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Abstract
Reaction of S-allyl cysteine derivatives, generated by the selenocysteine ligation, with rhodium
carbenoids, stabilized and unstabilized, enables the attachment of diverse functionality onto cysteine
residues. The reaction is successfully applied to the introduction of lipid-like residues, a fluorous
alkyl chain, and mono and disaccharides.

Introduction
Recently, we have described methods for the permanent ligation of thiols involving the
coupling of either Se-allyl Bunte salts (Se-allyl selenosulfonates), or S-allyl S′-heteroaryl
disulfides, with thiols to give Se-allyl selenosulfides or S-allyl disulfides, respectively,
followed by a dechalcogenative 2,3-sigmatropic rearrangement to give the ligated products
(Scheme 1).1 These complementary reactions, for which all steps take place at room
temperature in protic media, were illustrated by the introduction of a range of allyl and prenyl
groups to cysteine and other thiols.

By virtue of the reaction mechanism these reactions afford allylic sulfides as products, thereby
opening up avenues for further functionalization, one of which is the 2,3-sigmatropic
rearrangement of allylic sulfur ylides as we describe here.

The 2,3-sigmatropic rearrangement of allylic sulfur ylides has been known for many years and
has found widespread application in organic synthesis.2 With an eye to eventual applications
in the modification of peptides, proteins and other bioconjugates, for our investigation we
selected the modification of this reaction popularized by Kirmse and Doyle, in which the sulfur
ylide is generated by transition metal catalyzed addition of a diazoalkane to an allylic sulfide
(Scheme 2).3 Our choice of the Kirmse-Doyle reaction was further guided by current interest
in the deployment of transition metal-catalyzed reactions in peptide chemistry,4 and more
particularly by the recent publication of Francis on the reaction of a stabilized vinyl diazo
acetate, catalyzed by dirhodium tetracetate, with tryptophan residues in horse heart myoglobin
and substilin Carlsberg in aqueous ethylene glycol.5
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Results and Discussion
We began with a feasibility study in which a series of diazoalkanes were allowed to react with
S-allyl or S-methylallyl cysteine derivatives, obtained by the selenosulfide ligation method, in
the presence of catalytic Rh2(OAc)4 in dimethoxyethane at room temperature. From the results
of these experiments (Table 1) it is clear that a variety of simple alkyl groups may be introduced
into cysteine in this manner, with moderate yields consistent with earlier studies on simple
allylic sulfides.3a–d,6 In each case the new stereogenic center formed as a result of the
sigmatropic rearrangement was obtained as an approximately 1:1 mixture of isomers.

Attention was turned to the functionalization of a tripeptide 7 (Table 2). Given the importance
of the introduction of lipids onto cysteine in peptide and protein chemistry and biochemistry,
7 entries 3 and 4 of Table 2 are especially noteworthy. In view of the recent interest in the
fluorous tagging of peptides and proteins, attention is also called to entry 5 of Table 2.8

With the exception of the tryptophan case discussed below, the main byproducts from the
chemistry presented here are those of dimerization of the intermediate metal carbenoids, as is
typical of this type of reaction. Analysis of crude reaction mixtures by NMR spectroscopy
indicates that the mass balance of the amino acid or peptide derivatives is made up largely by
the unreacted substrate; insertion into the peptide or carbamate NH bond is not a major problem,
as anticipated from the work of Francis.5

Interest in the glycosylation of cysteine residues as a means of peptide and protein
glycosylation7a,9 led us to investigate carbohydrate-based diazoalkanes. To this end, peracetyl
β-D-glucosyl and β-D-chitobiosyl diazo amides 13 and 14 were obtained from the glycosyl
amines, via the tosyl hydrazones. An important feature in the design of 13 and 14 was the use
of the diazoamide function rather than the much more common diazoesters. This choice was
made based on the trans-nature of the amide bond, with its high barrier to inversion relative
to the ester bond, which it was anticipated would prevent the metal carbenoid intermediate
from “biting back” on the carbohydrate moiety. This supposition was borne out in practice, as
the only carbohydrate-based byproducts observed upon activation with Rh2(OAc)4 were those
resulting from dimerization of the carbenoid, which is typical for this type of reaction.

Glucosyl diazoamide 13 was attached to allyl hexadecyl sulfide (15) to establish the validity
of the method (Table 3) before couplings to amino acid and peptide-based sulfides were
undertaken (Table 3, entries 2–5), providing access to a new class of neoglycoconjugates.10
It is especially noteworthy that, although glycoamino acids and peptides 16–20 are cysteine
derivatives, the amide linkage employed opens up the possibility of the application of this
chemistry, coupled with native peptide ligation11 and our dechalcogenative allylation
protocols,1 as mimics of the N-linked glycoproteins,12 for which new methods are constantly
being sought.9d,e,13

Finally, in view of the work of Francis,5 we briefly investigated chemoselectivity with S-
methallyl Boc-L-Cys-L-Ala-L-Trp-OMe1 with a diazoketone. Literature work on the addition
of Rh carbenoids to sulfides in the presence of indoles provided grounds for optimism that our
chemistry would be applicable in the presence of tryptophan,14 however, complex reaction
mixtures were obtained from which only two products, 21 and 22, were obtained pure in low
yield (18 and 9%, respectively). The insertion of stabilized rhodium carbenoids into the indole
N-H bond, as in the formation of 22, is a known reaction pathway,15 and is consistent with
the structures proposed by Francis for reaction with protein-based tryptophan residues.5 At
least for the present, it appears that the application of the Doyle-Kirmse reaction to S-allylated
peptides and proteins is not compatible with the presence of tryptophan.16
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Experimental Section
Phenyl diazomethane was prepared following the procedure reported by Creary.17

