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Adaptability of reaching movements depends on a computation in the brain that transforms sensory cues, such as
those that indicate the position and velocity of the arm, into motor commands. Theoretical consideration shows that
the encoding properties of neural elements implementing this transformation dictate how errors should generalize
from one limb position and velocity to another. To estimate how sensory cues are encoded by these neural elements,
we designed experiments that quantified spatial generalization in environments where forces depended on both
position and velocity of the limb. The patterns of error generalization suggest that the neural elements that compute
the transformation encode limb position and velocity in intrinsic coordinates via a gain-field; i.e., the elements have
directionally dependent tuning that is modulated monotonically with limb position. The gain-field encoding makes the
counterintuitive prediction of hypergeneralization: there should be growing extrapolation beyond the trained
workspace. Furthermore, nonmonotonic force patterns should be more difficult to learn than monotonic ones. We
confirmed these predictions experimentally.

Introduction

Behavioral (Shadmehr and Mussa-Ivaldi 1994; Conditt and
Mussa-Ivaldi 1999) and neurophysiological (Li et al. 2001;
Gribble and Scott 2002) evidence suggests that the brain
controls reaching movements with highly adaptable internal
models that predict behavior of the limb as it interacts with
forces in the external world. To infer how the brain learns
internal models, research has been conducted in three fields:
psychophysics, neurophysiology, and computational model-
ing. Psychophysical experiments have quantified general-
ization, i.e., how error experienced in one movement (in a
given position and direction) affects neighboring movements.
It appears that there is a specific pattern to how the brain
generalizes movement errors to other directions (Sainburg et
al. 1999; Thoroughman and Shadmehr 2000), to other arm
configurations (Shadmehr and Moussavi 2000; Malfait et al.
2002), and to movements with different trajectories (Conditt
et al. 1997; Goodbody and Wolpert 1998).

Neurophysiological experiments have suggested that the
motor cortex may be one of the crucial components of the
neural system that learns internal models of limb dynamics
(Li et al. 2001). There is now significant information about
how various movement parameters, e.g., limb velocity (Moran
and Schwartz 1999), arm orientation (Scott and Kalaska 1997;
Scott et al. 1997), and hand position (Caminiti et al. 1990;
Sergio and Kalaska 1997) are encoded by neurons in the
motor cortex.

Computational models with elements reflecting some of
the cell properties found in neurophysiological experiments
have attempted to explain how patterns of generalization
during adaptation may be related to the neural representa-
tion. These computational models hypothesize that an
internal model is composed of ‘‘elements,’’ or bases, each
encoding only part of sensory space, and that population
codes combine these elements when computing sensorimotor
transformations (Georgopoulos et al. 1986; Levi and Camhi

2000; Pouget et al. 2000; Thoroughman and Shadmehr 2000;
Donchin and Shadmehr 2002; Steinberg et al. 2002). This map
would transform a desired sensory state into a prediction of
upcoming force. Under these assumptions, patterns of error
generalization should reveal the shape of the basis elements.
We performed a set of experiments that examined how the

neural elements might simultaneously encode limb position
and velocity. We show that movement errors generalize with a
pattern that suggests a linear or monotonic encoding of limb
position space and that this encoding is multiplicatively
modulated by an encoding of movement direction. The gain-
field encoding of limb position and velocity that we infer
from the generalization patterns is strikingly similar to neural
encoding of these parameters in the motor cortex (Georgo-
poulos et al. 1984).

Results

Adapting to a Position- and Velocity-Dependent Field
Figure 1 describes an experiment in which subjects

performed reaching movements in force fields that depended
on both velocity and position of the limb. Subjects made
movements in the horizontal plane while holding the handle
of a robot. The task was to reach a target (displacement of
approximately 10 cm; see Materials and Methods) within 500
6 50 ms. Handle and target positions were continuously
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projected onto a screen placed directly above the subject’s
hand (Shadmehr and Moussavi 2000). Feedback on perfor-
mance was provided immediately after target acquisition, but
feedback related only to the subject’s success in arriving at
the target within the prescribed time window and not to the
shape of the hand trajectories. After completion of each
movement, the robot moved the hand to a new start position
and another target was presented. The start positions were
pseudorandomly chosen from three possible locations: left,
center, and right. Twenty-four subjects were divided into four
groups, and the start positions for the four groups were
separated by 0.5 cm, 3 cm, 7 cm, or 12 cm, respectively (Figure

1A). Different colors were used for the left, center, and right
start positions and targets so that we could be certain that
subjects could distinguish the locations even when the
separation distances were small. The targets were placed so
that movements from all three starting locations required the
same joint angle displacement. Thus, the movements were
parallel in joint space and not in Cartesian space (Figure 1A).
Therefore, the movements explored the same joint velocity
space but at different joint positions.
The robot could apply arbitrary patterns of force to the

hand. We programmed it so that the movements were
perturbed by a viscous curl-field. In a viscous curl-field, the

Figure 1. Adaptation to a Force Field That Depends on Both Position and Velocity of the Limb

