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ABSTRACT

The RES complex was previously identified in
yeast as a splicing factor affecting nuclear pre-
mRNA retention. This complex was shown to con-
tain three subunits, namely Snu17, Bud13 and
Pml1, but its mode of action remains ill-defined. To
obtain insights into its function, we have performed
a structural investigation of this factor. Produc-
tion of a short N-terminal truncation of residues
that are apparently disordered allowed us to deter-
mine the X-ray crystallographic structure of Pml1.
This demonstrated that it consists mainly of a FHA
domain, a fold which has been shown to mediate
interactions with phosphothreonine-containing pep-
tides. Using a new sensitive assay based on alter-
native splice-site choice, we show, however, that
mutation of the putative phosphothreonine-binding
pocket of Pml1 does not affect pre-mRNA splicing.
We have also investigated how Pml1 integrates
into the RES complex. Production of recombinant
complexes, combined with serial truncation and
mutagenesis of their subunits, indicated that Pml1
binds to Snu17, which itself contacts Bud13. This
analysis allowed us to demarcate the binding
sites involved in the formation of this assembly.
We propose a model of the organization of the
RES complex based on these results, and discuss
the functional consequences of this architecture.

INTRODUCTION

Pre-mRNA splicing is an essential step of gene expression
in eukaryotes. Indeed, the accurate removal of introns

is critical to reconstitute meaningful coding sequences
from the dispersed information present in pre-mRNAs.
Biochemical and genetic analyses have demonstrated
that pre-mRNA splicing is catalyzed in a large assembly
called the spliceosome (1). This large complex assembles
around introns through the ordered addition of splicing
factors in an energy-dependent process.
In recent years, many splicing factors that contribute to

spliceosome formation have been identified. Those can
be divided in two types: small nuclear ribonucleoproteins
(or snRNPs) and protein splicing factors. The former con-
sist of a short RNA, which appears to be stably associated
with a specific set of proteins, whereas factors of the
second type are composed exclusively of one or more pro-
tein subunits (1). Among the latter, the RES complex
was identified in Saccharomyces cerevisiae as an assembly
required for efficient splicing and nuclear pre-mRNA
retention (2). TAP purification demonstrated that the
RES complex is hetero-trimeric and composed of the
subunits Snu17, Bud13 and Pml1 (2). Intriguingly, yeast
Snu17 had been proposed to be a subunit of the Sf3b
splicing factor (3,4), but biochemical purification of the
latter demonstrated that it does not contain Snu17 (2).
Genetic analyses demonstrated that all RES subunits

were dispensable for normal growth, but were required
for growth at high temperature (2,3). Characterization of
the molecular processes affected in strains carrying dele-
tions of Snu17, Bud13 or Pml1 demonstrated that they
were all required for efficient pre-mRNA splicing. More-
over, this requirement was exacerbated in the case of
introns with weak 50 splice sites. In addition, in such
strains, pre-mRNAs were shown to leak from the nucleus
to the cytoplasm. Strikingly, Pml1 deletion mutants
appeared to display weaker phenotypes than Snu17 or
Bud13 deletion mutants, such that in appropriate con-
ditions pre-mRNA leakage occurred in the absence of
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obvious splicing defect in Pml1-deleted strains. The impli-
cation of the RES complex in splicing was consistent with
the previous co-purification of Snu17 and Bud13 with the
splicing factor Cdc5/Cef1, (5) and the independent obser-
vation of the presence of Pml1 and Snu17 in U1�U2�U4/
U6�U5 penta-snRNP (6). Implication of the RES complex
in RNA processing was further supported by the presence
of an RNA recognition motif (RRM) in its Snu17 subunit.
As expected for splicing factors, RES subunit homo-

logues are clearly identifiable in other eukaryotic species,
including humans (2). Moreover, purification of spliceo-
somes assembled in vitro from human cell extracts demon-
strated that human RES (hRES) subunit homologues also
incorporate into spliceosomes (7,8). These results showed
that hRES joins the spliceosome at a late stage of assem-
bly, the complex A to B transition. This corresponds to
the joining of the tri-snRNP composed of U4/U6�U5
snRNPs to pre-spliceosome containing the U2 snRNP.
Thus, the addition of hRES occurs immediately prior
the first catalytic splicing step that leads to intron excision.
Further understanding of the function of the RES com-

plex will require a better knowledge of the structure of its
subunits and of its organization. We report here the struc-
ture of the Pml1 subunit determined by crystallization and
X-ray diffraction. This demonstrated the presence of a
FHA domain, which is a module reported to bind phos-
phothreonine (9–11). The structure was used to design
mutations designed to perturb the phosphothreonine-
binding cleft. However, using a new sensitive splicing
assay based on competition between alternative splice
sites, we show that alteration of the phosphothreonine-
binding pocket does not affect impair splicing. A descrip-
tion of the RES subunit architecture was also deduced
from the analysis of the recombinant complex and deriva-
tives harboring mutated, truncated and/or deleted sub-
units. This allowed the identification of a potential
binding site of Pml1 on Snu17, as well as a C-terminal
sequence of Bud13, which is necessary and sufficient to
bind to Snu17. On the basis of these results, we propose
a model of the subunit architecture of RES and discuss
functional implications in splicing and RNA metabolism.

MATERIALS AND METHODS

Cloning and protein expression

To express Pml1 for crystallization trials, C-terminally
6His tagged proteins were used. Two PCR reactions
were performed with oligonucleotides: YLR016c-DN24-
Nde and YLR016c-as-his-Not or YLR016c-s-Nde and
YLR016c-as-his-Not (Supplementary Table 2) and the
products were cloned into the vector pET9 (Novagen,
Madison, USA) using standard procedures, generating
plasmids pET9::Pml1:6His and pET9::DN24Pml1:6His
(Supplementary Table 1). Similarly, the primer pairs
Bud13-201-NcoI and Bud13-NotI-6H, and Bud13-NcoI
and Bud13-201-Not-6H (Supplementary Table 2) were
used to generate PCR products encoding the six
histidine-tagged Bud13 truncations Bud13-DN201:6His
and Bud13DC201:6His, respectively. These PCR frag-
ments were cloned into pET28 (Novagen) to generate

the plasmids pET28:Bud13DN201:6H and pET28:
Bud13DC201:6H (Supplementary Table 1). For expres-
sion of each of these plasmids, Escherichia coli strain
Rosetta(DE3)pLysS (Novagen) transformed by these
expression plasmids was grown in 2� Yeast Tryptone
(2YT) broth until OD600 reached �1. Cells were then
induced with IPTG (500mM final concentration) at 308C
for 3 h. To detect the sites of anomalous scattering, sele-
nium was incorporated into DN24Pml1 by expression in
media containing seleno-methionine (12).