1-Diazo-2-heptadecanone was prepared following the procedure reported by Scott and
Sumpter.18 A freshly prepared solution of diazomethane (30 mmol) in anhydrous ether (60
mL) was cooled to 0 °C and stirred at high speed. To this cooled solution, hexadecanoyl chloride
(2.75 g, 10 mmol) in anhydrous ether (20 mL) was added dropwise over 20 min. The resulting
reaction mixture was stirred cold for an additional 30 min and then at room temperature for 60
min. After this period of time the reaction was complete, and excess diazomethane was removed
by evacuating the flask with a water aspirator pump in the hood. After the diazomethane has
been removed, the remaining ethereal solution was concentrated by rotary evaporation to give
crude compound. Pure 1-diazo-2-heptadecanone was obtained as yellow solid (2.61 g, 93%
yield) by chromatography on silica gel using 10% ethyl acetate/hexane as an eluent. 1H NMR:
δ 5.24 (s, 1H), 2.27–2.38 (m, 2H), 1.58–1.64 (m, 2H), 1.23 (br. s, 24H), 0.86 (t, J = 7.0,
3H). 13C NMR: δ 195.4, 54.2, 41.1, 31.9, 29.7 (3C), 29.6 (2C), 29.5 (2C), 29.4 (2C), 29.2,
25.3, 22.7, 14.1. ν 2120, 2100, 1620 cm−1. EIHRMS Calcd for C17H32N2O [M]+: 280.2515,
found: 280.2520.

1-Diazoundecane
1-Diazoundecane was prepared following the procedure reported by Shechter and Holton.19
Undecanal (1.36 g, 8.0 mmol) was added to stirred anhydrous hydrazine (2.56g, 80.0 mmol)
at 55°C. The reaction was continued 45 min at 55–65 °C. After the mixture had been cooled
to room temperature, methylene chloride (25 mL) was added. The solution was washed with
saturated aqueous sodium chloride (3 × 10 mL), dried over potassium carbonate, and
concentrated under reduced pressure to a volume of 5 mL. Dimethylformamide (10 mL) was
added, and remaining methylene chloride was removed by vacuum evaporation. The solution
of undecanal hydrazone in dimethylformamide was cooled to −78 °C (15 min) and diluted with
cold tetramethylguanidine (4 mL). Lead tetraacetate (3.90 g, 8.8 mmol) was added in 5 min,
and the mixture was stirred 60 min at −78 °C. The reaction solution was diluted with cold
hexane (3 × 20 mL) and extracted at −78 °C. The combined cold hexane extracts were washed
with cold (−30 °C) 30% aqueous potassium hydroxide (2 × 10 mL), small pieces of dry ice
were added, and the solution was then filtered to give a rose-red solution of 1-diazoundecane
in hexane which was used directly in further reaction.

9-Diazo-1,1,1,2,2,3,3,4,4,5,5,6,6-tridecafluorononane
4,4,5,5,6,6,7,7,8,8,9,9,9-Tridecafluorononanal (8.0 mmol) was added to stirred anhydrous
hydrazine (2.56g, 80.0 mmol) at 55 °C. The reaction was continued 45 min at 55–65 °C. After
the mixture had been cooled to room temperature, methylene chloride (25 mL) was added. The
solution was washed with saturated aqueous sodium chloride (3 × 10 mL), dried over potassium
carbonate, and concentrated under reduced pressure to a volume of 5 mL. Dimethylformamide
(10 mL) was added, and remaining methylene chloride was removed by vacuum volatization.
The solution of undecylic aldehyde hydrazone in dimethylformamide was cooled to −78 °C
(15 min) and diluted with cold tetramethylguanidine (4 mL). Lead tetraacetate (3.90 g, 8.8
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mmol) was added in 5 min, and the mixture was stirred 60 min at −78 °C. The reaction solution
was diluted with cold hexane (3 × 20 mL) and extracted at −78 °C. The combined cold hexane
extracts were washed with cold (−30 °C) 30% aqueous potassium hydroxide (2 × 10 mL), small
pieces of dry ice were added, and the solution was then filtered to give a rose-red solution of
1-diazo-undecane in hexane which was used directly.

N-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)diazoacetamide
To a solution of tetra-O-acetyl-β-D-glucopyranosylamine (695 mg, 2.0 mmol, 1.0 equiv.) and
glyoxylic acid p-toluenesulfonylhydrazone20 17,18 (533 mg, 2.2 mmol, 1.1 equiv.) in ice-cold
THF (20 mL) was added, dropwise, DCC (454 mg, 2.2 mmol, 1.1 equiv.) in THF (10 mL).
The mixture was allowed to warm to room temperature and stirring was continued over night.
Then the solid was filtered off. After removal of the solvent, the filtrate was purified by flash
chromatography (hexanes/EtOAc, 2:3) to afford a yellow solid (582 mg, 51% yield)

