ZMV

Molecular Vision 2009; 15:38-44 <http://www.molvis.org/molvis/v15/a4>
Received 16 September 2008 | Accepted 6 January 2009 | Published 12 January 2009

© 2009 Molecular Vision

Identification of a novel splice-site mutation in MIP in a Chinese
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Purpose: To map the locus and identify the gene causing autosomal dominant congenital cataract (ADCC) with “snail-

like” phenotype in a large Chinese family.

Methods: Clinical and ophthalmologic examinations were conducted on family members and documented by slit lamp
photography. Linkage analysis was performed with an initial 41 microsatellite markers, then 3 additional markers flanking
the major intrinsic protein (MIP) gene. Mutations were screened by DNA sequencing and verified by restriction fragment

length polymorphism (RFLP) analysis.

Results: Significant two-point LOD scores were obtained at 5 markers flanking MIP with the highest 3.08 (6=0.00) at
marker D12S1632. Mutation screening of MIP identified a heterozygous G>A transition at the acceptor splice site of
intron 3 (IVS3 —1 G>A), abolishing a BstSF I restriction site in one allele of all the affected individuals.

Conclusions: We identified a novel splice-site mutation (IVS3 —1 G>A in MIP) in a Chinese ADCC family. To our
knowledge, this is the first report on an acceptor splice-site mutation in human genes associated with ADCC.

Although surgical techniques and visual prognosis have
been greatly improved in recent times, congenital cataracts
remain the leading cause of visual disability in children
worldwide. Without prompt treatment, cataracts can occlude
clear imaging on the retina, resulting in failure to develop
normal retinal-cortical synaptic connections and finally,
irreversible amblyopia. Approximately 50% of congenital
cataracts are inherited, with the most common being the
autosomal dominant form [1]. To date, more than 25
independent loci and 17 cataract-related genes have been
identified as being associated with isolated autosomal
dominant congenital cataract (ADCC) [2]. These genes can
be divided into 5 groups including: (1) Genes encoding
crystallins: CRYAA, CRYAB, CRYBAI/A3, CRYBAA4,
CRYBBI, CRYBB?2, CRYGC, CRYGD, and
CRYGS [3-11]; (2) Genes encoding membrane transport and
channel proteins: GJA3, GJAS, and MIP (also know as
AQPO0)[12-14]; (3) Genes encoding cytoskeletal proteins such
as BFSP2 [15,16]; (4) Genes encoding transcription factors
such as PITX3 and HSF4 [17,18]; and (5) Others: CHMP4B
[19] and EPHA?2 [20]. Most of the mutations detected in these
genes are missense and nonsense mutations [21]. Few splice-
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site mutations have ever been reported associated with ADCC,
exceptin CRYBA1/A3 and HSF4 [22-24]. Furthermore, to our
knowledge, there is no report on an acceptor splice-site
mutation in human genes associated with ADCC.

In this study, we identified MIP as the disease-causing
gene in a four-generation Chinese family with ADCC by
linkage analysis, and detected a novel G>A transition at the
acceptor splice site of intron 3 of the MIP gene.

METHODS

Family data and genomic DNA preparation: A four-
generation family with ADCC was ascertained through the
Eye Center of the 2nd Affiliated Hospital, Medical College of
Zhejiang University, Hangzhou, China. Appropriate informed
consent was obtained from all participants and the study
protocol adhered to the principles of the Declaration of
Helsinki. Twenty-two individuals (12 affected and 10
unaffected) from the family were enrolled in the study (Figure
1). Affected status was determined by a history of cataract
extraction or ophthalmologic examination, including visual
acuity, slit lamp, and fundus examination. The phenotypes
were documented by slit lamp photography. Blood specimens
(5 ml) from all the patients and available family members were
collected in a BD Vacutainer® (BD Biosciences, San Jose,
CA) containing EDTA. Genomic DNA was isolated as
previously described [25]. Mutation nomenclature follows the
guidelines of the Human Genome Variation Society (HGV)
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Figure 1. Pedigree of the Chinese cataract family and haplotype analysis. Squares and circles indicate males and females, respectively. Solid
and open symbols denote affected and unaffected individuals, respectively. Haplotype analysis shows the segregation of five microsatellite
markers on chromosome 12. The physical distance of microsatellite markers and the disease gene have been given in the top left corner. The

haplotype of the disease-bearing chromosome is indicated by black bar.

with the numbering based on +1 as the A of the ATG
translation initiation codon in the reference sequence. The
initiation codon is codon 1.

