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Database search tools identify peptides by matching tan-
dem mass spectra against a protein database. We study
an alternative approach when all plausible de novo inter-
pretations of a spectrum (spectral dictionary) are gener-
ated and then quickly matched against the database. We
present a new MS-Dictionary algorithm for efficiently gen-
erating spectral dictionaries and demonstrate that MS-
Dictionary can identify spectra that are missed in the
database search. We argue that MS-Dictionary enables
proteogenomics searches in six-frame translation of
genomic sequences that may be prohibitively time-con-
suming for existing database search approaches. We
show that such searches allow one to correct sequencing
errors and find programmed frameshifts. Molecular &
Cellular Proteomics 8:53–69, 2009.

In 1994, Mann and Wilm (1) proposed the peptide sequence
tag approach and outlined its applications for protein identifica-
tion. However, it took 10 years for this approach to result in
accurate tag-based tools like InsPecT (2) and Paragon (3), cur-
rently among the fastest MS/MS database search tools. The
reason for this delay is that although generating some peptide
sequence tags is easy, such tags are of little use unless they
contain at least one correct tag with high probability. Generating
small covering sets of tags (i.e. the sets of tags that almost
surely contain a correct tag) turned out to be a more difficult
problem that has recently been addressed (2–5).

Similar to generating the covering set of tags (that in most
applications limited to tags of length 3), one can try to gen-
erate the covering sets of full-length peptide reconstructions
that with high probability contain the correct peptide (spectral
dictionary). Spectral dictionaries take the peptide sequence
tag approach one step further by generating peptide recon-
structions and ensuring that one of them is correct. They also
have the potential to improve the filtration efficiency of tag-
based tools (2, 3); for example, the filtration efficiency of 1000
de novo reconstructions of length 10 is orders of magnitude
higher than even a single tag of length 3. However, although
spectral dictionaries have important advantages over spectral
tags, generating them remains an open problem.

The spectral dictionaries could be searched efficiently
against a protein database resulting in a hybrid approach to
peptide identification (Fig. 1). Although the idea of spectral
dictionaries is almost as old as the idea of peptide sequence
tags (6), the software tool RAId based on this approach was
described only recently (7). However, although RAId gener-
ated promising initial results, it was based on a heuristic
exhaustive search and turned out to be rather slow (2–4 min
per spectrum) thus limiting its applicability. Also RAId was
benchmarked on a small sample thus making it difficult to
evaluate its performance on large MS/MS data sets. Here we
describe a fast approach to generating spectral dictionaries
that takes �0.1 s per spectrum and benchmark it on a data
set of over 20,000 peptides.

Spectral dictionaries may have an edge over the traditional
MS/MS approaches in searching very large databases, e.g.
six-frame translations of entire genomes. Various proteog-
enomics studies (8–15) demonstrated that MS/MS search
against a six-frame translation of the genome allows one to
use MS/MS data for finding new genes, predicting pro-
grammed frameshifts, correcting DNA sequencing errors, etc.
However, existing MS/MS database search tools are imprac-
tical for searches against the six-frame translation of large
genomes like human (�3 billion amino acids after removing
repeats). Indeed most of the previous proteogenomics studies
were limited to searches against the six-frame translations of
bacterial genomes. The largest proteogenomics analysis con-
ducted so far was the search against the six-frame translation
of Arabidopsis thaliana that resulted in the discovery of nearly
800 new genes using InsPecT.1 However, even fast tag-based
tools like InsPecT become impractical in searches of the 20
times larger six-frame translation of the human genome. Be-
low we show that MS-Dictionary is able to search the six-
frame translation of the human genome in roughly the same
time as it takes to search the 100 times smaller database of all
human proteins.