(A) The origin of the center movements is aligned with the subject’s body midline, and the origins of the left and right movements are
symmetrically positioned with a given separation distance (d) for each group. The target positions shown here are an example for a subject with
typical arm lengths (20, 33, 34 cm shoulder, upper arm, and lower arm lengths, respectively). In order to help subjects distinguish among
locations, different colors were provided for targets at different locations (yellow, green, and blue for the left, center, and right, respectively).
(B) The average trajectories in three positions—left, center, and right (one subject per column)—for the first third of the movements from the
first field set (trials 1–28). Dashed lines are movements during which force field is on and dotted lines are catch trials. Separation distances
between neighboring movements (d) are not scaled in this figure.
(C) The average trajectories for the first third of the fifth field set (trials 337–364). The task is much easier to learn when the three movements are
spatially separated from each other.
DOI: 10.1371/journal.pbio.0000025.g001
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force is proportional to speed and perpendicular to velocity.
However, our viscous curl-fields also depended on position.
During movements from the left starting position, the robot
perturbed the hand with a clockwise curl-field (B¼ [0 13;�13
0] N�s/m, pushing the arm leftward during the movement).
For movements starting on the right, a counterclockwise curl-
field (B ¼ [0 �13; 13 0] N�s/m) was present (pushing the arm
rightward). For the center movements, the field was always
null (no forces were applied). Thus, to succeed in the task, the
subjects needed to produce three different force patterns
although the movements required the same joint angular
velocities. The idea was to find out how far apart the
movements needed to be in position space for the task to
become learnable. To familiarize the volunteers with the task
and produce baseline performance, subjects first did three
sets of 84 movements in which no forces were applied.
Following the baseline sets, subjects did five force-field sets.

We found a limited ability to adapt to such position-
dependent viscous curl-fields. Figure 1B and 1C displays the
average hand paths of movements during the first and last
sets of training for typical subjects from each group. The
figures show movements both in field trials and in catch trials
(occasional trials interspersed with the field trials in which
the robot did not apply any forces). In the early phase of
training, field trials were strongly curved toward the direction
of force, although slight adaptation appeared in the largest
separation distance group (d ¼ 12 cm; Figure 1B). Late in
training (Figure 1C), subjects with the largest separation in
starting position showed manifest adaptation. Hand paths in
the field trials became straighter, and trajectories of catch
trials showed large aftereffects (Figure 1C). In contrast,
subjects with the smallest separation in starting position
showed little improvement in performance. Therefore, it
appeared that movements that were spatially close to each
other could not be easily associated with different force
patterns. As the movements became farther apart, different
forces could be more readily associated with them.

As a measure of error, we used displacement perpendicular
to target direction at 250 ms into the movement (perpendic-
ular error [PE]). Figure 2 shows the error on each trial
averaged across subjects and plotted in a time series for
Group 1 (d ¼ 0.5 cm; Figure 2A) and Group 4 (d ¼ 12 cm;
Figure 2B). A gradual decrease in error magnitude and an
increase in aftereffects in catch trials were apparent in Group
4, but not in Group 1. A learning index combining perfor-
mance on field and catch trials (see Materials and Methods)
allows a comparison of performance across groups (Figure
2C). An ANOVA on the learning index showed a significant
effect both for separation distance and set number (F¼ 41.78,
d.f.¼3, p, 1.0310�8 for distance factor; F¼3.02, d.f.¼4, p,
0.02 for set number factor), suggesting that subjects
performed better in the groups where targets were spatially
separated.

We were struck by another difference between Figure 2A
and 2B. There were never any forces for the center
movement. However, the variance in these movements
(middle traces) changed when going from the baseline sets
to the field sets. For instance, the center movements in Group
1 have a much larger variability in field sets than in baseline
sets. Our interpretation of this is that the forces subjects
experienced on the left and the right influenced the center
movement through generalization (see Dataset S1, found at

http://dx.doi.org/10.1371/journal.pbio.0000025.sd001, for a tri-
al-by-trial analysis). We quantified this generalization (or
interference) to center movements using an index (see
Materials and Methods). In Figure 2D, the generalization
index is shown for all groups. An ANOVA on separation
distance by set number shows that generalization varies
significantly with separation distance but not with set number
(F¼ 15.56, d.f.¼ 3, p , 2.23 10�8 for the distance factor; F¼
0.83, d.f. ¼ 4, p . 0.5 for set number factor). As neighboring
movements became spatially farther apart, generalization
among them appeared to decrease.

Accounting for the Experimental Data with a Model
The above results demonstrate that when different forces

are to be associated with two movements that are in the same
direction but at different spatial locations, generalization
decreases with increased distance between them. On the
other hand, earlier results had found that when movements to
various directions are learned at a single location, learning
generalizes to other arm locations very far away (Ghez et al.
2000; Shadmehr and Moussavi 2000; Malfait et al. 2002).
To reconcile these two apparently contradictory findings,

we performed a simulation of the internal model in which the
force field was represented as a population code via a
weighted sum of basis elements. Each element was sensitive to
both the position and velocity of the arm. The crucial
question was how each element should code limb position
and velocity to best account for all the available data on
generalization. Previous work had shown that velocity
encoding was consistent with Gaussian-like functions (Thor-
oughman and Shadmehr 2000). To account for both our data
on adaptation to position-dependent viscous forces (Figure 2)
and previous data on generalization across large displace-
ments (Shadmehr and Moussavi 2000), we considered both
Gaussian and linear encoding of position space. We first
assumed a Gaussian coding of limb position space and
assessed the optimal width of basis elements to fit the data.
We were surprised to find that the optimal full width at half-
maximum of each element was approximately 80 cm (stand-
ard deviation of Gaussian function, r ¼ 34 cm). This very
broad tuning of position space by Gaussian basis elements
formed an essentially linear position-dependent receptive
field over a workspace three times the width of the training
space. Because this model produced essentially monotonic
encoding of position throughout our training space and
beyond, we decided to study in detail a model with simple
linear position encoding. Indeed, studies of the motor cortex
(Georgopoulos et al. 1984; Sergio and Kalaska 1997),
somatosensory cortex (Prud’homme and Kalaska 1994; Tillery
et al. 1996), and spinocerebellar tract (Bosco et al. 1996) have
found that cells in these areas code limb static-position
globally and often linearly.
One way to represent limb position and velocity is with