To a solution of the yellow solid (100 mg, 0.175 mmol, 1.0 equiv.) in methylene chloride (5.0
mL) was added triethylamine (0.35 mmol, 2.0 equiv.) in a nitrogen atmosphere. The mixture
was stirred at room temperature over night. Then the solution was diluted with ethyl acetate
(20 mL) and washed by water (2 × 10 mL), brine (2 × 10 mL), dried over sodium sulfate and
concentrated. The remaining residue was then purified by flash chromatography (hexanes/
EtOAc, 2:3) to afford the diazo compound (65 mg, 90% yield) as a viscous yellow oil. 1H
NMR: δ 6.10 (d, J = 9.5 Hz, 1H), 5.26–5.31 (m, 2H), 5.03 (t, J = 9.5 Hz, 1H), 4.88 (t, J = 9.5,
1H), 4.81 (s, 1H), 4.29 (dd, J = 12.5, 4.5 Hz, 1H), 4.06 (dd, J = 12.5, 2.0 Hz, 1H), 3.80–3.94
(m, 1H), 2.00–2.06 (m, 12H). 13C NMR: δ 171.2, 170.7, 169.9, 169.7, 165.9, 78.5, 73.4, 72.7,
70.5, 68.2, 61.7, 48.1, 20.7 (4C). ν 2111, 1750, 1653 cm−1. ESIHRMS Calcd for
C16H21N3O10Na [M+Na]+: 438.1125, found: 438.1128.

N-(2,3,6,2′,3′,4′,6′-Hepta-O-acetyl-β-cellobiosyl)-diazoacetamide
To a solution of hepta-O-acetyl-β-cellobiosylamine (857 mg, 1.35 mmol, 1.0 equiv.) and
glyoxylic acid p-toluenesulfonylhydrazone5,6 (360 mg, 1.49 mmol, 1.1 equiv.) in ice-cold
THF (10 mL) was added, dropwise, DCC (306 mg, 1.49 mmol, 1.1 equiv.) in THF (10 mL).
The mixture was allowed to warm to room temperature and stirring was continued over night.
Then the solid was filtered off. After removal of the solvent, the filtrate was purified by flash
chromatography (hexanes/EtOAc, 2:3) to afford a yellow solid (735 mg, 63% yield)

To a solution of the yellow solid (739 mg, 0.86 mmol, 1.0 equiv.) in methylene chloride (10
mL) was added triethylamine (1.72 mmol, 2.0 equiv.) in a nitrogen atmosphere. The mixture
was stirred at room temperature over night. Then the solution was diluted with ethyl acetate
(20 mL) and washed by water (2 × 10 mL), brine (2 × 10 mL), dried over sodium sulfate and
concentrated. The remaining residue was then purified by flash chromatography (hexanes/
EtOAc, 2:3) to afford the diazo compound (560 mg, 93% yield) as a yellow solid. 1H NMR:
δ 5.98 (d, J = 9.5 Hz, 1H), 5.22–5.26 (m, 2H), 5.12 (t, J = 9.5 Hz, 1H), 5.05 (t, J = 9.5 Hz, 1H),
4.89 (t, J = 9.5 Hz, 1H), 4.79 (t, J = 9.5 Hz, 1H), 4.78 (s, 1H), 4.48 (dd, J = 12.5, 4.5 Hz, 1H),
4.42 (dd, J = 12.5, 4.5 Hz, 1H), 4.34 (dd, J = 12.5, 4.5 Hz, 1H), 4.07–4.12 (m, 2H), 4.01 (dd,
J = 12.5, 2.0 Hz, 1H), 3.72–3.76 (m, 2H), 3.62–3.65 (m, 1H), 1.95–2.12 (m, 21H). 13C NMR:
δ 171.1, 170.5, 170.3, 170.2, 169.5, 169.3, 169.1, 166.1, 100.6, 78.3, 76.2, 74.5, 72.9, 72.5,
71.8, 71.5, 70.7, 67.8, 62.0, 61.5, 60.4, 47.9, 20.7. ν 2111, 1751, 1654 cm−1. ESIHRMS Calcd
for C28H37N3O18Na [M+Na]+: 726.1970, found: 726.1981.

General Procedure for Ylide Formation and Rearrangement
To a solution of allyl sulfide compound (0.1 mmol, 1.0 equiv.) in 1,2-dimethoxyethane (5 mL),
Rh2(OAc)4 (0.005 mmol, 0.05 equiv.) was added, followed by addition of diazo compound in
a nitrogen atmosphere. The reaction mixture was stirred vigorously at room temperature for
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10 h. Then another portion of diazo compound was added, and vigorous stirring was continued
at room temperature for additional 12h. The solvent was removed by evaporation, and the
remaining residue was purified by flash chromatography to afford the corresponding product.

N-(tert-Butoxycarbonyl)-S-(4-ethoxycarbonyl-1-buten-4-yl)-L-cysteine ethyl ester (3)
was prepared according to the general procedure using 10 equiv. of ethyl diazoacetate.
Colorless oil; 1H NMR: δ 5.72–5.77 (m, 2H), 5.37 (br. d, J = 9.0 Hz, 1H), 5.29 (br. d, J = 8.0
Hz, 1H), 5.06–5.13 (m, 4H), 4.54–4.55 (br. s, 2H), 4.16–4.23 (m, 8H), 3.40 (t, J = 7.0 Hz, 1H),
3.32 (dd, J = 8.5, 6.5 Hz, 1H), 3.03–3.14 (m, 3H), 2.91–2.95 (m, 1H), 2.56–2.59 (m, 2H), 2.38–
2.43 (m, 2H), 1.44 (s, 9H), 1.43 (s, 9H), 1.27–1.29 (m, 12H). 13C NMR: δ171.8, 170.8, 155.1,
133.9, 133.8, 118.0, 80.1, 61.8, 61.7, 61.4, 61.3, 53.4, 53.0, 46.7, 46.2, 35.8, 35.5, 33.9, 28.3,
14.2. ESIHRMS Calcd for C17H29NO6S [M+Na]+: 398.1614, found: 398.1607.

