers of mitotic figures. Several characteristic marker proteins

are associated with hyper-proliferative epidermis, but are not

normally expressed in the interfollicular epidermis. For instance,

the expression of keratin 6 (K6) is normally limited to the hair

follicles of mice, but is expressed at high levels in interfollicular

epidermis in a variety of hyperplastic and dysplastic conditions.

Consistent with this, there was dramatic upregulation of K6 in the

interfollicular epidermis of BT mice (Figure 5A). Similar

upregulation of K17 was also observed, another keratin that is

characteristically expressed by hyperplastic and dysplastic epider-

mis (data not shown). The enhanced expression of K6 and K17 in

BT epidermis suggested the possibility that there might be altered

expression of proteins involved in regulating the proliferation of

epidermal stem or transit-amplifying cells. One such protein that

has been shown to be critical for epidermal stem cell maintenance

is the transcription factor p63 [38]. Immunostaining demonstrated

that there was a striking increase in the cell population that labeled

with antibody against DN isoform of p63 (the predominant

isoform expressed in skin epidermis) in BT epidermis as compared

to control (Figure 5B). Some of these p63+ cells were found in

suprabasal layers of BT epidermis, whereas they are only found in

the basal layer of wild-type controls. Increased numbers of p63+
cells have also been found in human squamous cell cancers [39,40]

and high levels of p63 expression are correlated with a poor

patient prognosis [41,42].

To more directly test the effects of Ets1 on the proliferation of

epidermal keratinocytes, we stained them with antibodies specific

for PCNA and Ki67 (Figure 5C–D), proteins expressed only in

cells that have entered the cell cycle. The BT epidermis contained

many more PCNA+ and Ki67+ cells than did control epidermis,

confirming enhanced epidermal proliferation in this tissue.

Although the Ets1 transgene was expressed in the more

differentiated layers of the epidermis (upper spinous and granular

layers), the PCNA and Ki67 labeling was mainly associated with

less differentiated layers (basal and lower spinous layers). This

observation suggests that expression of Ets1 may not directly

induce cell proliferation, but rather induce changes in the

differentiation program of the suprabasal cells that cause the

basal cells to undergo a dramatic proliferative response. It is

possible that the increased proliferation may reflect a secondary

response to the compromised barrier function of the epidermis. In

addition, some suprabasal keratinocytes also labeled with anti-

bodies to PCNA and Ki67 indicating a supra-basal proliferation.

While collecting samples of epidermis from BT mice for

processing, we noted increased vascularization of the affected skin

as evidenced by the presence of numerous, large blood vessels in

the dermal tissue (Figure 6A). These vessels were also apparent in

hematoxylin and eosin stained sections of the skin epidermis

Figure 3. Ets1 expression causes hyperplastic and dysplastic changes in the skin epidermis. Microscopic features of the cutaneous
changes in (A) dorsal trunk, (B) ear and (C) tail skin of BT mice upon Ets1 induction show epidermal and sebaceous hyperplasia, hyperkeratosis, and
parakeratosis, keratin pearls (black arrowheads), vascularization, leukocytic infiltration and dermal enclosures within the epidermal downgrowths
(white arrowheads). (D) High power view of the dorsal epidermis demonstrating the presence of several mitotic figures including some in the
suprabasal layers (black arrowheads). Reactive leukocytic infiltration is also evident (asterisk). (E) Further magnification of supra-basal mitoses in
lesions of the dorsal skin in BT mice. Some of the mitoses exhibit abnormal, tripolar mitotic spindles (blue arrowheads).
doi:10.1371/journal.pone.0004179.g003
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(Figure 6B), which was confirmed by staining for an endothelial

marker, PECAM1 (CD31) (Figure 6C). Because the Ets1 transgene

is not expressed in endothelial cells (although the endogenous Ets1

gene is expressed in this cell type), this increased angiogenesis is

likely due to the release of pro-angiogenic molecules from

keratinocytes in the BT epidermis.

Ets1 affects epithelial homeostasis in a reversible and
age-dependent fashion

When BT animals that were severely affected at an early age (4–

12 weeks) were returned to a Dox diet to suppress the transgene

expression, they recovered completely within six weeks and

became indistinguishable from their wild type or single transgenic

littermates (Figure 7A). This overall reversal of skin phenotype was

also clearly apparent upon microscopic examination of biopsies

taken from BT mice before and after Dox rescue (Figure 7B).

Within 6 weeks of turning the expression of HA-Ets1 transgene off,

the epidermis regressed back to its wild type appearance, but for a

residual sebaceous hyperplasia and some dermal fibrosis.

The studies described above were performed on bi-transgenic

mice at an early age (4–12 weeks). To test the effects of Ets1

induction in older animals, we withdrew Dox supplementation

from animals that were older than six months of age. The animals

that underwent a late induction presented with a milder phenotype

including minimal hyperplasia and focal hair loss (Figure 7C).

Thus, there is an age-dependent severity of the phenotype

observed.