basis elements that encode each variable and then add them.
However, additive encoding cannot adapt to fields that are
nonlinear functions of position and velocity, e.g., f (x, _xx)¼ (x /
d)�B _xx. This is the force field that describes the task we
considered in the previous section. A theoretical study
suggests that to adapt to such nonlinear fields, the basis
functions of the combined space must be formed multi-
plicatively rather than additively (Pouget and Sejnowski
1997). We chose to use a multiplicative combination of
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position and velocity. Thus, we hypothesized that position
and velocity encoding are combined via a gain-field mecha-
nism; i.e., the bases have velocity-dependent receptive fields,
and the discharges in these receptive fields are linearly
modulated by arm position (Figure 3A).

We found that when a network learned to represent the
force field via a gain-field encoding of limb position and
velocity, it produced movements that matched the general-
ization pattern both in the current experiment and in earlier
reports. Figure 3C and 3D shows the time series of errors
from the simulated controller in the same format as in Figure

2. The learning and generalization indexes are plotted in
Figure 3E and 3F, and when compared to the values
calculated from subject data, they show good agreement
(correlation coefficient¼ 0.96 for the learning index and 0.99
for generalization).

Why Does Gain-Field Coding Account for the
Patterns of Generalization?
We used the data in Figure 2D (which shows generalization

as a function of spatial location) to estimate the position
sensitivity of the basis elements. To explain how this works,
we illustrated the process using a model that has only two

Figure 2. Movement Errors and Learning Performance as a Function of the Separation Distance

(A) PE averaged across six subjects of Group 1 (d¼ 0.5 cm). Squares indicate catch trials. Error bars show SEM. The average SEM at the center is
1.3 mm in the baseline sets and 6.6 mm in the adaptation sets for Group 1. The average SEM is 2.1 mm in the baseline sets and 2.4 mm in the
adaptation sets for Group 4.
(B) Errors were averaged across six subjects of Group 4 (d¼ 12 cm).
(C) Average learning index (Equation 1) across groups. Learning index is plotted against the separation distance between movements. Thin lines
show the first adaptation set and thick lines show the last adaptation set. n ¼ 6 for each distance. Error bars show SEM.
(D) Generalization index (Equation 2) against spatial distance between movements.
DOI: 10.1371/journal.pbio.0000025.g002
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basis elements and where the basis elements only encode
position. We can limit ourselves to two basis elements because
the position dependence of our task was restricted to a single
dimension. Similarly, because our task only required move-
ments in one direction, we can explain the behavior of the

model without including velocity sensitivity. However, while
the reduced model is useful in describing the basic principles,
we fit the full model to the data. This was for two reasons.
First, the actual adaptation requires velocity coding. Second,
the full model is an extension of models used previously

Figure 3. Adaptation with Basis Elements That Encode Limb Position and Velocity as a Gain-Field

(A) A polar plot of activation pattern for a typical basis function in the model. The polar plot at the center represents activation for an eight-
direction center-out reaching task (targets at 10 cm). Starting point of each movement is the center of the polar plot. The shaded circle
represents the activation during a center-hold period and the polygon represents average activation during the movement period. The eight
polar plots on the periphery represent activation for eight different starting positions. Each starting position corresponds to the location of the
center of each polar plot. The preferred positional gradient of this particular basis function has a rightward direction. The preferred velocity is
an elbow flexion at 628/s.
(B) A state diagram of weights in a simple system with two basis functions. The trajectory from the origin to (½kd, �½kd) shows how weights
converge to the final values trial-by-trial. Three dotted lines represent weights for no errors on the left, center, and right movements,
respectively. Two vectors represent the direction of weight change after left and right movements each.
(C) The bases were used in an adaptive controller to learn the task in Figure 1. Format is the same as Figure 2A; correlation coefficient of the
simulated to subject data is 0.97.
(D) Simulated movement errors in an experiment where spatial distance was the same as in Group 4 in Figure 2B; correlation coefficient is 0.86.
(E) Learning index of the last target set against spatial distance. Dotted lines are from the simulation and thick solid lines are from subjects;
correlation coefficient is 0.96. Note that thick solid lines are the same lines as in Figure 2C.
(F) Generalization index in the last target set against spatial distance. Dotted lines are from the simulation and solid lines are from subjects;
correlation coefficient is 0.99.
DOI: 10.1371/journal.pbio.0000025.g003
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(Thoroughman and Shadmehr 2000; Donchin and Shadmehr
2002), and we wanted to be sure that the new model could
account for all available datasets.