For operon constructions, coding regions were ampli-
fied by PCR and inserted by standard cloning down-
stream of the T7 promoter of the pBS2454 expression
vector. Resulting plasmids, and the oligonucleotides used
for their construction, are presented in Supplementary
Tables 1 and 2, respectively. In every case, the upstream
ORF was fused to a 6His tag to allow purification on
Ni2+-NTA. Point mutations were introduced with the
QuickChange strategy (Stratagene, La Jolla, USA).
Mutagenesis with the Entranceposon system was per-
formed as recommended by the supplier (Finnzyme,
Espoo, Finland) on plasmid pBS3160. The mutated Xba
I-Sac I region covering the coding sequence of Snu17 and
the N-terminal part of Bud13 was recovered and inserted
in plasmid pBS3117 to reconstruct a Snu17-Bud13-Pml1
operon. Proteins were expressed in BL21(DE3)pLysS
using autoinduction media (13).

To construct the yeast plasmid, the Pml1 ORF and
flanking sequence was amplified by PCR and inserted in
a yeast replicating vector with a LEU2 marker giving
plasmid pBS3012. Point mutations were introduced
using the Quick-change system (Stratagene).

Protein purification

Cells expressing operon constructs were broken with a
Cell Disruptor (Constant systems) from 200ml cultures
or lyzed with lysozyme in case of small-scale culture
(2ml). Purifications were performed on Ni2+-NTA in
batches in 20mM Tris–Cl pH 8.0, 10mM imidazole,
500mM NaCl, 2mM b-mercaptoethanol, 0.2% NP40.
After several washes, proteins were eluted with the same
buffer adjusted to 200mM imidazole. Samples corre-
sponding to the eluted fractions, and in some cases
to soluble proteins isolated from the cell extract, were
mixed with SDS-containing loading buffer before fractio-
nation on 12% denaturing gels. Proteins were detected by
Coomassie staining.

To prepare samples for crystallization, cells were har-
vested, resuspended in buffer A (20mM Tris-Cl pH 7.5,
200mM NaCl), and the cell contents released using a
probe-tip sonicator (Branson, Danbury, USA). After
clarification of the extract by centrifugation, the extract
was purified on a Ni2+-NTA column (Qiagen, Hilden,
Germany), and eluted using buffer A which included
200mM imidazole. The peak fractions were purified on
a Superdex 75 column (GE Healthcare, Buckinghamshire,
UK), and concentrated using Vivaspin 5000 nominal
molecular weight limit cut-off centrifugal concentrators
(Vivascience, Goettingen, Germany).

Protein interaction studies using gel-filtration were
performed by mixing equimolar quantities of either
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Bud13DN201:6His or Bud13DC201:6His, with 6His:
Snu17. After incubation for 30min on ice, the samples
were injected onto a Superdex 75 10/30 gel filtration
column which had been pre-equilibrated with buffer A.
The elution profile was followed at 280 nm and peak frac-
tions were subjected to SDS–PAGE.

Proteolysis and mass-spectrometry

Samples were subjected to tryptic and chymotryptic
digestion as described previously (14). Samples were
withdrawn from the reactions at specific time-points
and quenched using PMSF. These samples were mixed
with sinapinic acid matrix, evaporated onto a mass-
spectrometry sample grid and analyzed with an Applied
Biosystems (Framingham, MA) Voyager Elite XL
MALDI-TOF spectrometer. Mass/charge ratios identified
using this technique were analyzed using tools from
‘Protein Prospector’ (15).

Crystallization

Crystallization trials of native and selenium-labeled
DN24Pml1 were performed using the hanging drop
vapor-diffusion method at 2918K using a 100 nl drop dis-
pensing robot (Cartesian), with protein concentrations
varying from 20 to 30mgml�1. A sparse-matrix screen
allowed initial crystallization conditions to be obtained
(Classics screen, Nextal), condition 89 (0,1M Tris-Cl
pH 8.5, pH 8.5, 0.2M LiSO4 and 30% PEG 4000). Grid
and additive screening allowed refinement of the condi-
tions to 0,1M Tris-Cl pH 8.5, pH 8.5, either 0.2M
Na-Acetate or 0.2M LiSO4 and from 20% to 30% PEG
4000. Crystals appear within 3–10 days.

Data collection

Crystals were briefly treated with a cryo-protectant iden-
tical to the mother liquor, except that 20% water was
replaced by glycerol. This allowed them to be flash-
frozen at 1008K prior to exposure to X-rays. Data were
collected at 0.979 Å using the oscillation method on
the ESRF beamline ID14-EH4 equipped with a Q315r
detector (ADSC). One native dataset of 508, and one sele-
nium labeled dataset of 608 were collected at with 0.338
and 0.58 oscillations, respectively, and then processed
using XDS and XSCALE (16), as well as using the
CCP4 suite of programs (17). The crystals belong
to the trigonal space group P3221, with unit cell param-
eters a= b=85.7 Å, c=97.8 Å and a= b=85.72 Å,
c=97.84 Å for the selenium-labeled and native crystals,
respectively. Statistics from the data collection are sum-
marized in Table 1.

Structure solution

Crystals obtained with protein which was labeled with
selenium (12) was used for a single wavelength anomalous
dispersion (SAD) experiment. After processing, SOLVE
(18) was used to attempt to locate 10 heavy atom
sites, using reflections between 30 and 2.5 Å resolution.
After solvent flattening and phase improvement of the

resulting electron-density map, an initial partial model
was built automatically with RESOLVE (19).

Model building and refinement

Initial refinement of the atomic model of Pml1 was
performed using simulated annealing using a phased
maximum-likelihood target function as implemented in
CNS (20). Later rounds of refinement were performed
with REFMAC with maximum likelihood analysis, while
including the phase information from the SAD experiment
(21,22) of the CCP4 suite of programs (17), with intermit-
tent rounds of model building with COOT (23) and O (24).
During initial rounds of refinement, phase restraints and
non-crystallographic symmetry restraints were included.
Additionally, one TLS group was used per protein mono-
mer of the asymmetric unit. Once an Rfree of �0.27 was
attained, the model was refined against the ‘native’ data
set. Validation of the structure was performed using
MOLPROBITY (25), and statistics of the refined model
of Pml1, after correction of the B-factors to take into
account the TLS refinement (26) are summarized in
Table 2. The atomic coordinates of the refined model
have been deposited into the PDB, and the entry has
been assigned the accession code 2JKD.

Yeast strains and splicing assays

Isogenic yeast strains BMA64 (wild type), BSY1395
(�snu17) and BSY1397 (�pml1) (2) were used for splicing
assays, which were performed at 308C. Yeast transforma-
tions, reporter inductions and b-galactosidase assays were
performed as described previously (27).