Spectral dictionaries make the size of the database almost
irrelevant because the spectral dictionary can be matched
against the six-frame translation as efficiently as against a
much smaller database of known proteins. Because many
genes remain unidentified even in the well studied organisms
(see Siepel et al. (16) and Stark et al. (17) for the recent
discovery of over 1000 new protein-coding genes in human
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and fruit fly genomes), the searches in six-frame translation
represent a valuable tool for proteogenomics annotations.2

De novo peptide sequencing represents a fast alternative to
MS/MS database search. Although the best de novo algo-
rithms are orders of magnitude faster than the fastest data-
base search tools (even on moderately sized databases), they
are less accurate. However, the superior accuracy of the
database search tools becomes less pronounced with the
increase in the database size. Moreover we show that for very
large databases our de novo peptide sequencing algorithm
compares favorably to MS/MS database search tools. Thus,
searches in very large databases represent an important niche
where de novo-based approaches are accurate and orders of
magnitude faster than the traditional database search ap-
proaches. A number of de novo methods have been devel-
oped, including Lutefisk (6, 19), Sherenga (20), PepNovo (21),
PEAKS (22), EigenMS (23), NovoHMM (24), AUDENS (25),
MSNovo (26), and PILOT (27) (see also Refs. 28–30). Most de
novo tools use the spectrum graph approach where a spec-
trum is represented as a graph with peaks as vertices that are
connected by edges if their mass difference corresponds to
the mass of an amino acid.

De novo peptide sequencing can also be viewed as a data-
base search in the database of all possible peptides. Even if this
time-consuming search were feasible, it would remain unclear
which peptide in the database of all peptides represents the real
peptide that generated the spectrum. We estimate that in 50–
95% of the cases (depending on the peptide length), the exist-

ing database search tools (2, 31–35) will fail to identify the
correct peptide in such an ultimate test because its score will be
lower than the score of an incorrect peptide. We therefore argue
that any de novo peptide sequencing algorithm should output
multiple peptide reconstructions rather than a single recon-
struction. Matching these peptides against a database results in
a hybrid spectral dictionary approach that bypasses the time-
consuming matching of spectra against the database.

Spectral dictionaries allow one to turn every MS/MS da-
tabase search tool into a de novo peptide sequencing soft-
ware (by simply running this tool on all peptides from the
spectral dictionary and selecting the top scoring peptide).
After such “conversion,” one can estimate how well both
database search tools and de novo tools would perform on
very large databases. This experiment reveals a disappoint-
ing performance of both de novo and database search
tools. Only 35–42% of peptides of length 10 (charge 2) are
correctly reconstructed in such experiments (35, 38, and
42% for X!Tandem, PepNovo, and InsPecT, correspond-
ingly). Our MS-Dictionary algorithm correctly reconstructs
50% of such peptides, a significant improvement over ex-
isting approaches.3 We further show that MS-Dictionary
can search a six-frame translation of the entire human ge-
nome, the largest database ever searched for spectral
interpretations.

2 Spectral dictionaries are also helpful in searches for fusion pep-
tides that are common in tumor proteomes but not explicitly present
in protein databases (18).

3 Although MS-Dictionary compares well with X!Tandem and In-
sPecT for charge 2 spectra, the performance of all existing de novo
tools (including MS-Dictionary and PepNovo) deteriorates for highly
charged peptides (3�). The problem of de novo analysis of highly
charged spectra has been addressed recently by Cao and Nesvizhskii
(36).

FIG. 1. Two approaches to peptide
identification: traditional approach
based on comparing spectra with the
database (red) and the hybrid approach
based on constructing spectral dictio-
naries and fast database lookup (blue).
The red lines illustrate that in traditional
searches every spectrum should be com-
pared with every peptide in the database
with a given parent mass (the running time
scales linearly with the database size).
The blue lines illustrate that every peptide
in the spectral dictionary should be
checked for presence in the database (the
running time is negligible if the database is
preprocessed as a hash table or a suffix
tree). The running time of the de novo-
based approaches is nearly independent
of the database size (it is dominated by
the time required to generate the spectral
dictionaries). The fast database lookup
can be implemented either as exact
matching or as error-tolerant lookup (to
search for mutations/polymorphisms).
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The key problem in the spectral dictionary approach is
deciding which and how many reconstructions must be gen-
erated. Generating too few peptides will lead to high false
negative error rates, whereas generating too many peptides
will lead to high false positive error rates. Some de novo
algorithms output a single or a fixed number (decided before
the search) of peptides. For example, RAId (7) generates 1000
de novo reconstructions and matches them against a data-
base.4 We argue that for some spectra generating only one
reconstruction is sufficient for finding the correct peptide,
whereas in other cases (even with the same parent mass), a
thousand reconstructions may be insufficient. We propose an
approach for dynamically determining how many reconstruc-
tions must be generated for each spectrum and then actually
generating them.5