We chose to use hand position (x) for a simpler description
of the model in this section. However, in the full model, the
coordinate system of limb position is in terms of joint angles.
In the simple model, the two bases are g1(x)¼ kxþ b and g2(x)¼
�kx þ b, where x is hand position, k is the sensitivity of the
element’s output to changes in hand position, and b is the
constant. The net expected force is a weighted sum of these
two functions, f̂f (x) ¼ w1�g1(x) þ w2�g2(x), , where w1 and w2 are
weights for g1 and g2, respectively (refer to Materials and
Methods for details). After each trial, weights were updated so
that the expected force function ultimately approximated the
externally applied force. The applied forces in the previous
section were a linear function of hand position, e.g., f(x)¼ x/d,
where d is the separation distance. When w1 ¼½dk and w2 ¼
�½dk, this field is perfectly approximated by the bases. Thus,
with training, weights were updated to converge to these
values. The weight trajectory from the initial value to the final
value is drawn on the state-space diagram in Figure 3B. Three
dotted lines represent weights where the expected force is
correct for right, middle, and left movements, respectively,
and the intersecting point of these three lines is the correct
weight for all three positions, i.e., the final value. The amount
of weight change after each trial depended on the force error
experienced on that trial and the activation of each basis
element on that trial. Thus, after movements on the right (x¼
d), w1 changed more than w2 because g1 was bigger than g2 for
movements on the right, and after movements on the left (x¼
�d), the opposite was true. The diagram shows the weight
change after right and left movements, respectively, where
the slope of each vector (�w2 / �w1) is equal to the ratio g2(x)/
g1(x); e.g., the slope of the vector is (�kdþ b)/(kdþ b) after right
movements and (kd þ b)/(�kd þ b) after left movements. Fast
learning occurred if these vectors were closely aligned to the
middle dotted line (slope ¼�1) because weights can follow a
shorter path from the initial to final values. Thus, we can see
from the simple model that a larger k, a larger d, or a smaller b
will produce faster learning.

The trial-by-trial variation in the center movements is also
clarified by examining this state-space diagram; i.e., any
deviation from the middle dotted line means a nonzero force
expectation for the center movements and larger deviations
correspond to larger errors in the center movements. Thus,
update vectors with a slope near �1 lead to both faster
learning and smaller variance in the middle movements.
Therefore, the slope k and the constant b are important
parameters in our model that determine the learning rate
and the generalization to the center movements. For a given k
and b, the separation distance d will modulate the learning
rate and generalization.

We adjusted k and b for the bases to fit the simulation’s
performance to the generalization observed in subjects (see
Figure 2D). Figure 3C–3F shows good agreement between our
simulation and subject data. However, the question is, can
this same model with the same parameter values explain
other behavioral data?

Testing the Model on Previously Published Results
We found that the gain-field model could also account for a

number of other previously published results. The experi-

ments we focus on here are adapting to a field that depended
only on limb velocity and not position (Shadmehr and
Moussavi 2000) and adapting to a field that depended only
on limb position and not velocity (Flash and Gurevich 1997).
We found that exactly the same basis elements that fit the
generalization pattern in Figure 2D also accounted for
behavior in these paradigms.
Shadmehr and Moussavi (2000) present an experiment

where subjects trained in a position-independent field in one
workspace (hand to the far left) and were then tested in a
different workspace (hand to the far right). Essentially, the
question was, if field f¼1 was presented at position x¼ d, what
kind of force would be expected at another location? We can
predict what will happen by analyzing the reduced model. All
the weights that satisfy w1(kd þ b) þ w2(�kd þ b) ¼ 1 can
approximate this force field correctly. However, the slope of
the weight change vector, i.e., (�kdþ b)/(kdþ b), will determine
the final weights uniquely as w1¼ (kdþ b)/(2k2d2þ2b2) and w2¼
(�kdþ b)/(2k2d2þ 2b2). Thus, the force function approximated
by these weights is f̂f (x) ¼ (k2d�x)/(k2d2 þ b2) þ b2/(k2d2 þ b2).
Therefore, the expected force is again a linear function with
slope (k2d)/(k2d2 þ b2). This slope decreases as the gain k
decreases and the constant b increases. Importantly, when the
trained position d is close to the zero of the coordinate axis,
the slope is also close to zero, making the generalization
function flat (i.e., global generalization).
In the Shadmehr and Moussavi experiment (2000), subjects

trained in a clockwise viscous curl-field (F¼B� _xx, B¼ [0�13;13
0] N m/s) in the ‘‘left workspace’’ (shoulder in a flexed
posture) and were then tested in the same field with the hand
in a workspace 80 cm to the right (shoulder in an extended
posture). The idea was to see whether there is any general-
ization of learning from the left workspace to the right
workspace. Since the viscous curl-field perturbed the subject’s
hand in the perpendicular direction of hand velocity, as a
movement error, they measured the maximum perpendicular
displacement from the straight line connecting start and
target position. For a direct comparison, we used the same
measure, maximum PE, shown in Figure 4. During the left
workspace training, the movement errors decreased (Figure
4A). After the training on the left workspace, Shadmehr and
Moussavi (2000) tested these subjects in the right workspace.
Their errors on the right are significantly smaller than the
errors of control subjects, who did not train on the left,
indicating a transfer of adaptation from the left workspace to
right (Figure 4A). When confronted with the same protocol,
the bases that had fit out data in Figure 3 produced a pattern
of generalization across large distances that was quite similar
to that of the subjects’ generalization (Figure 4B; correlation
coefficient ¼ 0.89).
It is also known that subjects can adapt to position-

dependent spring-like force fields (Flash and Gurevich 1997;
Tong et al. 2002), where force increases linearly with hand
displacement. Flash and Gurevich (1997) showed that
immediately after the introduction of the force field, the
movement trajectories deviated from straight hand paths
with large endpoint errors. However, with training, move-
ments became straighter and errors decreased. This was not
simply a result of increased stiffness because, when the force
field was removed unexpectedly, the trajectories and end-
point errors were on the opposite side of those in the early
force field, indicating a proper internal model. Figure 4C
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shows a position-dependent field in this category, and Figure
4D–4F shows movements made by the simulation as it adapts
to this field. This pattern of adaptation is similar to reported
values in human data (Flash and Gurevich 1997).