Table 1. Data collection statistics

SAD dataseta Native dataset

Wavelength (Å) 0.979 0.979
Unit-cell parameters (Å) a= b=85.75,

c=96.99
a= b=85.72,

c=97.84
Space group P3221
Matthews coefficient (Å3 Da–1) 3.06
Corresponding solvent (%) 59.6
Resolution limits (Å)b 40.0–2.5 (2.6–2.5) 20.0–2.5 (2.6–2.5)
Reflections measuredb 51 959 (5565) 42 767 (4821)
Unique reflections measuredb 26 864 (2921) 14 550 (1617)
Completeness (%)b 97.3 (95.0) 98.2 (99.2)
hIi/hs(I)ib 13.02 (3.34) 19.83 (5.82)
Rsym (%)b,c 4.3 (50.6) 3.8 (22.5)

aFriedel mates were treated as separate reflections.
bValues in parentheses refer to the highest resolution shell (2.6–2.5 Å).
cRsym=�h�i |hIih – Ih,i|/�h�i Ih,i, where hIih is the mean intensity for
reflection Ih and Ih,i is the intensity of an individual measurement of
reflection Ih.

Table 2. Refinement statistics

Number of non-hydrogen atoms
(Protein/water/other)

2364/46/28

Resolution range (Å) 40.9–2.5
R/Rfree (%) 21.6/25.9
R.M.S.D. bonds (Å)/angles (8) 0.01/1.44
hBi(Å2) Protein/water/other 57.61/54.3/89.4
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RESULTS

Crystallization of the Pml1 subunit

To gain insights into the structure of the RES complex we
expressed the various subunits individually or in combina-
tion and tested for the crystallization of purified proteins.
First attempts were unsuccessful. Thus, limited proteolysis
was performed on individual subunits with trypsin or
chymotrypsin to identify disordered regions. Treatment
of tagged Pml1 (calculated molecular weight 23 653.6
Da) yielded stable fragments between 24 and 18 kDa.
MALDI-TOF mass spectrometry analysis indicated that
the fragments of 21 604, 19 020 and 18 410 Da obtained
with trypsin, covered residues 23–210, 46–210 and 52–210.
respectively. Crystallization screening with a construct
corresponding to Pml1 truncated from its 24 amino-
terminal residues, designed to mimic the former of these
fragments, successfully yielded diffracting crystals.

Crystal structure of Pml1

After data collection from Pml1 crystals into which
seleno-methionine had been incorporated, the data were
reduced while treating each reflection of Friedel pairs as
having independent intensities. The locations of atoms
exhibiting anomalous scattering were determined using
SHELX (28), which located 10 credible sites in a SAD
experiment. Subsequent heavy atom searches using
SOLVE (18) were performed to find these 10 sites and
calculate initial phases using the same data. Phase
improvement was then performed by density modification
using RESOLVE (18), which was also able to construct an
initial model by iterations of model building, further den-
sity modification and refinement of the model (19).

The asymmetric unit consists of two protomers of Pml1,
the refined models of which consist of residues 49–112
and 122–206 of chain A, as well as residues 51–111 and
122–206 of chain B (Figure 1). As anticipated from
sequence comparisons, the polypeptide chain has the fold
of a Forkhead-Associated (FHA) domain, an 11-stranded
b-sandwich, with two inserted 3–10 helices, and an N-term-
inal a-helix. The entire structure has approximate dimen-
sions of 50� 35� 40 Å and is composed of two sandwiched
mainly anti-parallel b-sheets. The first consists of b-strands
(in order along the sheet) 2, 1, 11, 10, 7 and 8, while the
second consists of b-strands 4, 3, 5, 6 and 9. The first
10N-terminal residues of the truncated Pml1 which are
ordered form an extended sequence which folds back
along b-sheet 2, which is a feature that is particular to
this FHA domain structure. The C-terminus also folds
back in this direction. Several residues of Pml1 are con-
served in close homologues, including amino-acids prob-
ably generally involved in ligand binding by FHA domains
(see below and Supplementary Figure 1).

FHA domains have been shown to mediate interactions
with phosphorylated peptides, particularly those phos-
phorylated on threonine residues (9,10,29), although
weaker interactions between phospho-tyrosine peptides
and FHA domains have also been reported, with dissocia-
tion constants in the micromolar range (30). The resolu-
tion of the crystal structure of Rad53-FHA1 in complex
with an in vitro selected phosphorylated peptide ligand,
demonstrated the molecular basis of their recognition
(10). The recognition of target peptides was shown to be
mediated by a cleft formed by loop sequences that inter-
sperse the b-strands. The loops of Pml1 form an anal-
ogous cleft, which may bind a target peptide in a
similar manner. The least well-defined electron-density in

Figure 1. Structure of the Pml1 FHA domain. (A) Pml1 consists of an 11-stranded b-sandwich with two 3–10 helices and one a-helix. In the first
b-sheet, the strands are colored in dark blue, and those of the second sheet are colored cyan, while helical elements of secondary structure are colored
in red. The putative phosphopeptide-binding loops are oriented at the top of the diagram. The sulphate ion found in the ‘native’ structure is shown
as sticks. (B) The structure has been rotated 1808 around the axis shown. The extended N-terminal extension to the FHA fold is found on this face of
the molecule and approaches the sulphate ion. This figure was produced using MOLSCRIPT (47) and BOBSCRIPT (48), as was Figure 3.
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Pml1 is located in the loop-region, and the structured
residues in this zone have elevated B-factors compared
to the rest of the molecule. While Pml1 has a mean
B-factor of 58 Å2, residues 85–92 and 191–196 have aver-
age temperature factors of above 75 Å2. This could reflect
flexibility of these loops required to accommodate con-
formational changes during ligand binding.

A DALI search (31) revealed that the most similar pro-
teins are: antigen Ki-67, protein kinase Rad53, Afadin,
Kinase-associated Protein Phosphatase (KAPP) and
Bifunctional Protein Kinase/Phosphatase (Table 3; see
Supplementary Figure 2 for a superposition of these
models). Although these structural neighbors are all
FHA domains, significant differences exist, particularly
in the loop regions and termini. There are certain resi-
dues that are structurally conserved amongst these pro-
teins, and many of these are involved in maintaining the
integrity of the fold and are probably generic to the
FHA domain. Other notable residues, which are struc-
turally conserved amongst these proteins, are located in
the phosphopeptide-binding site.