N-(tert-Butoxycarbonyl)-S-(4-ethoxycarbonyl-2-methyl-1-buten-4-yl)-L-cysteine ethyl
ester (4) was prepared according to the general procedure using 10 equiv. of ethyl diazoacetate.
Colorless oil; 1H NMR: δ 5.35 (br. d, J = 8.1 Hz, 1H), 5.28 (br. d, J = 7.8 Hz, 1H), 4.81 (s,
2H), 4.74 (d, J = 7.5, 2H), 4.55 (br. s, 2H), 4.15–4.23 (m, 8H), 3.47–3.59 (m, 2H), 3.06–3.15
(m, 4H), 2.92–2.95 (m, 2H), 2.56–2.61 (m, 2H), 2.31–2.35 (m, 2H), 1.74 (s, 3H), 1.73 (s, 3H),
1.45 (s, 9H), 1.44 (s, 9H), 1.29–1.30 (m, 12H). 13C NMR: δ 172.0, 170.8, 155.2, 141.5, 141.4,
113.1, 80.1, 61.8, 61.4, 61.3, 53.4, 53.0, 45.3, 44.9, 39.6, 39.4, 33.8, 28.3, 22.3, 14.2. ESIHRMS
Calcd for C18H31NO6S [M+H]+: 390.1950, found: 390.1944.

N-(tert-Butoxycarbonyl)-S-(4-trimethylsilanyl-1-buten-4-yl)-L-cysteine ethyl ester (5)
was prepared according to the general procedure using 5.0 equiv. of trimethylsilyl
diazomethane. Colorless oil; 1H NMR: δ 5.89–5.91 (m, 2H), 5.35 (br. d, J = 8.0 Hz, 1H), 5.29
(br. s, 1H), 5.02–5.11 (m, 4H), 4.48 (br. s, 2H), 4.17–4.22 (m, 4H), 2.86–3.03 (m, 6H), 2.48–
2.50 (m, 2H), 2.29–2.32 (m, 2H), 1.92–1.93 (m, 2H), 1.46 (s, 9H), 1.44 (s, 9H), 1.26–1.29 (m,
6H), 0.15 (s, 9H), 0.14 (s, 9H). 13C NMR: δ 171.1, 155.2, 137.3, 116.4, 116.3, 80.0, 61.7, 61.6,
53.3, 53.2, 38.5, 36.2, 32.6, 32.0, 28.3, 14.2, −2.3. ESIHRMS Calcd for C17H33NO4SSi [M
+Na]+: 398.1798, found: 398.1793.

N-(tert-Butoxycarbonyl)-S-(2-methyl-5-oxo-4-icosyl)-L-cysteine ethyl ester (6) was
prepared according to the general procedure using 5.0 equiv. of 1-diazo-2-heptadecanone. Pale
yellow oil; 1H NMR: δ 5.27–5.30 (m, 2H) 4.81 (s, 2H), 4.69 (s, 2H), 4.49 (br. s, 2H), 4.21 (q,
J = 7.0 Hz, 4H), 3.45–3.48 (m, 2H), 2.81–2.97 (m, 4H), 2.52–2.58 (m, 6H), 2.32–2.36 (m, 2H),
1.71 (s, 6H), 1.44 (s, 18H), 1.25–1.37 (m, 58 H), 0.87 (t, J = 11.0 Hz, 6H). 13C NMR: δ 206.3,
206.2, 170.8, 155.1, 141.6, 113.1, 80.2, 61.9, 53.2, 53.0, 51.0, 38.8, 38.1, 32.5, 29.7, 29.6, 29.4,
29.3, 29.2, 28.3, 23.9, 22.7, 22.5, 14.2. ESIHRMS Calcd for C31H57NO5S [M+H]+: 556.4036,
found: 556.4027.

N-(tert-Butoxycarbonyl)-S-(4-ethoxycarbonyl-1-buten-4-yl)-glutathione dimethyl ester
(8) was prepared according to the general procedure using 10 equiv. of ethyl diazoacetate. Pale
yellow oil; 1H NMR: δ 7.16 (br. d, J = 5.0 Hz, 2H), 6.99 (br. d, J = 6.5 Hz, 1H), 6.89 (br. d,
J = 6.0 Hz, 1H), 5.72–5.75 (m, 2H), 5.35 (br. d, J = 5.5 Hz, 2H), 5.09–5.14 (m, 4H), 4.62–4.67
(m, 2H), 4.32–4.38 (m, 2H), 4.18–4.24 (m, 4H), 4.01–4.09 (m, 4H), 3.74 (s, 6H), 3.73 (s, 6H),
3.52 (t, J = 7.3 Hz, 1H), 3.44 (t, J = 7.5 Hz, 1H), 3.19 (dd, J = 14.3, 6.3 Hz, 2H), 2.94–3.02
(m, 2H), 2.59–2.65 (m,2H), 2.44–2.48 (m, 2H), 2.32–2.38 (m, 4H), 2.16–2.21 (m, 2H), 1.93–
2.01 (m, 2H), 1.43 (s, 18H), 1.24–1.29 (m, 6H). 13C NMR: δ 172.9, 172.6, 172.3, 170.4, 169.9,
155.7, 133.8, 118.1, 80.2, 61.7, 52.6, 47.2, 41.3, 35.7, 33.5, 33.0, 32.1, 28.6, 14.2. ESIHRMS
Calcd for C24H39N3O10S [M+Na]+: 584.2254, found: 584.2255.