Testing the Model’s Predictions
Our hypothesis regarding adaptation with a basis that

encodes position and velocity as a linear gain-field has two
interesting consequences: (1) a change to the pattern of forces
can substantially increase the difficulty of a task; and (2) there
should be hypergeneralization; i.e., forces expected in an
untrained part of the workspace may be larger than the ones
experienced at a trained location.
Figure 5A shows the pattern of forces that was previously

shown to be easily adaptable. Figure 5B shows a similar task,
where the leftward and rightward forces are separated by the
same distance, but instead of making null movements
between the left and right positions, null movements are
made off to the right of the field trials. The field in Figure 5A
is learnable by gain-field basis elements. However, if the
internal model is indeed computed with such elements, then
for the field in Figure 5B we can make two predictions: (1) this
pattern of forces should not be learnable because no linear
function can adequately describe this nonlinear pattern of
force; and (2) null movements at the ‘‘right’’ should show
aftereffects of the center movement despite the fact that no
forces are ever present.
We tested these predictions in two separate groups of

subjects. Six subjects trained in the force pattern of Figure
5A; their performance is shown in Figure 5C (part of the same
data shown in Figure 2C and 2D). Five subjects trained in the
force pattern of Figure 5B; their performance is shown in
Figure 5C. As the model predicted, the performance of
subjects in the forces of Figure 5B was significantly worse
than in forces of Figure 5A (paired t-test on average learning
index across sets: t ¼ 2.51, d.f. ¼ 9, p , 0.05). Recall that
movements at the ‘‘right’’ were always in the null field.
However, as the model predicted, there was significant
generalization here since these movements were significantly
biased to the left (t-test: t¼�8.13, d.f. ¼ 4, p , 0.001).
An interesting property of systems that learn with gain-

fields is that in some conditions, local adaptation should
result in an increasing extrapolation, i.e., hypergeneraliza-
tion. Consider a situation in which, during the training sets,
subjects make movements in the center as well as at 5 cm to
the right (Figure 5D). A counterclockwise curl-field is applied
to the center movements, while no forces are applied to
movements at right. Because the coding of limb position is
linear in the gain-fields, the approximated force function is a
linear function that grows from right to left; i.e., the adaptive
system should expect larger forces when movements are to
the left of center. We tested this in four subjects. During the
test set, catch trials were introduced for center movements
and occasionally a movement was performed at left (Figure
5D). These movements at the left were always in a null field.
The catch trials of left movements were significantly larger
than those of center movements, which is consistent with the
prediction of hypergeneralization (Figure 5E; paired t-test: t¼
4.35, d.f. ¼ 6, p , 0.005).
One concern is the weak learning during the training sets.

However, the average learning index for the center move-
ments in the last set is 0.46, and this is significantly different

Figure 4. Gain-Field Representation Reproduces Previously Reported

Patterns of Spatial Generalization

(A) Figure 4A from Shadmehr and Moussavi (2000). The right
workspace is separated from the left workspace by 80 cm. Each
histogram bar is average maximum PE of 64 movements. Smaller
errors of trained group than those of control group at right
workspace indicate the transfer of learning from left to right
workspace.
(B) Simulation results in the same format as (A); correlation
coefficient to subject data is 0.89.
(C) A spring-like force field, ~FF ¼ K�~xx (K¼ [0�55;55 0] N/m), was used
for simulation.
(D) Hand path trajectories in field trials from the first set in the
spring-like force field. Each set consists of 192 center-out movements.
Targets are given at eight positions on 10 cm circumference in
pseudorandom order.
(E) Hand path trajectories in field trials from the fifth set of training.
(F) Hand path trajectories of catch trials from the fifth set.
DOI: 10.1371/journal.pbio.0000025.g004
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from zero (t-test: t¼ 3.32, d.f.¼ 3, p , 0.05). Considering that
the separation distance between null and force field move-
ments is only 5 cm, this learning index is consistent with the
learning index curve in Figure 2C and consistent with the
learning possible with the proposed bases. More importantly,
despite this small learning in the training space, we found
significantly bigger aftereffects in the test space, i.e., hyper-
generalization. Our simulations suggest that this hypergener-
alization could not be due to varying limb inertia and/or
stiffness as a function of limb position.

Discussion

When people reach to various directions in a small
workspace, velocity- or acceleration-dependent forces that
they experience are generalized broadly to other arm
positions as far as 80 cm away (Shadmehr and Moussavi
2000). These results argue that the neural elements with
which the brain represents the dynamics of reaching move-
ments may not be very sensitive to limb position, in contrast
to findings that they are quite sensitive to velocity and
acceleration. Lack of sensitivity would explain extensive

Figure 5. Predictions of the Gain-Field Encoding and Experimental Verification

(A) A field where forces are linearly dependent on both limb position and velocity.
(B) A field where forces are linearly dependent on limb velocity but nonlinearly dependent on limb position. Gain-field encoding predicts that
the field in (B) will be harder to learn than one in (A).
(C) Learning index of subjects (n ¼ 6) for the paradigm in (A) and subjects (n ¼ 5) for the paradigm in (B).
(D) Gain-field encoding predicts hypergeneralization. The figure shows movements and its associated force field during training and test sets.
(E) Performance of subjects (n ¼ 4) for the paradigm in (D). Dark lines are errors in center movements and gray lines are errors in right
movements. The shaded areas represent the SEM. Filled diamonds show the catch trials for the left movements during test set; filled squares show
the catch trials for center movements.
DOI: 10.1371/journal.pbio.0000025.g005
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generalization. However, it is known that humans can adapt
reaching movements to position-dependent spring-like forces
(Flash and Gurevich 1997). The ability to adapt to position-
dependent fields suggests that the internal model can have
steep position sensitivity (Tong et al. 2002). This apparent
contradiction raised doubts about our understanding of
representation and generalization of limb position. There-
fore, we closely examined patterns of generalization as a
function of limb position and asked whether these results
could be explained by a single representation.