Comparison of the structure of Pml1 with the structure
of the N-terminal FHA domain (FHA1) of Rad53 bound
to a phosphopeptide demonstrates the potential utility of
the conserved residues in binding putative ligands by Pml1
(29). In that structure, the O1 of the pThr is contacted by
the g-oxygen of Thr106, a residue which is identical in the
structures of the Ki67 FHA domain and FHA2 of Rad53
(32,33), and is conserved as Ser162 in the structure of
Pml1 (Figures 2 and S1). Ser137 of Pml1 is also conserved
as Ser85 in FHA1 of Rad53, which makes contacts with
the O2 of the phosphate via the g-oxygen of the serine side
chain. On the opposite side of the pThr in the Rad53-
peptide complex, the guanidino-group of Arg70 forms a
hydrogen bond with a g-oxygen of the phosphate moiety.
This residue is also highly conserved (present as Arg108
in Pml1 has given), and is probably involved in conferring
specificity towards phosphorylated target peptides.
Accordingly, mutation of this residue to alanine in
Rad53 reduced the affinity of such pThr-containing
target peptides approximately 10-fold (9). Additionally,
Asn86 of Rad53-FHA1 forms hydrogen bonds with the
pThr from its main chain nitrogen, as well as via a
d-nitrogen. The structurally equivalent residue of Pml1 is
Lys138, so this side chain would also be able to contact the

phosphopeptide in a similar way, if the putative target
peptide was located sufficiently nearby (Figure 3B).
Overall, Pml1 possesses a phosphopeptide-binding site

with many of the hallmarks exemplified by Rad53-FHA1,
which serves as a model for FHA domains bound to
ligand peptides. Other structures of co-crystals of FHA
domains with phosphorylated ligands support this general
conclusion, even if minor differences suggest that the
mechanism of peptide binding may differ from one FHA
domain to the next (see Discussion section).

Sulphate ions are located in a conserved, charged cleft ofPml1

The crystals from which the ‘native’ data sets were col-
lected were grown in mother liquor which contained
lithium sulphate (Table 1). During refinement, strong elec-
tron density was seen at equivalent positions of the two
Pml1 monomers of the asymmetric unit, which were mod-
eled as SO4

2– ions (Figures 2 and 3). Electron density
at these positions was not seen in the case of the model
refined against the SAD dataset, however. These ions
occupy positions corresponding approximately to the
phosphate moiety of pThr of the Rad53-FHA1 structure
(Figure 3A, B, D and E). Indeed, the interaction network
around the sulphate is typical of the number and type of
bonds found contacting the phosphate ion of the pThr in
structural precedents, and so these sulphate ions mimic
the phosphate of pThr.
Electrostatic potential representations of the surface

of Pml1 highlight two main features (Figure 2A and B).
First, the charged cleft in which the sulphate ion is situ-
ated is relatively basic, and is lined by the residues Arg108,
Lys138 and Gln139. The charge of the cavity appears to
provide a suitable electrostatic environment for the SO4

2–

ion, or indeed a potential phospho-threonine. The pres-
ence of such a charged region around the ligand-binding
site has been noted previously in the case of the FHA1 of
Rad53 (11). Mapping the sequence conservation amongst
close homologues of Pml1 (Figure S1) onto its surface
(34) illustrates the locations of the conserved residues
(Figure 2C and D). Residues such as Arg108, Lys138
and Gln139, which are located within the cleft, appear
to be among the most conserved on the surface of the
protein. Additionally, Ser162, which is in close proxim-
ity to the SO4

2– ion is also highly conserved (Figures S1
and 3A), which implies that it is necessary for Pml1 func-
tion. The second major feature of the electrostatic poten-
tial surface is an almost continuous negatively charged
stripe which passes from one face of the molecule, along
residues Asp160, Glu190, Glu193, Asp196, Glu134, over
to another region on to the opposite face of the mole-
cule (glutamates 54, 71, 79 and 107 as well as aspartates
62, 66 and 97).
The crystal structure of Pml1 has given us clues that it

possesses a relatively conserved, charged binding site, but
various questions remain unanswered. For example, the
identity of the ligand which most likely binds to the con-
served cleft is not currently known. Consequently, it is not
known either whether its phosphorylation is absolutely
required for interaction, despite the circumstantial evi-
dence provided by sulphate ions found in this structure.

Table 3. Structurally similar protein structures

PDB Z-score RMSD Aligned % ID Protein

1r21 12.7 2.0 100 29 Ki-67
1g6g 11.9 2.3 103 21 Rad53 FHA1
1wln 11.1 2.3 105 20 Afadin 6
1mzk 11.1 2.3 103 21 Kinase-associated Protein

Phosphatase
2brf 9.4 2.9 98 15 Poly-nucleotide Phosphatase
1ujx 8.8 2.9 101 19 Polynucleotide Kinase 30

Phosphatase
1qu5 8.5 3.8 112 14 Rad53 FHA2
1ygs 8.1 2.6 104 7 Smad4
1qwt 6.7 3.0 109 6 Interferon regulatory factor 3
1lgp 5.1 2.9 69 23 CHFR mitotic checkpoint

protein
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An alternative 5’ splice-site competition assay reveals that the
FHA phosphothreonine-binding cleft of Pml1 is not required
for splicing

The data presented above indicate that, through the Pml1
subunit, the RES complex may interact with partners in a

phosphorylation-regulated manner. To test the implica-
tion of such a potential interaction in splicing, we con-
structed Pml1 mutants carrying substitutions of residues
R108 to A, S137 to R or S137 to A. These mutations were
designed based on the structure of the Pml1 subunit to

Arg108

Ser162

Glu134

Asp160

Pro173

Lys51

Arg176

BA

Ser137

Arg108

Lys138

Ser162

Glu134

Ala49
NH2

Glu190

Glu193

Asp89

Asp196

Asp160

Gln139

Glu71
Asp62

Asp66

Asp97

Glu107

Glu54

Glu79

DC

Glu71

Asp62

Asp66

Asp97

Glu107

Glu54

Glu79

Gly111

Lys51

Gly111

0° 180°

180°0°

SO4
2-

Ser137

Lys138

Ala49
NH2

Gln139

SO44
2-

Figure 2. Electrostatic and conservation surfaces of Pml1. Pml1 is shown in two views, (A) and (C), depicting the sulphate-binding cleft, and after
having been rotated 1808 around the axes shown (B) and (D) to show the opposite face. A, B): Electrostatic properties of Pml1. Electrostatic
potentials were calculated using APBS (49), with a protein dielectric constant of 2.0 and a solvent dielectric of 80 and mapped onto the surface of
Pml1. Electrostatic potentials are shown as a gradient from �15 kT/e (negatively charged areas, red) <0 kT/e neutral, white <15 kT/e (positively
charged regions, blue). In (A), the basic cleft in which the sulphate ion is situated (shown as sticks, as in Figure 1), is located at the top right of the
molecule, with the N-terminal Ala49 just below it. An acidic region is also apparent on the left section of the molecule, which runs over the top, to
the opposite face (B). (C, D) Conservation of surface residues of Pml1. Conservation of residues, using the same alignment as Figure S1 for the
calculation (34), in steps from white (not conserved), to dark orange (sequence identity). A notable region of conserved residues is apparent around
the sulphate-binding site. This figure was produced using PyMol (50).
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avoid the perturbation of the overall structure of Pml1,
while sterically hindering binding to the FHA pThr-bind-
ing pocket. These mutations were constructed in yeast
shuttle vectors containing the Pml1 ORF and natural
flanking sequences, including its putative promoter and
terminator. A plasmid expressing wild-type Pml1 was
also constructed as a control. These plasmids were intro-
duced into a Pml1 deletion strain with splicing and pre-
mRNA leakage reporters, which had been used previously
to characterize the phenotypes of the RES mutants.
However, b-galactosidase analysis failed to provide a defi-
nitive conclusion as to the role of the Pml1 pThr-binding
site on splicing or pre-mRNA leakage. This result is prob-
ably a consequence of the moderate phenotypes exhibited
by the Pml1 mutant, which may have been further weak-
ened by heterogeneity in plasmid numbers (resulting from
interaction/competition between the reporter plasmids
and Pml1 expressing plasmids in this specific test), thus
affecting the b-galactosidase assay results.