Our MS-Dictionary software (available as open source) gen-
erates spectral dictionaries based on the recently introduced
concept of the generating function of tandem mass spectra
borrowed from statistical mechanics. The generating function
approach efficiently analyzes the peptide reconstructions with
the optimal and suboptimal scores and determines the sta-
tistical significance (spectral probability of those reconstruc-
tions (for more details, refer to Ref. 38).6

EXPERIMENTAL PROCEDURES

Peptide Sequencing Problem for Boolean Spectra

Dancik et al. (20) put de novo peptide sequencing in a probabilistic
framework and described how to learn the parameters of the model
and optimally solved it. Although the Dancik model was further ex-
tended in a number of studies (21, 24, 39, 40), it remains unclear how
to design a rigorous probabilistic model for peak intensities. We start
by introducing an abstract model that seemingly has nothing to do
with de novo peptide sequencing but rather describes a very general
probabilistic process that transforms one Boolean string into another.
We will show later that this process generalizes the probabilistic
model for de novo peptide sequencing from Dancik et al. (20) and also
allows one to compute the spectral probability and the generating
function of tandem mass spectra (38).

Let s � s1 . . . sn be a Boolean string called a spectrum and � � �1

. . . �n be a Boolean string called a peptide. The probability of peptide
� generating spectrum s is defined as Prob(s��) � �i � 1

n Prob(si��i)
where Prob(x�y) is a 2 � 2 matrix (see Fig. 2).

Given a spectrum s and a set of strings �, we are interested in
solving the problem of finding max��� Prob(s��). Below we focus on

the sets � that are relevant to tandem mass spectrometry. Let V � {0,
1, . . . , n} and G(V, E) be a topological ordering of a directed acyclic
graph (DAG) such that i � j for every directed edge (i, j) in E. Every
path from 0 to n in G corresponds to a G-peptide � � �1 . . . �n such
that �i � 1 if vertex i belongs to the path (see Fig. 2). We are interested
in the following Peptide Sequencing Problem (41): given a spectrum s
and a DAG7 G, find a G-peptide � maximizing Prob(s��) over all
G-peptides.

In de novo peptide sequencing it is assumed that (i, j) � E if (j � i)
equals the integer mass of an amino acid. Such graphs are referred
to as amino acid graphs (38) (compare with spectrum graphs (20,
42)). As a first approximation, an MS/MS spectrum with parent
mass n can be represented as a string of ones (peak present) and
zeros (peak missing) with a 0/1 for every 1-Da interval. Similarly
sequences of amino acid masses (peptides) can also be repre-
sented as strings of zeros and ones. An amino acid with an integer
mass � is represented as a string of � � 1 zeros followed by a single
one. Then a peptide is simply a concatenation of Boolean strings
corresponding to its amino acids. In this context, � � 0.05 (prob-
ability of observing a noise peak) and � � 0.7 (probability of ob-
serving a b-ion) represent typical values of � and � for ion trap
MS/MS spectra (Fig. 2). This somewhat simplistic Boolean model
can be modified for any mass resolution, peptide fragmentation
rules, and peak intensities (4, 28, 29) (see below). Moreover the
more realistic model can be analyzed with exactly the same algo-
rithm as the Boolean model (20).

The model above does not capture the fact that MS/MS spectra
represent both prefix ions (b-ions series) and suffix ions (y-ions se-
ries). To reflect this we represent peptides as strings in three-letter
alphabet: 1 (theoretical b-cut), �1 (theoretical y-cut), and 0 (no cut).
Given a peptide � � �1 . . . �n, we define its reverse as the peptide
�* � ��n . . . ��1, i.e. �i

* � ��n � i � 1. We now redefine the prob-
ability of peptide � generating spectrum s as Prob(s��) � �i � 1

n

Prob(si��i)�Prob(si��i
*), where Prob(x�y) is a 2 � 3 matrix.

From Boolean Spectra to MS/MS Spectra

Accounting for Peak Intensities—Although the simple model de-
scribed above led to an accurate peptide sequencing algorithm (20),
it does not capture the intensities of fragment ion in MS/MS spectra.
The experimental spectra represent real valued vectors s1 . . . sn

4 Although it may appear that matching 1000 peptides against the
database is rather time-consuming, the combinatorial pattern-match-
ing algorithms (37) are able to do it in negligible time.