N-(tert-Butoxycarbonyl)-S-(4-phenyl-1-buten-4-yl)-glutathione dimethyl ester (9) was
prepared according to the general procedure using 5.0 equiv. of phenyl diazomethane. Pale
yellow oil; 1H NMR: δ7.31–7.32 (m, 4H), 7.22–7.25 (m, 6H), 7.02 (br. s, 1 H), 6.82 (br. s,
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1H), 6.67 (br. d, J = 6.5 Hz, 1H) 6.60 (br. d, J = 7.0 Hz, 1H), 5.63–5.70 (m, 2H), 5.37 (br. s,
2H), 4.95–5.04 (m, 4H), 4.32–4.45 (m, 4H), 3.86–3.98 (m, 8H), 3.73 (s, 6H), 3.72 (s, 6H), 2.83
(dd, J = 12.0, 5.8 Hz, 1H), 2.69–2.71 (m, 2H), 2.58–2.64 (m, 5H), 2.27–2.31 (m, 2H), 2.21–
2.24 (m, 2H), 2.11–2.18 (m, 2H), 1.89–1.96 (m, 2H), 1.42 (s, 9H), 1.41 (s, 9H). 13C NMR (125
MHz, CDCl3) δ172.9, 172.2, 172.1, 170.6, 170.0,169.9, 155.7, 142.0, 141.9, 135.1, 135.0,
128.7, 127.9, 127.5, 117.3, 80.2, 52.8, 52.5, 52.4, 52.2, 50.2, 50.0, 49.9, 41.3, 40.7, 40.6, 32.8,
32.2, 28.7, 28.5, 28.3. ESIHRMS Calcd for C27H39N3O8S [M+Na]+: 588.2356, found:
588.2364.

N-(tert-Butoxycarbonyl)-S-(5-oxo-4-icosyl)-glutathione dimeth-yl ester (10) was prepared
according to the general procedure using 5.0 equiv. of 1-diazo-2-heptadecanone. Pale yellow
oil; 1H NMR: δ 7.11–7.13 (br. s, 2H), 6.81 (br. d, J = 6.0 Hz, 1H), 6.80 (br. d, J = 6.5 Hz, 1H),
5.69–5.77 (m, 2H), 5.34–5.35 (br. d, J = 7.0 Hz, 2H), 5.07–5.09 (m, 4H), 4.55–4.59 (m, 2H),
4.36 (br. s, 2H), 3.95–4.09 (m, 4H), 3.74 (s, 12H), 3.44–3.49 (m, 2H), 2.80–2.90 (m, 4H), 2.55–
2.62 (m, 6H), 2.32–2.46 (m, 6H), 2.14–2.17 (m, 2H), 1.91–1.97 (m, 2H), 1.51–1.57 (m, 4H),
1.42 (s, 18H), 1.16–1.28 (m, 48H), 0.85–0.88 (t, J = 7.0 Hz, 6H). 13C NMR: δ 207.7, 207.3,
172.9, 172.3, 172.2, 170.4, 170.3, 169.9, 155.7, 134.2, 134.1, 118.1, 118.0, 80.2, 52.8, 52.7,
52.6, 52.5, 52.4, 52.2, 41.3, 39.7, 39.6, 34.5, 32.4, 32.2, 32.1,31.9, 29.7, 29.6, 29.5, 29.4, 29.3,
29.2, 28.7, 28.5, 28.3, 23.9, 22.7, 14.1. ESIHRMS Calcd for C37H65N3O9S [M+Na]+:
750.4340, found: 750.4322.

N-(tert-Butoxycarbonyl)-S-(1-tetradecen-4-yl)-glutathione dimethyl ester (11) was
prepared according to the general procedure using 5.0 equiv. of 1-diazo-undecane. Pale yellow
oil; 1H NMR: δ 7.16 (br. d, J = 5.0 Hz, 2H), 6.84 (br. d, J = 7.0 Hz, 2H), 5.81–5.84 (m, 2H),
5.33 (br. d, J = 6.5 Hz, 2H), 5.05–5.10 (m, 4H), 4.52–4.53 (m, 2H), 4.39 (br. d, J = 4.5 Hz,
2H), 3.98–4.05 (m, 4H), 3.74 (s, 12H), 2.97–2.98 (m, 2H), 2.76–2.79 (m, 4H), 2.34–2.38 (m,
8H), 2.11–2.19 (m, 2H), 1.85–1.96 (m, 2H), 1.51–1.54 (m, 2H), 1.43 (s, 18H), 1.24–1.39 (m,
34H), 0.85–0.88 (m, 6H). 13C NMR: δ 172.9, 172.1, 170.7, 169.9, 155.7, 135.6, 135.5, 117.3,
117.2, 80.2, 52.8, 52.7, 52.5, 52.4, 46.3, 45.9, 41.3, 39.1, 34.6, 34.2, 32.3, 32.1, 31.9, 29.6,
29.5, 29.4, 28.6, 28.3, 26.8, 26.7, 22.7, 14.1. ESIHRMS Calcd for C31H55N3O8S [M+H]+:
630.3788, found: 630.3773.