Genotyping and linkage analysis: Genotyping was performed
as described previously, using the initial 41 microsatellite
markers, corresponding to 18 known candidate loci for ADCC
[23,26], and then another 3 markers localized to 12q13. Two-
point disease to marker linkage analysis was conducted by the
MLINK routine of the LINKAGE software package, version
5.1. The disease locus was specified to be an autosomal
dominant trait with a disease allele frequency of 0.0001. The
allele frequencies for each marker were assumed to be equal
as were the recombination frequencies in males and females.
Genetic penetrance was assigned to be full.

PCR and DNA sequencing: Gene specific PCR primers for
MIP were designed flanking each exon and intron-exon
junction (Table 1). The cycling conditions for PCR were as
follows: 95 °C preactivation for 5 min, 10 cycles of
touchdown PCR with 0.5 °C down per cycle from 62 °C to
57 °C, followed by 25 cycles with denaturation at 94 °C for
45 s, annealing at 58 °C for 45 s and extension at 72 °C for 45
s. PCR products were isolated by electrophoresis on 3%
agarose gels and sequenced using the BigDye Terminator
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Cycle sequencing kit V 3.1(ABI Applied Biosystems; Sangon
Co., Shanghai, China) on an ABI PRISM 3730 Sequence
Analyzer (ABI), according to the manufacturer’s directions.

Restriction fragment length polymorphism (RFLP) analysis:
After identifying an acceptor splice-site mutation in the intron
3-exon 4 junction, all family members and 100 unrelated
control individuals were examined by RFLP analysis. The
mutation abolished a BstSF I site. PCR products of exon 4 of
MIP were digested for 1 h at 60 °C with BstSF I (Bio Basic
Inc., Markham, Canada) and separated on a 3% agarose gel
by electrophoresis.

RESULTS

Clinical evaluation: We identified a four-generation Chinese
family with clear diagnosis of ADCC. Opacification of the
lens was bilateral in all the affected individuals. Most of the
patients had nystagmus with visual acuity ranging from hand
move to 15/60 in the unoperated eyes. There was no family
history of other ocular or systemic abnormalities. The lens
opacification of the proband was very unique giving an
appearance of a snail, with opacity density gradually
increasing from the peripheral adult nucleus to the inner
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TABLE 1. PRIMERS AND PRODUCT SIZES OF MIP.

Product size

Name Primer (bp)
exon 1F 5'-GACTGTCCACCCAGACAAGG-3' 492

exon 1R 5'-TCAGGGAGTCAGGGCAATAG-3'

exon 2F 5'-TGAAGGAGCACTGTTAGGAGATG-3' 500

exon 2R 5'-AGAGGGATAGGGCAGAGTTGATT-3’

exon 3F 5'-CCAGACAGGGCATCAGT-3’ 373

exon 3R 5'-TGGTACAGCAGCCAACAC-3'

exon 4F 5'-AAGGTGTGGGATAAAGGAGT-3’ 429

exon 4R 5'-TTCTTCATCTAGGGGCTGGC-3’

embryonal nucleus. The cortex remained transparent and the
nuclei were separated by a transparent circle (Figure 2).