To overcome the limited sensitivity of this first analysis,
we designed a potentially more sensitive assay by testing
the effect of RES mutations on a reporter carrying com-
peting 50 splice sites (Figure 4A). Indeed, as RES inactiva-
tion had been shown previously to affect preferentially
introns carrying weak 50 splice sites, we reasoned that
RES inactivation might shift the usage of alternative
splice sites from a weak site to a strong one. To test this
hypothesis, a reporter carrying a GUAUaU mutant
upstream site and a wild-type GUAUGU downstream
site, as well as controls, were introduced into a Snu17
deletion mutant. A Snu17 mutant was selected to validate
the assay, as it demonstrates a stronger splicing phenotype
than Pml1. Splicing of the reporter was followed by ana-
lyzing b-galactosidase production, with increases reflecting
usage of the upstream site and decreases usage of the
downstream site, because the latter one produces an out-
of frame mRNA. Notably, while deletion of Snu17
resulted in only a 2.5-fold reduction in the splicing of
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a wild-type intron carrying a single 50 splice site [consistent
with previous analyses (2)], we observed a 20-fold reduc-
tion of the usage of the upstream splice site in a Snu17
mutant using the alternative splicing reporter (Figure 4B).
These results demonstrated that Snu17 is endowed with
the ability to alter splice-site choice, and that the dupli-
cated splice-site reporter indeed provides a more sensitive
assay for RES splicing activity.
The same reporter was thus used to analyze splicing in

the Pml1 mutant strains. b-galactosidase assays demon-
strated that Pml1 inactivation also induces a 12-fold
drop in the usage of the upstream site of this reporter,
while it had no significant effect on the splicing of a
wild-type intron under the same conditions, in agreement
with previous analyses. The Pml1R108A, Pml1S137F and
Pml1S137R mutants did not result in any alteration of the
splicing pattern using this sensitive assay, suggesting that
the interaction of the FHA domain of Pml1 with a phos-
phorylated ligand is unlikely to be involved in pre-mRNA
splicing, suggesting its implication in another function.
This is consistent with previous analyses that revealed

that the RES complex was a multifunctional entity affect-
ing several steps of the gene expression pathway (2).

Production of recombinant RES and subunit
interaction pattern

To better understand the structure and function of the
RES complex, the next step was to elucidate how Pml1
interacts with the two other subunits of the RES complex,
namely Snu17 and Bud13. The RES complex can be
purified from TAP-tagged strains of S. cerevisiae (2).
This allowed us to estimate the size of the complex purified
from yeast by size exclusion chromatography to be
roughly 80 kDa, consistent with a 1:1:1 stoichiometry of
the three subunits (calculated molecular weight: 72 kDa).
However, the yields were too low for further structural
analyses. Therefore, we decided to resort to recombinant
protein production for the analysis of complex organiza-
tion. For this purpose, we constructed a set of artificial
operons in E. coli expression vectors. These plasmids con-
tained the coding sequence of one RES subunit fused to an
N-terminal 6His-tag either alone or in tandem with the

β-galactosidase

GUAUaU GUAUAU

Out of fra
me

A

B C

V
ec

to
r

V
ec

to
r

W
T

 P
m

l1
P

m
l1

R
10

8A
P

m
l1

S
13

7R
P

m
l1

S
13

7F

Plasmid

Strain

Reporter

WT pml1

Simple intron

V
ec

to
r

V
ec

to
r

W
T

 P
m

l1
P

m
l1

R
10

8A
P

m
l1

S
13

7R

P
m

l1
S

13
7F

WT pml1

Alternative
5′ splice site

Figure 4. A sensitive assay based on alternative 50 splice-site choice shows that the Pml1 phophopeptide-binding pocket does not affect splicing.
(A) Structure of the reporter used for the splicing assays. The reporter is based on the insertion of the RP51A intron and flanking sequence in the
lacZ coding sequence encoding b-galactosidase (51). The 50 splice site was duplicated with the upstream copy being mutated at position 5 from G to
A, while the downstream copy is wild type. Usage of the upstream 50 splice site produces in-frame messages encoding b-galactosidase while usage of
the downstream 50 splice site produces out of frame mRNAs. (B) Histogram reporting the results of b-galactosidase assays from the reporters
encoding no b-galactosidase (‘background’), the LacZ reporter gene with no intron (‘no intron’), the LacZ reporter gene interrupted by a simple
intron (‘simple intron’) or the LacZ reporter gene interrupted by an intron with alternative 50 splice sites depicted in (A) (‘alternative 50 splice sites’)
expressed either in a wild-type yeast strain (hatched bars) or in a strain in which Snu17 had been deleted (black bars). (C) Plasmids without an insert
(‘Vector’), encoding Pml1 (‘WT Pml1’) or containing Pml1 mutated at the putative pThr-binding site (‘Pml1R108A’, ‘Pml1S137A’ and ‘Pml1S137F’)
were assayed to detect effects on splicing. These were tested in wild-type yeast strains (‘WT’) or in a strain in which Pml1 had been deleted (‘�pml1’),
using either the reporter encoding LacZ reporter gene interrupted by a simple intron (‘simple intron’) or LacZ reporter gene with alternative 50 splice
sites depicted in (A) (‘alternative 50 splice sites’). A histogram reporting the results of these b-galactosidase assays is depicted.
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coding sequence(s) of one or both of the other RES sub-
units. Proteins expressed in E. coli were purified on Ni2+-
NTA beads and analyzed by gel electrophoresis.
Production of the 6His-tagged Snu17 protein was efficient
(Figure 5, lanes 1–3), and co-expression of 6His-Snu17
with either Bud13, or with both Bud13 and Pml1 resulted
in the recovery of complexes containing the two or the
three proteins after affinity purification on Ni2+-NTA
beads (Figure 5, lanes 4–9). Control experiments con-
firmed that untagged proteins were unable to interact
with the affinity media alone (data not shown). Thus,
this experiment demonstrated that the RES complex can
be produced in a recombinant manner in E. coli, where it
assembles efficiently. Alternatively, we were able to recon-
stitute the entire RES complex by incubating together
independently expressed subunits (data not shown).