Re-induction of the Ets1 transgene leads to localized
lesions

To determine whether repeat induction of the transgene would

result in a more severe phenotype, we induced young adult BT

mice, followed by transgene suppression (by Dox supplementation)

and then reinduction at a later age (Figure 8A). The mice chosen

for these analyses had a severe visible phenotype in the first

induction within a short period, but surprisingly exhibited a more

localized phenotype in the second induction only after an

extended period of induction (4–7 months). The re-induced mice

developed discrete papillomatous or deep ulcerative lesions often

with a distinct crateriform appearance, whereas the bulk of the

Figure 4. Ets1 expression disrupts the normal differentiation pattern of the skin epidermis. Immunofluorescent staining of epidermal
differentiation markers on dorsal skin of induced Ets1 BT mice and littermate wild type mice. Each section was stained with antibodies to b4- integrin
to mark the position of the basement membrane and with DAPI to detect nuclei. Epidermal differentiation was assessed by staining for (A) the basal
layer marker keratin 14 (K14), (B) the spinous layer marker keratin 10 (K10) and (C) the granular layer marker loricrin (Lor). (D) Western blot analysis of
dorsal skin extracts to confirm results obtained in immunofluorescence. GAPDH serves as a loading control for Western blots.
doi:10.1371/journal.pone.0004179.g004

Figure 5. Ets1 expression induces hyperproliferation of the
skin epidermis. Immunostaining for epidermal hyperplasia with
antibodies to specific markers found in hyperplastic tissues. (A) Staining
with anti-keratin 6 (K6) (counterstained with DAPI to detect nuclei). (B)
Staining with anti-DNp63 (counterstained with nuclear fast red (NFR)).
(C) Staining with anti-Ki67 (counterstained with hematoxylin). (D)
Staining with anti-PCNA (counterstained with anti-K14). Note that the
proliferating cells are located predominantly in the basal layer in both
BT and control samples.
doi:10.1371/journal.pone.0004179.g005
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Figure 6. Ets1 expression induces angiogenesis. (A) Macroscopic appearance of the dermal surface of the dorsal skin of wild type and BT mice.
(B) Hematoxylin and eosin stained sections of dorsal skin from wild type and BT mice. Note the presence of increased numbers of blood vessels in the
dermal compartment of the BT sample (black arrowheads). (C) PECAM-1 (green) staining of skin samples from wild type and BT skin. Sections were
stained with antibodies to keratin 14 (K14, red) to reveal epidermal keratinocytes.
doi:10.1371/journal.pone.0004179.g006

Figure 7. The Ets1 induced phenotype is reversible and age-dependent. (A) Phenotype of BT and control mice at the end of a 3–6 week
induction period and again after 6 weeks of transgene suppression on a Dox diet. Note that BT mice appear completely normal after six weeks of
rescue. (B) Skin samples taken from BT and control mice at the height of the Ets1 induced phenotype and again after transgene suppression. (C)
Comparison of the phenotype of BT mice that were induced for the first time at a young age (early induction) or a late age (late induction). Note the
more severe phenotype evident in the early induction.
doi:10.1371/journal.pone.0004179.g007

Ets1 in Squamous Neoplasia

PLoS ONE | www.plosone.org 7 January 2009 | Volume 4 | Issue 1 | e4179



epithelium remained unaffected (Figure 8B). Microscopic exam-

ination of biopsies obtained from these lesions revealed the

presence of hyperproliferation, dysplasia and deep downgrowths

similar to that seen in the primary induction (Figure 8C). Staining

for the basement membrane component laminin demonstrated

that in some samples there were regions of basement membrane

discontinuity (Figure S2). Examination of the differentiation profile

of re-induced lesions indicated that they shared properties seen in

the epidermis of mice that had undergone an early induction, i.e.,

they exhibited greatly enhanced proliferation and a partial block

to terminal differentiation (Figure S3). Overall, the lesions arising

in mice that had undergone secondary induction were less

extensive, but potentially more invasive as demonstrated by

basement membrane discontinuities.

Ets1 expression upregulates a panel of genes involved in
tumor growth and invasion, including MMP13

To understand the molecular mechanisms that drive the

dysplastic changes in the Ets1 BT animals, we analyzed the

expression levels of potential Ets1 target genes. These target genes

were chosen based on prior studies demonstrating that they were

regulated by Ets1 or because they play a critical role in cellular

transformation, epithelial-mesenchymal transition (EMT), cell

cycle regulation, apoptosis or angiogenesis. For this purpose, we

isolated RNA from skin samples of affected BT animals as well as

control animals and performed real-time RT-PCR. These analyses

allowed us to identify a number of genes whose expression was

upregulated in BT epidermis as compared to wild-type or single-

transgenic epidermis. The results of these analyses are summarized

in Table 1. We detected increased expression of several of the

target genes examined including those that are involved in cellular

transformation such as Myc and AP-1 proteins (including Junb,

Jun (c-Jun) and Fos), cell cycle regulators (including Cdkn1a (p21)

and Cdkn2a (p16)) and the anti-apoptotic protein Bcl2l1 (Bcl-xL).