Linkage analysis: After the other candidate loci were
excluded, positive two-point LOD scores were obtained at

Figure 2. Photographs of the left eye of the proband with congenital
cataract. A: Diffuse illumination shows a “snail-like” cataract with
opacity density gradually increased from the peripheral adult nucleus
to the inner embryonal nucleus, while the cortex remains transparent.
B: Slit section shows that the opacified nuclei are separated by a
transparent circle (white arrow).
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Figure 3. Forward and reverse sequence analysis of the affected and
unaffected individuals in this ADCC Chinese family. It shows a
heterozygous mutation (IVS3—1 G>A) in the third canonical AG sites
of MIP (black triangles). The black vertical line denotes the normal
intron 3-exon 4 acceptor splice site. The mutation IVS3 -1 G>A
abolishes a BstSF I site (underlined) which is enzymatic cut indicated
by the arrow.
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markers D12S368 (Zmax=1.66 at 6=0.0) and D12S83
(Zmax=2.01 at 6=0.0). MIP was flanked by these two markers.
Therefore, three additional markers very near to MIP were
subsequently used for further confirmation. All of these 5
markers received significant scores, and the maximum score
was obtained with marker D12S1632 (Zmax=3.08 at 6=0.0;
Table 2).

Mutation analysis: By sequencing the PCR products of MIP,
we identified a single base substitution in the acceptor splice
site of intron 3 (IVS3 —1 G>A) which cosegregated with all
affected individuals, whereas this heterozygous mutation was
not present in the unaffected family members (Figure 3). The
IVS3 —1 G>A mutation changed the canonical 3’ acceptor
splice site of intron 3 from AG to AA, resulting in a BstSF 1
restriction site abolishment. RFLP analysis verified the
mutation and showed it cosegregation with all affected
individuals. The mutation was not detected in unaffected
family members and 100 unrelated Chinese without cataract
as control (Figure 4).

DISCUSSION

In this report, we first identified an acceptor splice-site
mutation (IVS3 —1 G>A in MIP) associated with ADCC in a
four-generation Chinese family. To date, five other mutations
in MIP have been identified from five unrelated human
families (c.413C>G, ¢.401A>G, c.638delG, ¢.97C>T, and c.
702G>A). Individuals with ¢.413C>G, c.638delG, and c.
702G>A mutations have polymorphic cataracts [14,27-29].
The c.401A>G mutation causes nonprogressive lamellar
cataract with sutural opacities and ¢.97C>T mutation causes
total cataract [14,29]. In those affected with the IVS3 -1 G>A
mutation, a unique cataract phenotype was observed. The
proband demonstrates a “snail-like” cataract with opacity
density gradually increasing from the peripheral adult nucleus
to the inner embryonal nucleus, while the cortex remains
transparent. It indicates that the dysfunction of AQPO has a
more severe impact on the embryonic and fetal nucleus than
the adult nucleus of the lens, consistent with different stages
of AQPO expression.

Although several cases of splice sites with GT-TG, GT-
CG, GC-AG, GG-AG, CT-AG, or AT-AC dinucleotides at the
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Figure 4. Restriction fragment length polymorphism (RFLP) analysis showing that the abolishment of a BstSF I site cosegregates with affected
individuals. The PCR product of exon 4 with flanking sequences includes 429 bp with 2 BstSF [ sites (CTACAG and CTGTAG). The unaffected
has three fragments (81 bp, 162 bp, and 186 bp) after BstSF I digestion, whereas the affected has four (81 bp, 162 bp, 186 bp, and the crucial
348 bp). Only the affected allele shows the 384bp band. M means DNA ladder marker.

splice junctions were observed, the GT-AG rule is always  +1850nt (0.52), +2588nt (0.64), +2735nt (0.92), +3040nt
obeyed [30]. It is reported that 87% of the 3’ splice-site (0.44), +3074nt (0.88), and +3148nt (0.44) of MIP. Further
mutations involved the invariant AG dinucleotide [31]. As for  study is required to confirm the above sites.