Analysis of the proteins that co-purified after
co-expression in E. coli also indicated that Bud13 interacts
directly with Snu17 (see earlier section). We produced and
analyzed other operons, in order to determine the subunit
interaction pattern. Expression and purification of 6His-
tagged Bud13 was less efficient than 6His-Snu17, but still
allowed the recovery of the tagged protein (data not
shown). Vectors encoding untagged Pml1, together with
6His-Bud13, led to the production of a large amount of
soluble Pml1 (Figure 5, lane 10) that did not co-purify
with his-tagged Bud13 (lane 11), suggesting either that
the two proteins do not interact, or that they interact
only weakly. In contrast, co-expression of 6His-Bud13
with Snu17 led to the co-purification of the two proteins
(data not shown), confirming that they interact directly.
Finally, co-expression of 6His-Snu17 with Pml1 led to the
efficient co-purification of the two proteins, providing evi-
dence that these two subunits interact directly (Figure 5,
lane 15). Overall, these data have demonstrated that Snu17
is the central component of the RES complex, where it
interacts independently with Bud13 and Pml1.

Conversely, we have been unable to observe a strong
direct interaction between Bud13 and Pml1.

Identification of sequences Snu17 of required
for interaction with its partners

We used a transposon-based mutagenesis strategy
(Entranceposon, Finnzyme) to construct a collection of
operons encoding 6His-Snu17, Bud13 and Pml1, carrying
random insertions of 15 nucleotides in the region covering
the Snu17 coding sequence as well as the N-terminal half
of Bud13 (see Materials and Methods section). Because of
the sequence of the inserted nucleotides, this mutagenesis
strategy preserves the reading frames and avoids the crea-
tion of truncated proteins due to the undesired introduc-
tion of stop codons. Small-scale protein purifications were
then performed from cultures of 49 randomly selected
mutants and recovered proteins analyzed by gel electro-
phoresis (Figure 6A and data not shown). Analysis of the
Coomassie-stained SDS-PAGE experiments allowed us to
classify the mutations into four main groups: (i) efficient
co-purification of the three RES subunits as observed with
the wild-type operon (e.g. lanes 4, 6, 8, 10, 12 and 14),
(ii) efficient co-purification of the three RES subunits
but with altered mobility of the Snu17 subunit (e.g.
lanes 3, 9, 11), (iii) strongly reduced levels of all three
RES proteins (e.g. lanes 5 and 7) or (iv) normal levels of
Bud13, usual levels of Snu17 of altered mobility and a
reduced yield of Pml1 (e.g. lanes 13 and 15).
Many mutations were mapped by virtue of a unique

restriction site introduced within the inserted nucleotide
sequence. The clustering of such mutations indicated
that the first category corresponded to insertions in the
N-terminus of the Bud13 coding sequence (or intergenic
regions), whereas members of the second category were
consistent with insertions in Snu17 that did not alter inter-
action with its partners. The third category consisted of
mutations of Snu17 that prevented its expression and
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therefore co-purification of its partners. Finally, the fourth
category corresponded to Snu17 mutations which spe-
cifically perturbed the Snu17–Pml1 interaction, while
preserving the Snu17–Bud13 interaction. For several
representative mutants and for all mutants which specifi-
cally blocked the interaction with Pml1, the precise sites of
insertion were determined by DNA sequencing. Mutants
that did not affect complex formation were located in
the N-terminal extension preceding the Snu17 RRM or
extended loops connecting the predicted b-sheets and
a-helices of the RRM (Figure 6C). Mutants which
reduced the recovery of the RES complex either disrupted
structural elements of the RRM domain, or altered the
6His tag. Interestingly, all mutants which were detrimen-
tal to the interaction with Pml1 were grouped within a
stretch of residues located immediately downstream of
the RRM domain (Figure 6C, red dots).
Comparison of Snu17 sequences from various Saccha-

romyces species indicates that this region is particularly
well conserved (data not shown). A more moderate con-
servation is also detectable in other fungi (e.g. S. pombe)
and mammals (Figure 6B). This observation indicates that
these amino acids are probably part of the Pml1-binding
site. This sequence was named PIPR for ‘Pml1 Interaction

Promoting Region’. We note that residual binding of Pml1
was still observed with Snu17 mutants carrying insertions
in the PIPR sequence, suggesting that Pml1 may also con-
tact other structural elements of the Snu17 factor.

To confirm the results obtained with insertion mutants,
we constructed operons which express various truncated
versions of 6His-Snu17, Bud13 and Pml1. Deletion of the
last 10 residues of Snu17 that are not conserved did not
affect its interaction with either Bud13 or Pml1. In con-
trast, removal of the last 35 residues of Snu17, which
include the PIPR, lead to only residual binding of Pml1,
but normal association with Bud13 (data not shown). This
confirms the importance of the conserved region located
downstream of the RRM for efficient Pml1 binding.
However, the C-terminal tail of Snu17, encompassing
the PIPR (residues 111–149) was unable to pull-down sig-
nificant quantities of Bud13 or Pml1 (data not shown),
confirming that other structural elements of Snu17 are
required for efficient interaction with Pml1.

Taken as a whole, these data indicate that Snu17 con-
tains in its C-terminal tail a specific motif, PIPR, which is
required for efficient Pml1 binding. This element probably
constitutes part of the Pml1-binding site, but is not suffi-
cient in itself for binding, suggesting that other Snu17
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residues contribute to the Pml1 interaction. However,
we cannot exclude the possibility that the PIPR residues
affect indirectly Pml1 binding through an effect on Snu17
folding.

The C-terminal region of Bud13 mediates interaction with
Snu17 via a ULM-like motif

Mutagenesis of the N-terminal half of Bud13 failed to
identify a region that mediates Snu17 binding (see in the
earlier section). Bud13 appears to be poorly conserved
between species, apart from its C-terminal region (residues
201–266 of the yeast protein, Figure 7A). Analysis of this
sequence revealed the presence of conserved tryptophan
residues, which in some factors have been shown to medi-
ate interactions with RRMs, as for example in the case
of the interaction occurring between the third RRM of
U2AF65 and SF1 (35). Such RRMs are collectively
termed UHMs (for U2AF Homology Motifs) (36), while
their cognate ligands are called ULMs (for UHM ligand
motifs). The residues flanking tryptophan 232 of Bud13
bear a significant similarity to those flanking the trypto-
phan residue of SF1 that mediate contacts with the U2AF
RRM (Figure 7A).

