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We characterized operons encoding enzymes involved in denitrification, a nitrogen-cycling process involved
in nitrogen losses and greenhouse gas emission, using a metagenomic approach which combines molecular
screening and pyrosequencing. Screening of 77,000 clones from a soil metagenomic library led to the identi-
fication and the subsequent characterization of nine denitrification gene clusters.

Denitrification is a microbial respiratory process within the
nitrogen cycle responsible for the return of fixed nitrogen to
the atmosphere. This process contributes to the emission of
N2O, which is an important greenhouse gas with a global
warming potential (ca. 250 times higher than that of carbon
dioxide). Denitrifiers, which constitute a taxonomically diverse
functional guild with members belonging to more than 60
genera of bacteria and to some archaea and eukaryotes (13),
can represent up to 5% of the total soil microbial community
(5, 15). However, the study of denitrifying bacteria, like that of
others, is hindered by characteristics that can prevent up to
99% of soil bacteria from being cultivated in vitro. The inven-
tory of genes involved in denitrification and the extent of their
diversity in bacteria are yet to be fully explored, while charac-
terization of whole denitrification pathways with full-length
gene sequences is still restricted to a limited number of deni-
trifying isolates and a few complete genomes.

New approaches based on the direct extraction of DNA
from the natural environment and PCR amplifications can
overcome limitations due to bacterial unculturability, but until
now their application to denitrification genes has led only to
the recovery of partial sequences for some of these genes (12).
Our goals in this study were to apply a metagenomic approach
(2) characterized by cloning of DNA extracted from soil and
screening of metagenomic DNA library clones in order to
identify and characterize gene clusters involved in the denitri-
fication process. The soil metagenomic DNA library we used
was constructed by Ginolhac et al. (4) with DNA extracted
from grassland soil (Montrond, La Batie-Divisin, France) with
35- to 40-kb metagenomic DNA fragments cloned in the
pCC1Fos vector and replicated in the Escherichia coli EC10

bacterial host. About 77,000 clones were screened by colony
hybridization according to the protocol described previously
(2). In order to increase the range of retrievable sequences,
[33P]dCTP-labeled probes consisted of PCR products obtained
from DNA extracted from Montrond soil as templates by using
degenerate primers targeting the nirS, nirK, and nosZ denitri-
fication genes encoding the cytochrome cd1 nitrite reductase,
the copper nitrite reductase, and the nitrous oxide reductase,
respectively (5, 6, 14). Pyrosequencing (GATC, Konstanz, Ger-
many) was used to sequence DNA from the clones identified as
yielding a positive hybridization signal on the membranes (2).
Nine recombinant clones were positively identified by hybrid-
ization and sequence analysis as carrying genes coding for
denitrification functions: four clones contained a nirS-like
gene, three clones had a nirK-like gene, one clone had a nosZ-
like gene, and one clone contained both nirK-like and nosZ-
like genes (Fig. 1). This number of positive clones is in agree-
ment with the estimated proportion of denitrifiers in the soil
bacterial community (between 0.5 and 5%) (5, 15) and the
calculation of Leveau (9) that estimated that 57,500 clones
with 40-kb metagenomic inserts would be required to recover
one gene (99% probability) present in 1% of the soil bacteria,
considering an average genome size of 5 Mbp for each soil
bacterium. Other genes present in these nine clones are de-
scribed in Tables S1 to S9 in the supplemental material.

The genetic organization of the nirS clusters, with most of the
nir gene products presumably involved in the heme D1 biosyn-
thesis (19), was nirESM-FDGHJN, nirSTB---SCFDGHJN, nirS-
CFD, and nirDGHJS (each hyphen here indicates an inserted
gene) on contigs 888, 2303, 2304, and 6254, respectively. Unfor-
tunately, the assembly of a few contigs could not be completed,
and the end of the nirS cluster is missing for contigs 2304 and
6254. The results show a variable gene organization among bac-
teria, confirming previous data from isolate analysis, and indicate
that these clusters are probably subjected to shuffling either by
endogenous gene displacement or by horizontal gene transfer
between bacteria (11). Two nirS copies were detected in contig
2303 with a 69% similarity, indicating that the original bac-
terium that provided the DNA fragment contained more
than one copy of this gene in its genome. Previous studies
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reported the presence of multiple copies of nirS in “Magne-
tospirillum magneticum,” “Dechloromonas aromatica,” and
Thiobacillus denitrificans that also exhibited a significant
level of divergence within the same genome (3, 8).

In three out of four nirK-containing clones (partial gene
sequence in contig 1116), a nirV-like gene was located at a
position linked to the nirK gene, as previously observed for
several cultivated denitrifiers. The frequent proximity of these
two genes on the genome supports the hypothesis of an in-
volvement of a nirV gene product in nitrite reduction (7, 11). In
addition to nirV, the azu gene encoding a pseudoazurin elec-
tron carrier, the principal electron donor to the copper nitrite
reductase (19), was identified 2,503 bp downstream of the nirK
gene in contig 1042 and 233 bp and 1,220 bp upstream of nirK
in contigs 1062 and 1114, respectively, but with the transcrip-
tion direction opposite of that of the nirK gene.