In addition to these genes, we also examined a panel of genes that

are involved in invasive processes, since the downgrowth of

keratinocyte fronts into the dermis was a common feature in all the

affected stratified epithelia. Several matrix metallo-proteases

(MMPs) including collagenases (MMPs 8 and 13), gelatinase

(MMP 9), stromelysins (MMPs 11 and 12), elastase (MMP12) and

membrane associated MMPs (MMP 14 and 16) as well as their

natural inhibitor Timp-1 were upregulated in BT samples

(Table 1). Of the upregulated target genes, MMP13 was the most

dramatically induced gene in Ets1 BT mice.

Figure 8. Reinduction of Ets1 in older mice leads to a less severe phenotype. (A) Schematic representation of a typical time course for the
re-induction studies. Some BT mice underwent transgene induction at an early age (4–6 weeks) and were then rescued by restoring the Dox diet to
suppress transgene expression. The same mice were later reinduced by withdrawing Dox supplementation for an extended time course. After
prolonged transgene induction, these re-induced mice developed discrete lesions (papillomatous or ulcerative, white arrows). (B) Hematoxylin and
eosin stained sections below the time course indicate typical epidermal morphology at each stage of the induction process. (C) Trichrome staining of
the lesions obtained from reinduced BT mice demonstrates downgrowths into the dermis. Boxed areas show regions of thin chords of invading
keratinocytes.
doi:10.1371/journal.pone.0004179.g008
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MMP13 (also referred to as collagenase-3) is a protease that can

cleave native, fibrillar collagens including Type IV collagen, a

component of epithelial basement membranes [43]. Expression of

MMP13 is very restricted in normal tissues and is not found in skin

keratinocytes, except under conditions of wound healing, dysplasia

or neoplasia [44,45,46,47,48]. Moreover, MMP13 expression is

considered to be a poor prognostic indicator in SCC [49,50].

Based on these observations as well as the fact that MMP13 was

the most highly-upregulated gene among those we tested, we

focused our further analyses on this putative Ets1 target.

We performed immunostaining for MMP13 in BT and control

mouse skin and found that MMP13 was highly expressed in the

BT skin, while there was no staining in the control samples

(Figure 9A). This is in agreement with the real time PCR data and

also confirms that upregulation of MMP13 is seen in the

keratinocyte compartment (although some staining of the dermal

compartment was also detected). Expression of MMP13 was

particularly evident in the invasive front formed by the proximal

portions of hair follicles and sebaceous glands and in the

cytoplasmic compartments of hyperplastic keratinocytes. Upregu-

lation of MMP13 expression was confirmed by Western blotting

(Figure 9B).

The MMP13 promoter contains three PEA3 motifs (PEA3

sequences are potential Ets binding motifs) and Ets1 has already

been shown to bind to one of these sequences by EMSA analysis

[16,48]. These observations suggest that MMP13 is likely to be a

direct target of Ets1. To confirm that Ets1 can transactivate the

MMP13 promoter, we co-transfected Ets1 and luciferase reporter

gene constructs harboring various lengths of MMP13 promoter

into a mouse keratinocyte cell line. The reporter gene constructs

chosen for these studies have been previously described [48] and

include a 660 bp fragment of the mouse MMP13 promoter fused

to luciferase (p660) as well as several MMP13 promoter deletions:

a 391 bp fragment (p391), a 91 bp fragment (p91) and a 66 bp

fragment (p66). Ets1 dramatically transactivated both the 660 bp

and 391 bp MMP13 promoter constructs by approximately 30-

fold in these cells (Figure 9C), suggesting that the relevant

regulatory elements needed for Ets1 transactivation were con-

tained within the first 391 bp of the promoter. In contrast, Ets1

was significantly less effective in transactivating the 91 and 66 bp

MMP13 promoters (2–3 fold stimulation of activity by Ets1).

These observations suggest that the important Ets1 responsive

elements are localized between 291 and 2391 bp of the MMP13

promoter. This was confirmed by testing the activity of a mutant

form of the p391 promoter (p391 del (PEA)) that contains a short

deletion in one of the PEA3 motifs (the 2122 bp Ets binding site)

(Figure 9C). The deletion construct exhibited responsiveness to

Ets1 that was very similar to that of the p91 and p66 promoters.

Thus, the Ets1 binding site at 2122 bp of the murine MMP13

promoter is essential for maximal transactivation capacity of Ets1.

To confirm that Ets1 can associate with the MMP13 promoter

in vivo, we performed chromatin immuno-precipitation (ChIP)

experiments on dorsal mouse skin epidermis derived from BT and

wild type mice using antibodies specific for Ets1 and for the HA-

tag on the Ets1 transgene. In wild type mice, the anti-Ets1

antibody precipitated the MMP13 promoter, whereas the HA

antibody did not (Figure 9D). In the BT sample, both anti-Ets1

and anti-HA antibodies pulled down the MMP13 promoter.

These observations suggest that Ets1 is associated with the

MMP13 promoter region in both wild type and BT mice,

although the MMP13 gene is only expressed in the BT animals.