Despite the fact that Snu17 has not been positively
identified as an RRM domain of the UHM subfamily,
we tested whether the C-terminal region of Bud13 could
promote the interaction with Snu17. For this purpose, we
mixed equimolar quantities of the purified Snu17 protein
with a recombinant peptide encompassing residues 201–
266 of Bud13 and detected the formation of a complex
by size exclusion chromatography. Fractionation of the
polypeptides present in the various fractions by gel elec-
trophoresis revealed the co-fractionation of the two poly-
peptides, indicative of complex formation (Figure 7B). As
a control, the N-terminal region of Bud13 (residues 1–201)
was shown to be unable to interact with Snu17 (data not
shown). These experiments indicated that the C-terminal
region of Bud13 interacts with Snu17 and this may occur
through the interaction of a ULM-like motif with the
Snu17 RRM. We observed, however, that the mutation
Bud13 arginine 231 to aspartate or tryptophan 232 to
alanine did not abolish its interaction with Snu17
(Supplementary Figure 3 and data not shown), in contrast
to the results reported for the U2AF65–SF1 interac-
tion (35). This suggests that the mode of interaction of
Bud13 and Snu17 may only be distantly related to the
one observed of ULM an UHM, consistent with the fact
that the Snu17 RRM was not identified as a UHM
domain.

DISCUSSION

The X-ray crystallographic structure of the FHA domain
of Pml1 indicates that it possesses many of the charac-
teristics required to bind a peptide ligand harboring a
pThr residue. This conclusion is further supported by
the observation of a sulphate ion in the pThr-binding
pocket in the crystal structure. Strikingly, the most
N-terminal ordered residue, Ala49, is �7.5 Å from the
SO4

2– ion. It will be interesting to determine whether

the additional disordered residues at the N-terminus of
Pml1 participate in the interaction with ligands. Pml1
possesses a stripe of basic residues which surround the
bound sulphate ions, a feature which has been observed
previously in the case of the FHA1 of Rad53 (11). How-
ever, the Pml1 surface also displays a long acidic stripe,
which is composed mainly of glutamate and aspartate
residues. The function of this region is still unclear,
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but may be related to interaction with other partners with
significant negatively charged exposed areas.
Although the core features of pThr-peptide recognition

appear to be conserved among the known structures of
FHA domain-containing proteins, there are also major
differences in the modes of peptide binding among them.
For instance, the length of the bound peptide differs for
different FHA domains. In the case of Rad53 FHA1,
which was discussed above, the size of the cavity into
which the peptide’s +3 residue fits is predicted to influ-
ence the specificity of the interaction. In the corresponding
structure, the selected aspartate at the +3 position of the
ligand forms a hydrogen bond with Rad53 Arg83 (10).
The structurally equivalent residue in Pml1 is Thr135,
and this residue is displaced away from the peptide-
binding cleft by �2.2 Å when the two FHA domains are
superposed. The peptide-binding cleft of Pml1 is larger
than that of Rad53, and Pml1 may therefore recognize a
bulkier side chain than aspartate at the pThr +3 position.
The most similar structure to Pml1 is that of the FHA

domain of Ki-67 (Table 3) (32), whose structure has also
been solved in complex bound to a phosphorylated pep-
tide derived from hNIFK (29) (Figure 3C and F). This
interaction differs greatly from its structural precedents
in that the target sequence is much longer than thought
necessary for other FHA domains and multiple sites must
be phosphorylated for optimal binding. Although the pri-
mary interactions are centered on the pThr234, two other
phosphorylation events, one on Ser230 and another on
Thr238, are required for optimal affinity. Also, a b-sheet
of Ki-67 is extended by the contribution of an extra
b-strand from hNIFK (29). It will be interesting to deter-
mine whether such a b-sheet extension also occurs upon
binding of Pml1 to a putative ligand. Only slight clashes
occur when Pml1 is superimposed onto Ki-67:hNIFK,
and these occur between the hNIFK peptide and the
loop regions of Pml1, indicating that this mode of peptide
binding is compatible with the FHA domain of Pml1.
We investigated the function of the FHA domain of

Pml1 by mutating residues in such a way that binding
of a pThr ligand would be inhibited, while the general
structure of the domain would be maintained. The pheno-
types of the three mutants that we produced were tested in
yeast. For this purpose, we developed a new, sensitive
assay, based on competing 50 splice sites. First, this
assay was validated using the Snu17 mutant demonstrat-
ing that Snu17 was able to alter 50 splice-site selection
in the artificial model system. This observation is consis-
tent with earlier analyses that had shown that Snu17
was required to allow the Mer1-dependent regulation of
splicing of the AMA1, MER2 and MER3 transcripts
during meiosis (37).
In several cases, human homologues of yeast factors

endowed with the ability to control splice-site selec-
tion of artificial reporters were shown to be bona fide
splicing regulators of alternative splicing in mammalian
cells (38–40). It is thus tempting to suggest that human
Snu17, and more generally the human RES complex, is a
good candidate to be an alternative splicing regulator.
Moreover, using this assay, we were able to demonstrate
that the absence of Pml1 had a strong effect on splicing,

but that mutation of the pThr-binding site of its FHA
domain did not affect splice-site choice. These results
infer that the pThr-binding pocket of Pml1, which corre-
sponds to one of the most conserved regions of this pro-
tein, is probably involved in another function, supporting
the multifunctional nature of this assembly (2). However,
we cannot definitively exclude the possibility that it was
insufficiently perturbed by the mutations tested here to
affect its binding. The pThr-binding site of Pml1 could
be involved in the control of pre-mRNA leakage, as this
is one of the other functions ascribed to the RES com-
plex (2) or could, for example, control the intracellular
localization of the RES complex. Unfortunately, given
that the corresponding phenotype is weak, we were
unable to obtain a definitive validation of the former
hypothesis in strains where Pml1 mutants are expressed
from plasmid copies.

Dissection of the RES complex indicates that it is
organized around a central Snu17 subunit, which binds
independently to Bud13 and Pml1 (Figure 8). We have
not obtained precise information with respect to the site
of interaction of Snu17 on Pml1, except that the first 24
residues of this factor that are disordered are not required
for binding, since protein co-expression has showed that
this sequence is dispensable both for binary complex for-
mation with Snu17 and for formation of the ternary RES
complex (data not shown). Snu17 will therefore probably
interact with the FHA domain of Pml1, since this domain
covers most of the remainder of its sequence. The absence
of quantitative phosphorylation of Snu17 produced in
yeast (data not shown), and the strong interaction
observed between recombinant factors produced in the
absence of a native kinase in E. coli, indicate that the
Snu17–Pml1 interaction is unlikely to involve the pThr-
binding pocket of Pml1. This conclusion is further sup-
ported by the observation that elimination of the Pml1
subunit from the RES complex results in a splicing
defect that is not detected for mutants of its pThr-binding
pocket. Rather, the location of other Pml1 surface resi-
dues that are conserved may indicate a plausible loca-
tion of the Snu17-binding site. Indeed, analysis of the
Pml1 X-ray structure reveals that a conserved stripe of
residues along Gln139, Leu50, Ser102 and Glu54 is
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of the RES complex. In the model, Snu17 (orange) is the core subunit
with an RRM-domain structure. Bud13 (red) interacts with Snu17 via
its UHM Ligand Motif (ULM)-like sequence within its C-terminus,
potentially through a conserved tryptophan. The binding of Pml1
(purple) to Snu17 is mediated primarily by a sequence within the
Snu17C-terminal tail, termed the Pml1 Interaction Promoting
Region (PIPR).
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present on one face of the molecule. Further experimen-
tation will be required to test whether this represents
residues recognized by Snu17. Insertion mutagenesis
identified a sequence element located downstream of the
RRM domain of Snu17 as a major determinant for inter-
action with Pml1 (Figure 8). This element, PIPR, appears
to be necessary for a strong interaction, although residual
association of Pml1 and Snu17 was still detected in its
absence, which indicates that at least one other contact
point is likely to exist. BLAST searches (41) failed to
identify peptides similar to PIPR in proteins other than
Snu17 homologues, suggesting that this motif does not
participate in interactions other than between Snu17 or
Pml1 and their homologues.