The two nos clusters identified in our study contained the
nosRZDFYLX genes, with nosR encoding a membrane-bound
regulatory protein, nosZ encoding the catalytic subunit of the
multicopper nitrous oxide reductase, nosDFY encoding a pu-
tative copper insertion complex, nosL encoding a putative
outer membrane protein, and nosX encoding a periplasmic
component (1, 17, 20). In contrast to the organization of the
nirS cluster, the organization of the nosRZDFYL genes ob-
served in our study was identical to that of most cultivated
denitrifiers, which indicates a high level of synteny. Interest-
ingly, the nosX gene was located downstream of nosL for both
nos contigs. This is commonly observed in Alphaproteobacteria
but not in other proteobacteria (11). In contig 1042, the nos
genes were located ca. 7,500 bp upstream of the nirK gene.
Genetic linkage of the nir and nos genes has also been ob-
served in Brucella melitensis and Bradyrhizobium japonicum
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FIG. 1. Physical maps of environmental gene contigs involved in denitrification processes. Shown are the nosZ clusters (purple), the nirS
clusters (yellow), genes from the CRP/FNR family involved in the expression control of the denitrification process (brown), the nirK clusters
(green), and other genes not directly involved in the denitrification process (orange), which are described in Tables S1 to S9 in the supplemental
material.
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USDA110, suggesting that denitrification gene islands are not
rare in soil bacteria. Although the nor genes encoding the nitric
oxide reductase enzyme were located in the vicinity of the nir
genes in several cultivated denitrifiers (11), such linkage was
not confirmed in our study.

The metagenomic pyrosequencing approach also detected
several genes encoding one-component transcriptional regula-
tors belonging to the superfamily of cyclic AMP receptor pro-
tein (CRP)-like proteins and fumarate and nitrate reductase
regulatory protein (FNR)-like proteins (Fig. 1) in the vicinity
of the denitrification genes. CRP/FNR-like proteins have been
established as major transcriptional factors controlling expres-
sion of the denitrification process in response to oxygen and
nitric oxide presence (16, 18). Putative DNA binding sites of
CRP/FNR-like proteins, which consist of inverted and re-
peated sequences of nucleotides (TTGATNNNATCAA), were
identified in the promoter regions of (i) nosR on contigs 878
and 1042, (ii) nirS on contigs 2303, 2304, and 888, and (iii) nirK
on contig 1114. CRP/FNR boxes were also found in the pro-
moter regions of genes encoding a nitrate/nitrite antiporter
and cytochrome oxidase assembly factor in contig 888 and
encoding Fnr protein in contig 1042. Presence of FNR/CRP-
like proteins near the denitrification genes and presence of Fnr
boxes in their promoter regions support an oxygen-dependent
regulation of the denitrification process in the corresponding
host strains as commonly observed in cultivated strains (11).

Phylogenetic analysis of the nirS, nirK, and nosZ catalytic
subunits revealed that the nirK and nosZ sequences obtained in
this study were related to the nirK or nosZ gene from Alpha-
proteobacteria (up to 84% identity) (Table 1) (see Fig. S1 and
S2 in the supplemental material). In addition, gene organiza-
tion in contigs 1042 and 1062 with the nosX gene downstream
of the nosL gene is similar to that found in denitrifier isolates
classified in the subclass of the Alphaproteobacteria. Accord-
ingly, assigning contigs to their respective phylogenetic groups
using the PhyloPythia software (10) showed that contigs 878,
1042, 1062, 1114, and 1116 were related to Alphaproteobacteria.
The four nirS sequences identified in this study were phyloge-
netically related to the nirS sequences from Betaproteobacteria
(Table 1) (see Fig. S3 in the supplemental material). However,
phylogenetic affiliation of the full contigs with the PhyloPythia
software revealed that contig 6254 was affiliated with Gamma-
proteobacteria while the three others were affiliated with Be-
taproteobacteria. This underlined the difficulty of phylogenetic

affiliation of the denitrification genes due to the lack of con-
gruence between the denitrification genes and 16S rRNA trees
as previously reported by Jones et al. (8).

Our results highlight the potential of the metagenomic ap-
proach (2) combined with molecular screening and pyrose-
quencing to broaden our knowledge of genetic organization
and diversity of gene clusters or operons that are distributed in
soil microorganisms far beyond the small proportion of culti-
vable bacteria. Systematic sequencing of the entire soil meta-
genomic DNA still remains difficult; therefore, an intermediate
step of screening a recombinant clone library, such as the
hybridization method used in this study, is useful in order to
reduce the number of clones to be sequenced. The use of a
probe consisting of mixed PCR products allowed us to detect
denitrification genes from metagenomic DNA with percentage
identities as low as 75% to known genes (Table 1). Use of
functional screening in future studies could help detect deni-
trification genes that would not be detected by hybridization
because of their sequence divergence.

Nucleotide sequence accession numbers. Sequences obtained
and annotated in this study have been deposited in GenBank
under the accession numbers EU910852 to EU910860.
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