Discussion

The Ets1 transcription factor regulates many important cellular

processes including cellular growth and differentiation [51]. High

level expression of the Ets1 oncogene has been linked previously to

tumor progression, invasion and metastasis in squamous cell

Table 1. Gene expression profiles in WT versus BT mice.

Gene Name Common Name
Fold change in
expression

Flt1 VEGF-R1 2.4

Kdr VEGF-R2 1.67

Tie1 Tie1 0.71

Tek Tie2 0.57

Angpt2 Angiopoietin-2 1.67

Nos3 eNOS 2

Itgav av-Integrin 1.36

Cdh1 E-Cadherin 0.85

Cdh5 VE-Cadherin 0.81

Cdkn1a p21 4.5

Cdkn2a p16 6.78

Cdc2l6 CDK11 0.87

Trp53 p53 1.2

Mdm2 Mdm2 1.23

Jun c-jun 22.0

Junb JunB 7.26

Fos c-fos 9.0

Myc C-myc 2.24

Ddit3 GADD153 1.02

Lmo2 Lmo2 0.83

Vim Vimentin 0.74

Bcl2l1 Bcl-XL 2.25

Bcl2 Bcl-2 0.6

Casp1 Caspase-1 1.52

Fasl Fas Ligand 0.08

Tnf TNF-a 5.5

Pthlh PTHrP 0.59

Met c-met 0.95

Plau uPA 0.64

Serpinb5 Maspin 1.39

Mmp2 Gelatinase A 4.2

Mmp3 Stromelysin-1 3.8

Mmp8 Collagenase-2 151.2

Mmp9 Gelatinase B 43.1

Mmp10 Stromelysin-2 7.4

Mmp11 Stromelysin-3 41.6

Mmp12 Macrophage metalloelastase 13.8

Mmp13 Collagenase-3 770

Mmp14 Membrane type 1-MMP 2.3

Mmp15 Membrane type 2-MMP 0.9

Mmp16 Membrane type 3-MMP 8.0

Mmp17 Membrane type 4-MMP 0.5

Mmp19 Mmp19 0.9

Timp1 Timp1 5.3

doi:10.1371/journal.pone.0004179.t001
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Figure 9. Ets1 expression induces upregulation of MMP13. (A) Immuno-histochemical staining for MMP13 (brown) in the skin of wild-type
and BT mice. Sections were counterstained with hematoxylin. Note expression of MMP13 in the invading front (hair follicles and sebaceous glands)
and in hyperplastic keratinocytes in the BT sample. (B) Western blot for MMP13 expression in skin extracts of wild-type and BT mice. GAPDH is a
loading control. (C) Luciferase assays using different lengths of the mouse MMP13 promoter (MMP13) or an empty vector lacking a promoter (pGL3B)
transfected into mouse MK keratinocytes. The MMP13 promoter was transfected with an expression vector driving HA-tagged mouse Ets1 (pCMV-HA-
Ets1) or with a control empty vector (pCMV-HA). Results represent the fold induction of luciferase activity in cells transfected with the Ets1 expression
vector as compared to empty vector and have been corrected for the activity of the internal control plasmid (pCMVb-gal). Arrows in the p391
construct indicate the positions of primers used in part D for chromatin immunoprecipitation. (D) Chromatin immunoprecipitation assays to detect
association of Ets1 with the endogenous MMP13 promoter in wild-type and BT mice. Antibodies used for immunoprecipitation include anti-Ets1 or a
control rabbit IgG and anti-HA or a control rat IgG. Immunoprecipitated chromatin was amplified with primers specific for the mouse MMP13
promoter or for the GAPDH gene. Results represent relative concentrations of products amplified by qPCR.
doi:10.1371/journal.pone.0004179.g009
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tumors as well as various other tumor types [51]. This association

with invasion and metastasis is likely to reflect the ability of Ets1 to

control the expression of MMP enzymes that function to degrade

extracellular matrix components. However, Ets1 is also thought to

regulate genes involved in cellular proliferation and survival,

suggesting that it might also play a role in the earlier stages of

carcinogenesis. To determine the precise biological role of Ets1 in

tumor formation and progression, we developed a transgenic

mouse model that allows us to induce the expression of an Ets1

transgene in a spatially and temporally-restricted manner.

Ets1 drives dysplastic changes in stratified squamous
epithelium

Using an inducible transgenic model system, we have

demonstrated that expression of the Ets1 oncogene in the

differentiating layers of mouse stratified squamous epithelium

leads to a dramatic epithelial phenotype, visibly apparent by the

appearance of crusting, flaky skin and open sores. Dysregulated

Ets1 expression induced a wide spectrum of progressive prema-

lignant changes such as those induced by chemical carcinogens,

activated oncogenes, or loss of tumor suppressors in well-

established mouse models of squamous cell carcinogenesis. The

dysplastic phenotype includes increased keratinocyte proliferation,

decreased keratinocyte terminal differentiation and the presence of

mitoses (some of which were abnormal) in the suprabasal layers of

the epidermis. The dermal responses include increased vascular-

ization and leukocytic infiltration.