MIP, the canonical AG sites in intron 3 are conserved among Several previous studies have demonstrated that the
different species (Figure 5). Splice-site mutations were  AQPO COOH-terminus is very crucial to lens development
reported to result in exon skipping, activation of crypticsplice  and transparency through interactions with calmodulin,
Sites, creation of a pseudo-exon within an il’ltI'Ol’l, or intron cytoskeletal proteins filensin and CP49, and connexin 45.6
retention, among which exon skipping is the most frequent  [35-37]. Cleavage of the intracellular COOH-terminus
outcome [32]. Mutations in acceptor splice sites can result decreases water permeability and enhances the adhesive
either in use of the acceptor site of the next intron, with  properties of the extracellular surface of AQPO, indicating a
consequent loss of exon skipping, or in the utilization of a  conformational change in the molecule [38,39]. The possible

cryptic acceptor splice site upstream the mutation sites or in aberrant splicing of MIP pre-mRNA may disrupt the normal
the next exon [33]. In our present study, the mutation occurred

Affected Alleles

in the invariant AG dinucleotide of the last intron, so no Major intrinsic protein Intron 3 Exon 4
. . . . . Mutation: .. .CTCTTTCTACAA GTGTACTGGGTAGG. ..
existing canonical AG sites downstream are available to be NM 012064 Homo sapiens:  CTCTTTCTACAG GTGTACTGGGTAGG. . .
used as the alternative acceptor splice site. Therefore’ one or XM_001115118 Macaca mulatta: ...CTCTTCCTACAG GTGTACTGGGTGGG. . .
. . . NM_008600.4 Mus musculus: .. .CTCTTCCCACAG GTGTACTGGGTGGG. . .
more cryptic acceptor splice sites are supposed to be used for XM _843696.1 Canis familiaris: ...CTTTTCCTACAG GTATACTGGGIGGG...
aberrant splicing. According to the NNSPLICE program NM_173937.1 Bos taurus: .. .CTCTTCCTACAG GTGTACTGGGTGGG. . .

[34], we detected 8 possible cryptic acceptor splice sites
scored more than 0.4 in intron 3 and exon 4. They were
respectively located at +1599nt (0.81), +1758nt (0.52),

Figure 5. Multiple-sequence alignment of acceptor splice site in
intron 3 of MIP from different species. It reveals that the canonical
AG sites are conserved among different species.
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TaBLE 2. Two-POINT LOD SCORES FOR LINKAGE BETWEEN AUTOSOMAL DOMINANT CONGENITAL CATARACT LOCUS AND CHROMOSOME

12 MARKERS.

Markers and Physical distance
MIP (Mbp) 0

D12S368 50.9177-50.9179 1.66
DI12S1586 52.4330-52.4333 2.78
D12S1632 54.7016-54.7019 3.08

MIP 55.1300-55.1346
D12S1691 55.7920-55.7923 2.23
D12883 59.1756-59.1759 2.01

LOD scores by recombination fraction (0)

0.1 0.2 0.3 0.4 0.5
1.32 0.95 0.56 0.19 0
2.18 1.57 0.96 0.42
2.52 1.91 1.24 0.55
1.85 1.44 1.00 0.53 0
1.62 1.21 0.77 0.36 0

COOH-terminus of AQPO, and leads to disbalance of the lens
internal homeostasis, which is necessary to maintain
transparency, and finally results in cataract formation. In
addition, mutation analysis of AQPO transcripts from the
Cat™ lens indicated that the Cat™ mutation resulted in
substitution of a long-terminal repeat sequence for the COOH-
terminus of Mip (AQPO-LTR) [40]. AQPO-LTR in Catf* was
accumulated in sub-cellular compartments and made mature
fiber cells fail to stratify into uniform, concentric growth, and
finally resulted in congenital cataract [41,42].

In conclusion, we first describe the identification of an
acceptor splice-site mutation in human genes (IVS3 -1 G>A
in MIP) associated with ADCC, characterized by “snail-like”
cataract phenotype. Further investigation is required to
elucidate the pathogenesis of the novel splice-site mutation of
the MIP gene on cataract formation.
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