N-(tert-Butoxycarbonyl)-S-(1-tridecafluorododecen-4-yl)-glutathione dimethyl ester
(12) was prepared according to the general procedure using 5.0 equiv. of 9-
diazo-1,1,1,2,2,3,3,4,4,5,-5,6,6-tridecafluorononane. Pale yellow oil; 1H NMR: δ 7.11 (br. s,
2H), 6.88 (br. s, 2H), 5.74–5.77 (m, 2H), 5.45 (br. s, 2H), 5.33–5.36 (m, 2H), 5.12–5.18 (m,
4H), 4.57–4.58 (m, 1H), 4.31–4.42 (m, 2H), 3.98–4.13 (m, 4H), 3.75 (s, 12H), 3.29–3.32 (m,
2H), 3.04–3.23 (m, 4H), 2.74–2.95 (m, 4H), 2.33–2.51 (m, 4H), 2.17–2.20 (m, 2H), 1.89–2.16
(m, 4H), 1.44 (s, 9H), 1.45 (s, 9H). 13C NMR: δ 172.8, 171.9, 171.4, 169.9, 155.6, 133.4, 133.2,
118.4, 118.2, 80.7, 52.9, 52.7, 52.5, 45.8, 41.4, 39.5, 34.9, 34.3, 32.4, 32.2, 31.7, 29.7, 29.3,
28.8, 28.3,28.2, 27.8, 24.6. F19 NMR: δ −8.3, −41.7, −49.5, −50.5, −50.9, −53.7. ESIHRMS
Calcd for C29H38F13N3O8S [M+H]+:836.2245, found: 836.2247.

N-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)-(2-hexadecylsulfanyl)-4-pentenamide
(16) was prepared according to the general procedure using 5.0 equiv. of N-(2,3,4,6-tetra-O-
acetyl-β-D-glucopyranosyl)-diazoacetamide. Colorless oil; 1H NMR: δ 7.21–7.30 (m, 2H),
5.66–5.79 (m, 2H), 5.30 (t, J = 9.5 Hz, 2H), 5.19–5.23 (m, 2H), 5.01–5.33 (m, 6H), 4.96–5.00
(m, 2H), 4.28–4.32 (m, 2H), 4.05–4.08 (m, 2H), 3.79–3.82 (m, 2H), 3.25–3.28 (m, 2H), 2.38–
2.49 (m, 6H), 2.17 (s, 6H), 2.07 (s, 6H), 2.03 (s, 6H), 2.02 (s, 6H), 1.52–1.55 (m, 4H), 1.24–
1.33 (m, 54H), 0.87 (t, J = 7.0 Hz, 6H). 13C NMR: δ 172.5, 172.4, 170.6, 170.4, 170.0, 169.6,
133.9, 133.8, 118.2, 117.9, 78.4, 73.6, 72.9, 72.8, 70.3, 68.2, 61.7, 49.5, 49.4, 36.5, 36.2, 31.9,
31.5, 31.4, 29.7, 29.6, 29.5, 29.4, 29.2, 29.0, 28.9, 22.7, 20.7, 20.6, 14.2. ESIHRMS Calcd for
C35H59N3O10S [M+Na]+: 708.3758, found: 708.3732.
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N-(tert-Butoxycarbonyl)-S-(4-N-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)
aminocarbonyl-1-buten-4-yl)-L-cysteine ethyl ester (17) was prepared according to the
general procedure using 5.0 equiv. of N-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)
diazoacetamide. Pale yellow oil; 1H NMR: δ 7.41 (br. d, J = 8.5 Hz, 1H), 7.27 (br. s, 1H), 5.55–
5.74 (m, 2H), 5.64–5.74 (m, 1H), 5.50 (br. d, J = 7.5 Hz, 1H), 5.19–5.30 (m, 4H), 4.98–5.12
(m, 6H), 4.43 (br, 2H), 4.25–4.30 (m, 2H), 4.15–4.21 (m, 4H), 4.02–4.11 (m, 4H), 3.77–3.81
(m, 2H), 3.30–3.33 (m, 2H), 3.09 (br. d, J = 13.0 Hz, 1H), 2.94–2.97 (m, 1H), 2.68–2.74 (m,
2H), 2.60–2.65 (m, 1H), 2.48–2.54 (m, 1H), 2.33–2.40 (m, 2H), 1.98–2.05 (m, 24H), 1.47 (s,
9H), 1.46 (s, 9H), 1.21–1.27 (m, 6H). 13C NMR: δ 171.8, 171.6, 171.2, 170.7, 170.6, 170.4,
169.9, 169.5, 169.4, 155.5, 155.4, 133.9, 133.4, 118.2, 118.1, 80.5, 80.4, 73.6, 72.9, 72.7, 70.3,
68.1, 68.0, 62.0, 61.9, 61.7, 61.5, 60.4, 53.0, 49.8, 48.0, 36.2, 35.8, 34.2, 33.7, 28.4, 21.1, 20.7,
20.6, 14.2. ESIHRMS Calcd for C29H44N2O14S [M+Na]+: 699.2406, found: 699.2410.