Concerning the Bud13–Snu17 interaction, sequence
comparison and deletion analysis indicated that the con-
served C-terminal region of Bud13 is necessary and suffi-
cient for interaction with Snu17. In contrast, we have
not been able to identify any Snu17 mutation that speci-
fically affected its interaction with Bud13. All mutations
and truncations of the N- and C- terminal extensions
which flank the Snu17 RRM that we identified did not
perturb the interaction with Bud13. This suggests that
the Snu17 RRM domain may be important to mediate
this interaction (Figure 8). This possibility is further sup-
ported by the sequence similarity between Bud13 and
ULM motifs, which suggests that the mode of interaction
between Bud13–Snu17 could share some similarity with
the one observed between SF1 and the third RRM of
U2AF65, or between the fifth ULM of SF3b155 and
the UHM of SPF45 (35,42). However, mutations that
have been shown to disrupt the SF1–U2AF65 interac-
tion (35) failed to abrogate the Snu17-Bud13 interaction
(Supplementary Figure 3). It is likely, therefore, that such
mutant only weakened the Snu17–Bud13 binding, and
that this association differs in some manner from typical
UHM–ULM interaction. RRM domains possess two
short characteristic sequences, the RNP1 and RNP2
motifs, and it has been shown that their sequences can
be used to determine whether they are of the canonical
or UHM-type (36). By these criteria Snu17 should not
be classified as a UHM, since the sequence which cor-
responds to the RNP1 motif (QGFAYLKY, residues
72–78), contains aromatic residues (Phe73, Tyr75 and
Tyr78) at all three positions which are characteristic to
the consensus RRM domain sequence (+G����X�
where + corresponds to basic amino acids, X any resi-
dues, � aromatic residues, � aliphatic residues and � to
small amino acids) rather than amino acids proposed to be
characteristic of UHM (XGX���X�) (36) (Figure 6C).
As Snu17 consists primarily of an RRM domain, it is
possible that it contacts RNA specifically. However, in
common with RRM domains of the UHM type, Snu17
has an acidic isoelectric point, which should be suboptimal
for RNA binding. However, a reliable categorization of
the nature of the RRM domain of Snu17 and its interac-
tion with Bud13 will have to await the solution of the
corresponding atomic structure.

Altogether, our data indicate that Snu17 occupies a
central position and interacts on the one hand with
Pml1 and on the other hand with Bud13 (Figure 8).

In the light of the phenotypes elicited by the deletion
mutants presented here, it is tempting to speculate that
Snu17 would contact target RNAs, Bud13 would interacts
with the splicing machinery, while Pml1 would affect pri-
marily nuclear mRNA retention. However, our data indi-
cate that the various functions of the RES complex are not
entirely separable, suggesting that the presence of Bud13
or Pml1 would be essential to maintain full complex activ-
ity. The structural model proposed here for the RES com-
plex will facilitate future study of its function in various
RNA-based processes. In addition, our analyses have
demonstrated that the demanding task of deciphering
the structural architecture of complexes can be solved, at
least in part, by combining crystallographic studies
with co-expression of protein in E. coli to reconstitute
the complex and various mutagenesis strategies to gain
an initial understanding of the interaction network occur-
ring between the subunits. Given the large number of
complexes identified in the recent years thanks to the
development of by high-throughput affinity purification
methods (43–46), our strategy may prove to be a useful
tool for the analysis of the organization, structure and
function of other cellular assemblies.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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43. Gavin,A.-C., Bösche,M., Krause,R., Grandi,P., Marzioch,M.,
Bauer,A., Schultz,J., Rick,J.M., Michon,A.-M., Cruciat,C.-M. et al.
(2002) Functional organization of the yeast proteome by systematic
analysis of protein complexes. Nature, 415, 141–147.

44. Gavin,A.-C., Aloy,P., Grandi,P., Krause,R., Boesche,M.,
Marzioch,M., Rau,C., Jensen,L.J., Bastuck,S., Dümpelfeld,B. et al.
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Séraphin,B. (1999) A generic protein purification method for
protein complex characterization and proteome exploration.
Nat. Biotechnol., 17, 1030–1032.

46. Ho,Y., Gruhler,A., Heilbut,A., Bader,G.D., Moore,L., Adams,S.L.,
Millar,A., Taylor,P., Bennett,K., Boutilier,K. et al. (2002)

142 Nucleic Acids Research, 2009, Vol. 37, No. 1



Systematic identification of protein complexes in Saccharomyces
cerevisiae by mass spectrometry. Nature, 415, 180–183.

47. Kraulis,P.J. (1991) MOLSCRIPT: a program to produce both
detailed and schematic plots of protein structures. J. Appl.
Crystallogr., 24, 946–950.

48. Esnouf,R.M. (1997) An extensively modified version of MolScript
that includes greatly enhanced coloring capabilities. J. Mol. Graph
Model, 15, 132–134, 112–133.

49. Baker,N.A., Sept,D., Joseph,S., Holst,M.J. and McCammon,J.A.
(2001) Electrostatics of nanosystems: application to micro-
tubules and the ribosome. Proc. Natl Acad. Sci. USA, 98,
10037–10041.

50. Delano,W.L. (2002) The PyMOL Molecular Graphics System.
Delano Scientific, San Carlos, CA.

51. Teem,J.L. and Rosbash,M. (1983) Expression of a beta-
galactosidase gene containing the ribosomal protein 51 intron
is sensitive to the rna2 mutation of yeast. Proc. Natl Acad.
Sci. USA, 80, 4403–4407.

52. Thompson,J.D., Gibson,T.J., Plewniak,F., Jeanmougin,F. and
Higgins,D.G. (1997) The CLUSTAL_X windows interface: flexible
strategies for multiple sequence alignment aided by quality analysis
tools. Nucleic Acids Res., 25, 4876–4882.

53. Cole,C., Barber,J.D. and Barton,G.J. (2008) The Jpred 3 secondary
structure prediction server. Nucleic Acids Res., 36, W197–W201.

Nucleic Acids Research, 2009, Vol. 37, No. 1 143