The inhibition of expression of terminal differentiation markers

such as involucrin and loricin caused by Ets1 induction likely leads

to a severe defect in epidermal barrier formation. Indeed, the

phenotype induced by Ets1 transgene expression is similar to that

seen in the adult skin of other strains of mice reported to develop

barrier defects (e.g., transglutaminase-1 deficient skin or matrip-

tase over-expressing skin) [52,53]. Like these strains, Ets1 BT mice

develop extensive skin hyperplasia, abnormal terminal differenti-

ation and hyperkeratosis. However, Ets1 BT mice also develop

deep down-growths of the epidermis into the dermal compart-

ment, which have not been reported in these other strains. These

down-growths may be related to the high expression of several

MMP family members by Ets1 BT mice. The defect in epidermal

barrier function in the BT mice could trigger a hyper-proliferative

state as an attempt to restore normal barrier function. This would

be consistent with the observation that the majority of Ki67+ and

PCNA+ cells are found in the basal layer rather than the

suprabasal layers, where Ets1 is expressed. In contrast, dysplastic

changes including abnormal terminal differentiation and the

presence of abnormal mitoses were associated with the supra-

basal layers where the Ets1 transgene is expressed, suggesting a

direct effect of Ets1 on these parameters. Together these results

indicate that Ets1 may have an early role in cancer progression in

addition to its more established role in tumor metastasis. Despite

the extensive alterations in cutaneous architecture, the molecular

and the consequent structural changes in the inter-follicular

epidermis are completely reversible when Ets1 expression is

suppressed by re-instating Dox treatment. This reversal of the

dysplastic phenotype is reminiscent of human SCC precursor

lesions such as actinic keratosis and Bowen’s disease, which can

undergo spontaneous regression.

Importantly, these changes in the epidermis occur in the

absence of any tumor promoting chemicals or UV radiation.

Moreover, the fact that the entire skin epidermis is affected (in

young animals), that the phenotype develops very rapidly after

induction (within 3–6 weeks) and that the phenotype is completely

reversible suggest that additional genetic hits to other oncogenes or

tumor suppressor genes are not required. Hence, over-expression

of Ets1 alone is sufficient to cause severe epidermal dysplasia.

The dysplastic phenotype induced by Ets1 expression was

stronger in animals induced at a young age (less than 3 months of

age). The reason for this age-dependent affect is not yet clear,

however, it may potentially be due to lower levels of expression of

the transgene in older animals or to changes in the physiology of

the epidermis between young and old mice. When we induced BT

mice at a young age followed by suppression of Ets1 expression

and re-induction at an older age, we noted that the phenotype in

the second induction was also overall weaker. This weaker

phenotype allowed a longer induction period after which discrete

ulcerative or papillomatous lesions arose in these re-induced mice.

The appearance of discrete lesions in an otherwise weakly affected

epithelium and the need for a long induction period strongly

suggests that additional genetic hits must occur in these tissues to

promote lesion formation. Alternatively, it is possible that

stochastic down-regulation of the Ets1 transgene expression via

epigenetic changes could result in the expression of the transgene

in discrete patches in the adult.

Cells already committed to differentiation are targets of
Ets1 action

Oncogenic mutations in stem cells have been implicated in the

development of skin tumors [54,55]. Epidermal stem cells are

thought to reside in the hair follicle bulge region as well as being

scattered throughout the basal layer of the interfollicular

epidermis. Interestingly, in our transgenic model system, Ets1

overexpression is not targeted to the epidermal stem cells, but

rather to keratinocytes that have already committed to differen-

tiation. This is in contrast to most other transgenic models of SCC,

where transgene expression is targeted to the basal proliferative

layer (e.g., oncogenic Ras, [56]). Indeed, when the Ets1 transgene

is expressed in the basal compartment of the epidermis (including

epidermal stem cells) using a keratin 5 (K5) tTA transgenic line, no

phenotype is evident in adult BT mice (our unpublished data).

Interestingly expression of c-myc in the differentiated layers of the

skin also results in hyperproliferation and formation of papillomas

[57], whereas targeting c-myc to the basal proliferative layer does

not promote keratinocyte proliferation or papilloma formation

[58]. Thus, Ets1 and c-myc appear to share a property that allows

them to induce pre-neoplastic changes in epidermal cells that have

already committed to terminal differentiation.

Ets1 regulates the expression of a variety of genes
implicated in tumorigenesis

Mice expressing the Ets1 transgene exhibit upregulation of

many known and potential Ets1 target genes involved in

proliferation, survival and apoptosis. These genes include

proteases, cell cycle regulators, anti-apoptotic proteins and

transcription factors. The phenotype arising in the induced BT

mice likely reflects the combined action of several of these genes.