We hypothesized that adaptation to arm dynamics was due
to an internal model that computed a map from sensory
variables (limb position and velocity) to motor commands
(force or torque). These elements were sensitive to both the
position and velocity of the arm. The main question was how
these variables were encoded. We first performed behavioral
experiments to characterize the limits of adaptation to
position-dependent forces. This allowed us to quantify the
sensitivity of position coding. We found that generalization to
neighboring movements decayed gradually with separation
distance, implying a very broad position encoding. We found
that a Gaussian representation would require a full width at
half-maximum of approximately 80 cm to explain our results.
Since a Gaussian this broad would be indistinguishable from a
monotonic function, we used a linear function instead. A
linear basis is a simple monotonic encoding of position space.
We combined position and velocity by making position a
linear gain-field on the directional sensitivity.

Using a gain-field basis to simulate the learning of arm
movements, we found that the parameters that fit our pattern
of decaying generalization could also account for a number of
previously published results on generalization in position
space. These results were the generalization of learning over a
large workspace and the ability to learn stiffness fields.
Additionally, we tested two behavioral predictions of our
model to further test the hypothesis of gain-field coding.
Theory predicted that a simple rearrangement of position-
dependent forces would change a task from easily learnable
to very difficult. It also predicted that in a two-point
adaptation paradigm, expected forces would be extrapolated
so that larger forces would be expected outside the trained
workspace. The behavioral results agreed with these theoret-
ical predictions. Thus, our model used a multiplicative
interaction between coding of limb position and velocity to
explain behavioral data during learning dynamics of reaching
movements and successfully predicted data from a variety of
experimental paradigms.

Learning by Population Coding via Gain-Fields vs.
Modular Decomposition

Ghahramani and Wolpert (1997) studied similar starting-
position-dependent visuomotor mappings in which two
opposite visual perturbations were applied to the two starting
positions of movements. Subjects learned the two starting-
point-dependent visuomotor mappings and generalized this
learning to intermediate starting positions using interpola-
tion. Their interpretation of this result was that the brain
employs two visuomotor experts, each of which is responsible
for one of the two visuomotor mappings, and interpolates to
intermediate starting locations using a weighted average of
the two experts. If the brain employs this modular decom-
position strategy in learning dynamics as well, two of our

findings will be hard to explain: (1) learning ability changes
with the separation distance between starting positions,
although only three experts are required regardless of the
separation distance; (2) learning ability decreases when the
force field pattern is nonlinear, although the same number of
experts (three) is required for both linear and nonlinear
patterns.
However, if the internal models for dynamics are repre-

sented as a population code with gain-fields, these two factors
are easily explained by the proximity of the population code
for the close distance and the monotonic change of
population code with the starting positions. Gribble and
Scott (2002) examined cell responses for three different
dynamics conditions: the elbow-joint-dependent viscous curl-
field, the shoulder-joint-dependent viscous curl-field, and
both joint-dependent viscous curl-fields. In all three con-
ditions, monkeys were trained to the level that the kinematic
properties of movements were close to the baseline. Gribble
and Scott (2002) found that many cells that responded to one
joint-dependent field also responded continuously to the
other joint-dependent field, supporting a single controller
hypothesis with population coding rather than separate
experts. Therefore, the available data on learning of internal
models of dynamics seem to be inconsistent with modular
decomposition.

Gain-Field Coding of Position and Velocity
Multiplicative interaction of two independent variables in

cell encoding is called gain-field coding. Although we
described our gain-field as a velocity-dependent signal that
is modulated by limb position, it can also be described as a
position-dependent signal that gets modulated by limb
velocity. Gain-fields originally described the tuning proper-
ties of cells that are responsive to both visual stimuli and eye
position in area 7a of the parietal cortex. The receptive field
of these cells remains retinotopic while the gain of the
retinotopic curve is modulated linearly by eye position
(Andersen et al. 1985). This multiplicative response is
computationally advantageous because a population of such
cells provides a complete basis set for the combined space
(Poggio and Girosi 1990; Pouget and Sejnowski 1997); i.e., any
arbitrary function, linear or nonlinear, in the combined space
can be approximated as the weighted sum of these basis
elements. Considering that many computational problems in
the motor system use both direction of reaching movement
and hand position information, it seems attractive to have a
complete set of basis functions encoding these two variables.
The behavior that we recorded from our subjects is in
agreement with the patterns of interference that such bases
would produce.
There are other ways to form a basis set. A prominent

example is an additive basis set. In an additive set, a function
of position is added to a function of movement direction.
Some neurophysiological experiments have used this kind of
model, rather than a multiplicative model, to relate neural
discharge in the motor cortex and cerebellum to limb
position and velocity (Fu et al. 1997a, 1997b). However, if
limb position and velocity are coded additively, a population
of such basis elements cannot approximate the force fields
that our subjects learned, as shown, for example, in Figure 2B.
With an additive basis set, one cannot approximate functions
that include a nonlinear interaction between two indepen-
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dent variables, such as multiplication, even if each basis set
before combining is complete for each independent subspace
(Pouget and Sejnowski 1997). Simulation results using
additive basis elements corroborate this argument, as these
simulations showed much less learning than our subjects
(data not shown).