N-(tert-Butoxycarbonyl)-S-(4-N-(2,3,6,2′,3′,4′,6′-hepta-O-acetyl-β-cellobiosyl)
aminocarbonyl-1-buten-4-yl)-L-cysteine ethyl ester (18) was prepared according to the
general procedure using 5.0 equiv. of N-(2,3,6,2′,3′,4′,6′-hepta-O-acetyl-β-cellobiosyl)
diazoacetamide. Pale yellow oil; 1H NMR: δ 7.26 (br. d, J = 9.0 Hz, 1H), 7.13 (br. d, J = 9.0
Hz, 1H), 5.59–5.61 (m, 2H), 5.46 (br. d, J = 6.6 Hz, 1H), 5.21–5.28 (m, 3H), 5.03–5.19 (m,
10H), 4.88–4.92 (m, 4H), 4.40–4.49 (m, 6H), 4.33–4.35 (m, 2H), 4.08–4.19 (m, 8H), 3.98–
4.01 (m, 2H), 3.62–3.71 (m, 6H), 3.26–3.31 (m, 2H), 3.03–3.08 (m, 1H), 2.91–2.96 (m, 1H),
2.68–2.73 (m, 1H), 2.59–2.66 (m, 1H), 2.45–2.51 (m, 1H), 2.31–2.39 (m, 2H), 1.95–2.09 (m,
42H), 1.45 (s, 9H), 1.42 (s, 9H), 1.21–1.27 (m, 6H). 13C NMR: δ 171.6, 171.4, 170.8, 170.7,
170.6, 170.5, 170.2, 169.4, 169.3, 169.0, 155.3, 133.7, 133.4, 118.2, 118.1, 100.7, 80.378.3,
78.2, 76.2, 74.5, 72.9, 72.2, 72.1, 72.0, 71.5, 70.5, 67.8, 62.0, 61.9, 61.6, 60.4, 53.5, 53.1, 49.8,
48.4, 36.2, 35.8, 34.1, 33.5, 28.4, 21.1, 20.8, 20.7, 20.5, 14.2. ESIHRMS Calcd for
C41H60N2O22S [M+H]+: 965.3431, found: 965.3424.

N-(tert-Butoxycarbonyl)-S-(4-N-(2,3,4,6-Tetra-O-acetyl-β-D-glucopyranosyl)
aminocarbonyl-1-buten-4-yl)-glutathione dimethyl ester (19) was prepared according to
the general procedure using 5.0 equiv. of N-(2,3,4,6-tetra-O-acetyl-β-D-glucopyranosyl)-
diazoacetamide. Pale yellow oil; 1H NMR: δ 7.69 (br. d, J = 8.5 Hz, 2H), 7.35 (br. s, 2H), 7.01
(br. d, J = 7.5 Hz, 2H), 5.73–5.76 (m, 2H), 5.35 (br. s, 2H), 5.26–5.31 (m, 4H), 4.99–5.14 (m,
6H), 4.82 (br. s, 2H), 4.32–4.40 (m, 4H), 4.03–4.14 (m, 4H), 3.82–3.87 (m, 2H), 3.73–3.79
(m, 12H), 3.63 (br. s, 2H), 2.96–3.31 (m, 4H), 2.62–2.64 (m, 2H), 2.52–2.54 (m, 2H), 2.35–
2.37 (m, 4H), 2.00–2.19 (m, 28H), 1.43 (s, 9H), 1.42 (s, 9H). 13C NMR: δ 172.9, 172.3, 172.1,
170.8, 170.6, 170.3, 170.0, 169.6, 155.6, 133.9, 133.8, 118.2, 80.2, 78.3, 73.9, 73.1, 70.6, 70.5,
68.2, 68.1, 61.7, 60.4, 52.8, 52.6, 52.1, 52.0, 49.2, 45.4, 41.3, 41.2, 36.0, 35.2, 33.8, 32.6, 31.9,
28.3, 24.0, 21.0, 20.8. ESIHRMS Calcd for C36H54N4O18S [M+H]+: 885.3046, found:
885.3059.

N-(tert-Butoxycarbonyl)-S-(4-N-(2,3,6,2′,3′,4′,6′-hepta-O-acetyl-β-cellobiosyl)
aminocarbonyl-1-buten-4-yl)-glutathione dimethyl ester (20) was prepared according to
the general procedure using 5.0 equiv. of N-(2,3,6,2′,3′,4′,6′-hepta-O-acetyl-β-cellobiosyl)
diazoacetamide. Pale yellow oil; 1H NMR: δ 7.55 (br. d, J = 9.1 Hz, 1H), 7.28 (br. d, J = 7.0
Hz, 1H), 6.98 (br. d, J = 8.1 Hz, 1H), 5.62–5.71 (m, 1H), 5.33 (br. d, J = 8.1 Hz, 1H), 5.20–
5.27 (m, 4H), 5.10–5.14 (m, 3H), 5.03–5.07 (m, 4H), 4.89–4.92 (m, 4H), 4.61–4.68 (br. s, 1H),
4.48–4.52 (m, 5H), 4.34–4.37 (m, 2H), 4.25 (br. s, 1H), 4.03–4.12 (m, 8H), 3.71–3.76 (m,
10H), 3.64–3.66 (m, 3H), 3.12 (br. s, 1H), 3.01 (br. s, 1H), 2.52–2.61 (m, 1H), 2.50–2.51 (m,
1H), 2.35–2.37 (m, 2H), 1.98–2.13 (m, 21H), 1.42 (s, 9H). 13C NMR: δ 173.0, 172.3, 171.5,
170.6, 170.5, 170.3, 170.2, 169.9, 169.8, 169.3, 169.0, 155.6, 133.9, 133.8, 118.0, 100.6, 80.3,
78.1, 76.4, 74.9, 73.2, 73.1, 71.9, 71.8, 71.6, 70.5, 67.8, 61.8, 61.7, 61.5, 52.9, 52.6, 52.5, 52.4,
46.4, 41.4, 35.1, 32.8, 32.0, 28.3, 20.8. ESIHRMS Calcd for C48H70N4O26S [M+H]+:
1151.4072, found: 1151.4071.
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N-(tert-Butoxycarbonyl)-S-(2-methyl-5-oxo-4-icosyl)-L-cysteinyl-L-alanyl-L-
tryptophan methyl ester (21) was prepared according to the general procedure using 5.0
equiv. of 1-diazo-2-heptadecanone, which was contaminated by approximately 10% of
22. 1H NMR: (400 MHz, CDCl3) δ 8.68 (s, 1H), 8.59 (s, 1H), 7.51 (d, J = 7.7 Hz, 1H), 7.50
(d, J = 7.7 Hz, 1H), 7.34 (m, 2H) 7.16 (m, 2H), 7.09 (m, 2H), 7.00 (s, 1H), 6.98 (s, 1H), 6.80–
6.67 (m, 4H), 5.28 (m, 1H), 5.15 (m, 1H), 4.89–4.80 (m, 4H), 4.73 (s, 1H), 4.70 (s, 1H),
4.47-4.37 (m, 2H), 4.20-4.10 (m, 2H), 3.694 (s, 3H), 3.692 (s, 3H), 3.53 (m, 2H), 3.37-3.23
(m, 4H), 2.74-2.73 (m, 4H), 2.62-2.50 (m, 6H), 2.38-2.31 (m, 2H), 1.74 (s, 3H), 1.73 (s, 3H,),
1.63-1.56 (m, 4H), 1.47 (s, 18H), 1.31 (d, J = 7.1 Hz, 6H), 1.30-1.20 (m, 52H), 0.88 (t, J = 7.0
Hz, 6H). 13C NMR (100 MHz, CDCl3) δ 207.6, 207.4, 172.04, 171.99, 171.1, 170.13, 170.07,
155.6, 141.6, 141.5, 136.3, 127.5, 127.4, 123.23, 123.19, 122.06, 122.04, 113.3, 111.38,
111.33, 109.5, 79.8, 54.0, 53.4, 53.1, 52.7, 52.4, 50.9, 50.8, 48.9, 39.1, 39.0, 38.0, 37.9, 32.4,
32.2, 31.9, 29.68, 29.65, 29.5, 29.4, 29.3, 29.2, 28.3, 27.4, 27.3, 23.9, 22.7, 22.4, 17.5, 17.4,
14.1. ESIHRMS Calcd for C44H71N4O7S [M+H]+: 799.5038, found: 799.5038; Calcd for
C44H70N4O7SNa [M+Na]+: 821.4858, found: 821.4560.