For instance, upregulation of Myc in the suprabasal epidermal

layers has been shown to lead to a similar epidermal phenotype

characterized by reversible epidermal papillomatosis and seba-

ceous gland enlargement [57,59]. Thus, upregulation of Myc

could contribute to multiple aspects of the dysplastic phenotype

observed in Ets1 BT mice. Another group of proteins that could

potentially contribute to Ets1 induced dysplastic epidermal

changes is the AP-1 family. AP-1 proteins control transcriptional

activation or suppression of a number of genes involved in

proliferation, differentiation and transformation. Of the AP-1

proteins that are upregulated in Ets1 BT skin, Jun and Fos have
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been shown to contribute to squamous carcinogenesis [60,61].

Moreover, AP-1 transcription factors along with Ets proteins can

exert a combinatorial control of expression of several genes that

include importantly metalloproteinases.

Matrix metalloproteinases appear to be chief effectors of Ets1

induced epithelial alterations [51]. Several MMPs have been shown

to be direct targets of Ets proteins and are often co-regulated by AP-

1 proteins. Various classes of metalloproteinases such as collage-

nases (MMPs 8 and 13), gelatinases (MMPs 2 and 9), stromelysins

(MMPs 3, 10 and 11), metalloelastase (MMP12) and membrane-

type MMPs (MMPs 14 and 16) are upregulated in Ets1 BT skin.

This suggests that several biological processes that accompany Ets1

induced dysplasia could be attributed to the function of MMPs. We

focused our attention on the most highly upregulated target gene,

matrix metalloprotease 13 (MMP13). We demonstrate that Ets1

directly regulates expression of the MMP13 gene and can be

detected at the promoter region. Interestingly, Ets1 was associated

with the promoter region of MMP13 in both BT and control skin

samples. This may suggest that Ets1 is constitutively associated with

the promoter of this gene, but is inactive unless it becomes

phosphorylated or that it requires the recruitment of an inducible

co-factor to mediate full induction of the gene. -

MMP enzymes including MMP13 are best known for their

ability to degrade a wide variety of extracellular matrix substrates

including collagen, fibronectin, laminin, perlecan, tenascin C and

fibrillin [43,62]. By degrading extracellular matrix components,

MMPs can promote the invasion of cells into the surrounding

tissues. Moreover, degradation of extracellular matrix may lead to

the release of latent growth factors and angiogenic factors,

promoting tumor cell proliferation. Furthermore, numerous

studies have detected degradation of key epithelial adhesion

proteins, such as E-cadherin and desmogleins, by members of the

MMP family [63,64,65,66,67,68], suggesting that MMP activity

can result in diminished keratinocyte adhesion to neighboring

cells. Together these activities of MMP proteins can promote

keratinocyte proliferation, migration and invasion.

-MMP proteins have the ability to promote dysplastic changes in

tissues, even when they are expressed alone in the absence of other

genetic changes or tumor inducing chemicals or UV radia-

tion[63,69,70,71,72]. In addition, over-expression of matriptase, a

protease that has been suggested to be an upstream activator of

MMP3 [73], induces squamous cell carcinoma in the skin [52].

Thus, expression or activation of numerous MMP proteins can

promote hyperplastic and neoplastic changes in epithelial tissues,

supporting the idea that overexpression of MMPs may be important

to the development of pre-neoplastic and neoplastic alterations in

Ets1 BT mice. It is likely that MMPs cooperate with other genes

induced by Ets1 overexpression (such as myc and AP-1 family

members) to promote the dysplastic changes.

The role of Ets1 in keratinocyte differentiation and future
prospects

In addition, to promoting proliferation and invasion of skin

keratinocytes, Ets1 expression also blocked their terminal

differentiation program. The block to terminal differentiation

likely results in impaired barrier formation in the skin and is likely

the cause of perinatal mortality for Ets1 BT mice that undergo

transgene induction during embryonic development. The effect of

Ets1 in blocking terminal differentiation may arise from its ability

to interfere with the transcriptional programs that drive the

differentiation process. For instance, we have recently shown that

Ets1 physically interacts with the transcription factor Blimp-1 to

inhibit its function [74]. Blimp-1 is important for the final

differentiation step of keratinocytes from the granular layer to the

cornified layer [75]. By interfering with Blimp-1 or other

transcription factors, Ets1 may prevent their function and thereby

block the terminal differentiation of the epidermis.

In summary, using an inducible transgenic mouse model, we

have demonstrated that expression of the Ets1 transcription factor

leads to a dramatic hyperplastic and dysplastic phenotype in skin

epithelium of young mice in the apparent absence of other genetic

lesions. This represents the first report that Ets1 can play a major

role in the early stages of the carcinogenic process. Together, these

studies extend our understanding of the role of Ets1 in squamous

cell tumors and suggest mechanisms by which Ets1 can promote

cellular transformation and tumor progression. Our data described

here strongly suggest that in a variety of human carcinomas, over-

expression of Ets1 may not just be a prognostic indicator, but play

an important causal role that can be exploited for targeted

therapy. In the future, our transgenic model system can be used to

induce Ets1 in any tissue or cell type by utilizing the appropriate

tetracycline-transactivator lines, and hence will prove useful in

understanding the role of Ets1 in regulating development,

differentiation and oncogenic conversion in a variety of tissues.