Neurophysiological Findings Related to Our Model
Although our computational model was derived from

psychophysical experiments, a number of neurophysiological
findings seem to be consistent with properties of our basis
elements.

First, neurophysiological recordings support our mono-
tonic position encoding in joint angle coordinates. Human
muscle spindle afferents, both individually and as a popula-
tion, represent static joint position monotonically (Cordo et
al. 2002). This monotonic position encoding, possibly
originating from the property of such peripheral afferents,
is consistently found in the central nervous system as well.
Georgopoulos et al. (1984) found that the steady-state
discharge rate of cells in the motor cortex and area 5 varied
with the static position of the hand in two-dimensional space,
and the neuronal response surface was described by a plane,
indicating that individual cells in these areas encode position
of the hand monotonically (and continuously) in space
(Prud’homme and Kalaska 1994; Sergio and Kalaska 1997).
This monotonic response to hand or foot position was also
observed in S1 of primates and spinocerebellar neurons of
cats (Bosco et al. 1996; Tillery et al. 1996). However, in those
studies, it is unclear which variable between hand position
and joint angle is an independent input to these cell
responses since these two variables are almost linearly related
in a small workspace. Scott et al. elucidated this point,
showing that neural activity in parietal and motor cortical
cells changed when the hand was maintained at the same
location but with two different arm orientations (Scott and
Kalaska 1997; Scott et al. 1997); i.e., at least parts of the motor
cortex seem to encode limb position in joint angle
coordinates rather than hand-based Cartesian coordinates.

Another distinct property of our basis elements is that
their activity is modulated by both position and velocity.
Caminiti et al. (1990) found that as movements with similar
trajectories were made within different parts of space, some
motor cortical cells’ preferred directions changed spatial
orientation, indicating that they encoded direction of move-
ment in a way that was dependent on the position of the arm
in space. Similar interaction between movement direction
and arm posture, wherein cells were directionally tuned but
the overall activity levels varied with arm postures, was found
in S1 (Prud’homme and Kalaska 1994). Sergio and Kalaska
(1997) studied this interaction more systematically during the
static isometric force generation. They found that the overall
level of tonic activity of M1 cells varied monotonically with
the hand position, and the preferred direction tended to
rotate with the hand position in an arc-like pattern. All of this
is reflected in the gain-field representation of the bases shown
in Figure 3A.

Lastly, the output of our basis elements is associated with a
preferred joint torque vector. With adaptation, these torques
rotate. Prud’homme and Kalaska (1994) found that the
discharge of M1 cells changed when the monkey compensated
for inertial loads. Li et al. (2001) also found similar load-

dependent activity changes during adaptation, and for the
entire neuronal population, the shift in preferred direction
of M1 cells matched the shift observed for muscles. Similar
studies by Gribble and Scott (2002) support the idea that the
output of elements representing internal models is related to
joint torques.

Monotonic Position Encoding
Although we used a linear encoding of limb position

because of its mathematical simplicity, data based on three
positions are not sufficient to distinguish a linear from a
nonlinear basis function. Therefore, at this point, our basis
functions are best viewed as having a monotonic property.
Monotonic gain-field coding of position and velocity makes
an intriguing prediction regarding behavior. When two
different forces are experienced at two different arm
positions (as in Figure 5A), the generalization function is a
linear function that connects the two forces at the two
positions. Thus, the forces could grow outside the trained
workspace. We observed this strange feature of linear gain-
fields in the experiment shown in Figure 5D. In that
experiment, we found that the aftereffects in the movements
at a new workspace (left side) were larger than the aftereffects
in the trained space (center). This suggests that larger forces
were expected at left, an example of hypergeneralization.
This raises the concern that with gain-fields, generalization in
two-point adaptation might keep growing. However, consid-
ering that the reach workspace is bounded and the gain
change by the position is very gradual, significantly larger
generalization occurs only when trained force fields are
specifically position dependent (Figure 5D).

Explicit Cue Learning
Another issue is that our findings may be the result of limits

of visual acuity; i.e., a decreased ability to distinguish the
starting positions might cause a spurious finding of position-
dependent coding. One way we addressed this concern was to
use color-coding to make sure subjects could distinguish the
left, center, and right targets. However, it is possible that the
system is not capable of using color cues while it is capable of
using spatial cues. Note that this interpretation implies that,
at large separations, position serves as an explicit cue
triggering separate internal models. That interpretation is
not consistent with the earlier results in which generalization
across large distances seemed to imply that position is
represented continuously. If position is a discrete cue for
building different internal models, then it is not clear how
one could learn a force field that depends continuously on
position, as in spring-like fields. It is also not clear why
learning ability would decrease in the nonlinear force field
pattern. Thus, although it is possible that some effects are due
to the explicit cues, this cannot entirely explain our findings
without a continuous encoding of position.
In sum, we report that generalization properties of

learning arm dynamics can be explained using basis elements
that encode limb position and velocity in intrinsic coor-
dinates using a multiplicative, gain-field interaction. Hand
position seems to be encoded monotonically and velocity
seems to be encoded using Gaussian elements. The result is a
gain-field where position monotonically modulates the gain
of velocity tuning. We predict that this encoding will be
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reflected in the activity of neurons responsible for adaptation
to dynamics of reaching movements.