N-(tert-Butoxycarbonyl)-S-(2-methylallyl)-L-cysteinyl-L-alanyl-L-Nω-(2-oxo-
heptadecyl)-tryptophan methyl ester (22) was prepared according to the general procedure
using 5.0 equiv. of 1-diazo-2-heptadecanone. 1H NMR (400 MHz, CDCl3) δ 7.50 (d, J = 7.7
Hz, 1H), 7.20 (m, 1H), 7.14-7.10 (m, 2H), 6.90 (s, 1H), 6.84 (br. d, J = 7.7 Hz, 1H), 6.59 (br.
d, J = 7.6 Hz, 1H), 5.29 (m, 1H), 4.93-4.79 (m, 4H), 4.45 (quint, J = 7.4 Hz, 1H), 4.14 (m, 1H),
3.68 (s, 3H), 3.33 (d, J = 5.6 Hz, 2H), 3.03 (d, J = 13.4 Hz, 1H), 2.96 (d, J = 13.4 Hz, 1H),
2.72 (dd, J = 13.7, 5.9 Hz, 1H), 2.65 (dd, J = 13.7, 6.7 Hz, 1H), 2.35 (t, J = 7.4 Hz, 2H), 1.77
(s, 3H), 1.56 (m, 2H), 1.44 (s, 9H), 1.32 (d, J = 7.1 Hz, 3H), 1.30-1.20 (m, 26H), 0.88 (d, J =
7.0 Hz, 3H). 13C NMR (100 MHz, CDCl3) δ 206.4, 171.8, 171.3, 170.4, 140.7, 136.6, 128.1,
127.6, 122.4, 119.8, 119.0, 114.5, 109.6, 108.9, 80.4, 55.2, 53.8, 52.6, 52.5, 48.9, 39.4, 33.1,
31.9, 29.7, 29.5, 29.4, 29.1, 28.3, 27.3, 23.4, 22.7, 20.6, 18.0, 14.1. FABHRMS Calcd for
C44H70N4O7SNa [M+Na]+: 821.4863, found: 821.4859.
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Scheme 1.
Dechalcogenative Allylic Selenosulfide and Disulfide Ligations
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Scheme 2.
Reaction of metal carbenoids with allyl thio ethers
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Scheme 3.
Preparation of diazo amides 13 and 14
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Table 1
Reaction of carbenoids with cysteine derivatives.

Cmpd Diazo Deriv Product (% yield)

1 1 ethyl diazoacetate

3 (53)
2 2 ethyl diazoacetate

4 (42)
3 1 TMSdiazomethane

5 (57)
4 2 Me(CH2)14COCHN2

6 (52)
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Table 2
Reaction of carbenoids with S-allyl glutathione.

R Product (% Yield)

1 CO2Et 8 (45)
2 C6H5 9 (45)
3 CO(CH2)14Me 10 (38)
4 (CH2)9Mea 11 (35)
5 (CH2)2(CF2)5CF3

a 12 (32)

a
Diazo precursors to 11 and 12 were prepared from the hydrazones with Pb(OAc)4 and were used immediately.
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Table 3
Rh2(OAc)4 Catalyzed Glycosylation

Substrate Diazo Compound Product (%yield)

1

15

13 16(52)
2

1
13

17(48)
3

1
14

18(54)
4

7
13

19(34)
5

7 14

20(41)
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