Materials and Methods

Ethics Statement
All mouse experiments were approved by the State University of

New York at Buffalo IACUC committee and carried out in

accordance with relevant national guidelines.

Generation and analysis of transgenic mice
The Ets1 doxycycline inducible construct was generated by

cloning full length mouse Ets1 cDNA with a 59 HA tag into the

pTRE-Tight plasmid (BD Biosciences Clontech). The inducible

Ets1 construct was micro-injected into fertilized mouse oocytes

derived from a mixed genetic background (C3Hf/HeR-

os6C57BL/10 Rospd). Six transgenic lines were generated in

these initial injections. The following primers were used to

genotype the transgenic mice: forward (59-ATAGTTGT-

GACCGCCTCACC -39) and reverse (59- GGGAGGTGTGG-

GAGGTTTT-39). The founders were then crossed to INV-tTA

mice (a kind gift from Dr. Julia Segre, National Human Genome

Research Institute, Bethesda) to determine expression of the

transgene. Inv-tTA mice were on an FVB/N genetic background

and BT mice derived from these crosses were subsequently

backcrossed to FVB/N mice for several generations.

Antibodies Used
The following primary antibodies were used for Western

blotting, immunofluorescence and/or immunohistochemistry: rat

monoclonal anti-HA (clone 3F10, Roche Applied Sciences), rabbit

polyclonal anti-Ets1 (N-276, Santa Cruz Biotechnology), mouse

monoclonal anti-GAPDH (clone 6C5, Chemicon International),

goat polyclonal anti-MMP13 (W-16, Santa Cruz Biotechnology),

mouse monoclonal anti-Ki67 (NCL-Ki67p, Novocastra), rat

monoclonal anti-b4 integrin (CD104, clone 346-11A, BD

Biosciences), rat monoclonal anti-PECAM1 (CD31, clone MEC-

13.3, BD Biosciences), rabbit polyclonal anti-laminin I

(CL54851AP, Cedarlane Laboratories) and mouse monoclonal

anti-PCNA (clone PC10, Dakocytomation). A rabbit polyclonal

anti-DNp63 antibody (RR-14, developed in the laboratory of Dr.

Satrajit Sinha) was also used. In addition, several polyclonal rabbit

primary antibodies specific for keratinocyte marker proteins

(keratin 1, keratin 5, keratin 6, keratin 10, keratin 14, involucrin

and loricrin) were generous gifts of Dr. Julia Segre (National

Human Genome Research Institute, National Institutes of
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Health). The rabbit polyclonal antibody against keratin 17 (K17)

was a gift of Dr. Pierre Coloumbe (Johns Hopkins University

School of Medicine).

Western blotting
Whole tissue lysates were prepared using Laemmli sample

buffer (BioRad Laboratories) or RIPA buffer from BT and control

mouse dorsal skins. Equal amounts of lysates were loaded on 10%

SDS-polyacrylamide gels and transferred to Immun-Blot PVDF

membrane (BioRad Laboratories). After blocking, the membranes

were incubated in the specific primary antibodies: anti-HA

(1:2000), anti-Ets1 (1:1000), anti-GAPDH (1:10000) or anti-

MMP13 (1:200). Antibodies against keratinocyte markers –

keratin10, keratin14, involucrin and loricrin -were used at a

dilution of 1:5000. After washing, the membranes were incubated

with specific horseradish peroxidase (HRP) conjugated secondary

antibodies at 1:20,000 dilution. Specific bands were detected by

chemiluminescence (KPL or Pierce).

Immunohistochemistry and Immunofluorescence
For histological analyses, skin samples from various regions of

the body were fixed in 4% paraformaldehyde and embedded in

paraffin. 4-mm thick sections were then stained with hematoxylin

and eosin or Masson’s trichrome reagent. For immunohistochem-

istry, 4-mm thick skin sections were deparaffinized and subjected to

antigen retrieval by heating. The sections were then immuno-

stained with specific primary antibodies - anti-HA (1:300), anti-

DNp63 (1:300), anti-Ki67 (1:200), anti-Ets1 (1:150), anti-MMP13

(1:40), anti-keratin 1 (1:500), anti-keratin 5 (1:500), anti-keratin 6

(1:500), anti-involucrin (1:500), and anti-loricrin (1:500) - using the

Vectastain ABC kit (Vector labs). Diaminobenzidine (DAB) or

Vector Blue (Vector Labs) was used as the enzyme substrate and

counter-stained with hematoxylin or Nuclear Fast Red (NFR).

For immunofluorescence, 5-mm thick OCT embedded fresh

frozen sections were fixed in ice-cold methanol. After blocking, the

sections were incubated with anti-keratin6, anti-keratin10, anti-

keratin14, anti-loricrin, anti-b4 Integrin or anti-PECAM1 antibod-

ies at 1:500 dilution or with anti-Laminin or anti-PCNA antibodies

at 1:100 dilution. The sections were then washed and incubated

with Alexa-Fluor 568 coupled anti-rabbit IgG (1:750), Alexa-Fluor

488 coupled anti-rat IgG (1:500) or FITC coupled anti-mouse IgG

(1:500) antibodies and counterstained with DAPI (49,6-diamidino-2-

phenylindole). The immunostained sections were mounted in 80%

glycerol in PBS, viewed and photographed at room temperature

with an Axiophot Zeiss microscope, equipped with a Hamamatsu

ORCA-ER camera linked to SPOT software for image capture.