Materials and Methods

Subjects. Thirty-three healthy individuals (16 women and 17 men)
participated in this study. The average age was 27.5 y (range: 21–50 y).
The study protocol was approved by the Johns Hopkins University
School of Medicine Institutional Review Board and all subjects signed
a consent form.

Performance measures. As a measure of error, we report the
displacement perpendicular to target direction at 250 ms into the
movement (PE). However, we also tried other measures, such as
perpendicular displacement at the maximum tangential velocity,
maximum perpendicular displacement, and averaged perpendicular
displacement during early phase of movement. Results that we
present here are consistent among all these measures of error, and we
report only PE.

During adaptation, trajectories in field trials become straighter,
while the trajectories of catch trials become approximately a mirror
image of those in earlier field movements (Shadmehr and Mussa-
Ivaldi 1994). Therefore, the PE of field trials decreases and the PE of
catch trials increases. Based on this observation, we quantified a
learning index:

Learning Index ¼ p:e:catch trial

p:e:catch trial � p:e:field trial
ð1Þ

We quantified the effect of error experienced in one movement on
another movement as a function of their spatial distance. In the
experiment outlined in Figure 1, there were never any forces during
the center movement. The error experienced in a neighboring
movement would cause a change in the subsequent movement at
center. This change results in increased variance of errors at center.
Therefore, a measure of generalization of error is the ratio of
variance of error in trials where forces were present to the left and
right of the center movement, to variance of error in baseline trials
when no forces were present:

Generalization Index ¼
standard deviation of p:e:adaptation
standard deviation of p:e:baseline

ð2Þ

Computational modeling. The internal model may be computed as
a population coding via a set of basis elements, each encoding some
aspect of the limb’s state (Donchin and Shadmehr 2002). Neuro-
physiological studies show that in tasks similar to the current
paradigm, the preferred direction of cells tend to change during
adaptation (Li et al. 2001; Gribble and Scott 2002). In our model, we
assumed a ‘‘preferred’’ torque vector is associated with each basis.
With training, the preferred torque vectors change, resulting in a
more accurate representation of the force field. The internal model
is:

ŝsenv ¼
X
i

wi � gi zð Þ ð3Þ

where ŝsenv is the expected environmental torque, z is a desired state of
the limb (consisting of limb position and velocity), gi is a basis
element, and wi is a torque vector composed of shoulder torque and
elbow torque, corresponding to each basis element. In training,
adaptation is realized by a trial-to-trial update of torque vectors
following gradient descent in order to decrease the difference
between the actual torque experienced during the movement and
the expectation of torque currently predicted by the internal model.

We hypothesized that the bases have a receptive field in terms of
the arm’s velocity (in joint space) and that the discharge at this

receptive field is modulated monotonically as a function of the arm’s
position; i.e., the elements represent the arm’s position and velocity
as a gain-field:

g q;
.
q

� �
¼ gposition;i q

� �
� gvelocity;i

.
q

� �

gpositions;i q
� �

¼ kT � qþ b

gvelocity;i
.
q

� �
¼ exp k .

q� .
q
i
k2=2r2

� �
ð4Þ

Typical output of this basis for various limb positions and movement
directions is plotted in Figure 3A. The position-dependent term is a
linear function that encodes joint angles, q¼ ( hshoulder, helbow), while the
velocity-dependent term encodes joint velocities. The choice of
intrinsic rather than extrinsic coordinates is important because the
extrinsic representation of limb velocity cannot account for
behavioral data on patterns of generalization (Shadmehr and
Moussavi 2000; Malfait et al. 2002). The gradient vector k reflects
sensitivities for the shoulder and elbow displacement, and b is a
constant. The direction of gradient vectors is uniformly distributed in
joint angle space with 458 increments. A basis function with 08
direction of gradient is sensitive only to the shoulder angle changes,
whereas a basis with a gradient in 908 direction is sensitive only to
elbow angle changes. The velocity-dependent term is a Gaussian
function encoding joint angular velocity (

.
qd, a 23 1 vector composed

of shoulder and elbow joint velocity) centered on the preferred
velocity (

.
qi).

To fit experimental data, we varied only two parameters of the
model: the slope (k, magnitude of a gradient vector) and the constant
(b) in Equation 4. All the other parameters were fixed in the following
manner: (1) the directions of gradient vectors were uniformly
distributed from 08 to 3158 with a 458 increment; (2) the preferred
velocities are uniformly tiled in joint velocity space with a 20.68/s
spacing and width; (3) the total number of basis elements was equal to
the number of the preferred positional gradients multiplied by the
number of preferred velocities because we used every possible
combination of gradient and preferred velocity; (4) random noise was
injected into the torque in the simulated system so that movements in
the null field had the same standard deviation of PE as did the
subjects’ movements. In exploring the parameter space of k and b, we
found that 1 rad�1 and 1.3 for the slope and constant, respectively,
gave a good fit of generalization as a function of separation distance.
To simulate human arm reaching, we used a model of the arm’s
dynamics that described the physics of our experimental setup
(Shadmehr and Mussa-Ivaldi 1994).

Supporting Information

Dataset S1. Trial-by-Trial Analysis
View online at DOI: 10.1371/journal.pbio.0000025.sd001 (60 KB PDF).
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