The contrast and brightness of the images were adjusted using the

Adobe Photoshop and ImageJ software.

Quantitative PCR Analysis
Total RNAs were isolated using Trizol (Invitrogen) and treated

with DNAse I Turbo (Ambion) to remove genomic DNA

contamination. Equivalent quantities of RNA were reverse

transcribed using iScript kit (BioRad) and real-time PCR was

performed in the ICycler system (BioRad), using iQ SYBR green

supermix (BioRad) and gene specific primers. Differences between

BT samples and controls were normalized to expression of the

ubiquitously-expressed gene b2-microglobulin and determined

using the 22DCt method.

Reporter gene assays
For transient transfections, mouse MK1 keratinocyte cells were

plated at a density of 1.26105 cells/well in 6 well plates and were

transfected using Optifect (Invitrogen) or Fugene 6 reagent (Roche

Diagnostics) at a density of 40% according to the manufacturer’s

instructions. The cells were transfected with 0.5 mg/well of each of

the following plasmids: pGL3-basic or various lengths of MMP13

promoter cloned into the pGL3-basic plasmid: 2660 bp,

2391 bp, 2391 bp DPEA, 291 bp, and 266 bp relative to

transcription start site (generous gifts from Dr. Jeffrey M.

Davidson, Vanderbilt University, Nashville and Dr. Keith Kirk-

wood, University of Michigan, Ann Arbor). Cells were also co-

transfected with the empty pCMV-HA vector (Clontech) or

pCMV-HA-Ets1 (containing an HA-tagged version of mouse Ets1)

and with pCMV-LacZ (0.25 mg/well) as an internal control. Cells

were harvested 48 hours post transfection in Reporter Lysis buffer

(Promega) and luciferase assays were performed. b-galactosidase

values were measured using the Galacton Plus kit (Applied

Biosystems). The luciferase values were normalized to b-galacto-

sidase levels to correct for transfection efficiency. Reporter assays

were performed in duplicates of at least three independent

experiments and expressed as the means6S.D.

Chromatin Immunoprecipitation
Dorsal skins from wild-type and BT adult mice were de-epilated

and treated with ammonium thiocyanate solution to separate the

epidermis from the underlying dermis. The epidermal cells were

disaggregated and fixed in 1% formaldehyde for 15 mins at RT.

After washing, the cells were sonicated to fragment chromatin.

The chromatin was then immunoprecipitated using the Chroma-

tin Immunoprecipitation Assay kit (Upstate Biotechnology) and

the following antibodies: anti-HA, anti-Ets1, isotype-control rat

IgG or isotype control rabbit IgG. Immunoprecipitated samples

were analyzed by PCR using primers designed to the minimal

promoter of mouse MMP13: forward 59 TCCATTTCCCTCA-

GATTCTGCCAC-39 and reverse 59-CAGCAGTGCCTG-

GAGTCTCT-39. As a control, PCR was also performed using

primers that recognize the minimal promoter of mouse GAPDH.

Online Supplemental Material
Hematoxylin and eosin staining and immuno-staining results

presented in the online supplementary figures were collected using

the same techniques and reagents as described above.

Supporting Information

Figure S1 Ets1 is not essential for epidermal development. (A)

Ets1 knockout mouse demonstrating areas of white spotting (non-

pigmented hair and skin) (B) Hematoxylin and eosin stained

section of adult dorsal skin from an Ets1 knockout mouse, showing

normal histology. C. High power view of boxed area in B.

Found at: doi:10.1371/journal.pone.0004179.s001 (1.48 MB TIF)

Figure S2 Loss of basement membrane integrity in re-induced

lesions. Immunostaining for laminin I (red) shows breaks in

basement membrane (arrows) in cutaneous lesions of the re-

induced BT mice. Tissues are counterstained with K14 (to mark

keratinocytes) and DAPI (to mark nuclei).

Found at: doi:10.1371/journal.pone.0004179.s002 (1.87 MB TIF)

Figure S3 Enhanced keratinocyte proliferation and block to

terminal differentiation in the re-induced tumors. Detection of

stage-specific keratinocyte differentiation and proliferation mark-

ers in re-induced lesions by immunostaining (DAB staining,

brown). The lesions display enhanced expression of early (keratin

5, K5) and intermediate differentiation (keratin 1, K1 and

involucrin, inv) markers and decreased expression of the late

differentiation marker loricrin (Lor). There is also enhanced
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expression of proliferation markers including- Ets1, keratin 6 (K6),

Ki67, and DeltaNp63.

Found at: doi:10.1371/journal.pone.0004179.s003 (1.96 MB TIF)
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