5 The problem of generating varying numbers of reconstructions for
each spectrum becomes particularly important for long peptides. For
instance, PepNovo (4) accurately reconstructs 54% of peptides of
length 7 and only 0.4% of peptides of length 20.

6 Although the accuracy of MS-Dictionary in the standard de novo
peptide sequencing improves on the state-of-the-art tool PepNovo
(21), optimizing de novo peptide sequencing is an important but not
the crucial goal for our main application. As Alves and Yu (7) pointed
out, de novo peptide sequencing and spectral dictionary approaches
have similar but distinct goals: an outstanding de novo algorithm is
not a prerequisite for the spectral dictionary approach to perform well.

7 The abbreviations used are: DAG, directed acyclic graph; FDR,
false discovery rate; EST, expressed sequence tag; aa, amino acids;
FPR, false positive rate; Prob, probability.

FIG. 2. Left, probability Prob (x�y) of a peptide symbol y generating
a spectrum symbol x. Right, the amino acid graph G for all peptides
with parent mass 7 and only two possible “amino acids” A and B with
masses 2 and 3, correspondingly. The highlighted path corresponds
to the G-peptide 0101001 corresponding to AAB (masses of consec-
utive amino acid masses are 2, 2, and 3). Two other G-peptides with
parent mass 7 are 0100101 (ABA) and 0010101 (BAA). The probability
of a spectrum s � s1 . . . sn being generated by a peptide � � �1 . . .
�n is defined as Prob(s��) � �i � 1

n Prob(si��i). This is illustrated above
with � � 0101001 and s � 0001101 (Prob(s � 0001101, � �
0101001) � ��(1 � �)3 �2 (1 � �)).
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rather than Boolean vectors (si is the peak intensity at mass i). One
can argue that the same model based on probabilities p(x, y) where x
is a (real valued) peak intensity and y � {�1, 0, �1} would take into
account the intensities of mass spectra. However, this model faces
difficulties because (i) intensities vary between different spectra of the
same peptide and (ii) the value of intensity seems to be less important
than the distribution of intensities over different peaks (26). As a
result, most peptide sequencing algorithms use heuristic approaches
and do not try to come up with a rigorous model of spectra generation
that accounts for intensities. We argue that peak ranks rather than peak
intensities may lead to an adequate model of spectra generation. Peak
ranks proved to be valuable in peptide identification; for example In-
sPecT (2) utilizes peak ranks in its scoring function. Below we show how
to rigorously utilize peak ranks in de novo peptide sequencing and to
solve the corresponding Peptide Sequencing Problem.

We now define a spectrum s � s1 . . . sn as a string in the alphabet
I (ranks of peaks) and a peptide � � �1 . . . �n as a string in the
alphabet F (types of neutral losses). The probability of peptide �
generating spectrum s is defined as Prob(s��) � �i � 1

n Prob(si��i)�
�i � 1

n Prob(si��i
*), where Prob(x�y) is an arbitrary �I� � �F� matrix

representing the probability that a symbol y in the peptide gener-
ates a symbol x in the spectrum.

The spectrum strings s � s1 . . . sn are generated from tandem
mass spectra as follows. For simplicity, we retain top k peaks from every
MS/MS spectrum (up to k � 150 in our implementation). Spectra are
filtered to remove noisy peaks as follows: given a peak at mass M, we
retain the peak if it is among the top five peaks within a window of size
100 Da around M. Let us say this procedure gives t peaks, which are
ranked from 1 to t. If t � k, we keep only the top k peaks; if t � k, we
reinsert the top k � t peaks that were filtered out and assign them ranks
t � 1 to k. We define si as the rank of the peak at mass i (if there is a peak
at mass i) and define si � 0 if there is no peak at mass i.

The peptide strings � � �1 . . . �n are generated from amino acid
sequences as follows. We define an alphabet of fragment ions as a
set of integers corresponding to neutral losses, for example ion
fragments b, b � H2O, and b � NH3 correspond to neutral losses {0,
18, 17}. Given a set of neutral losses {x1 . . . xt}, we represent every
amino acid of mass � as a string s1 . . . s� of length � with � � t zeros
and t non-zero symbols 1, 2, . . . , t located at positions � � x1, � �
x2, . . . � � xt. The peptide string � � �1 . . . �k is simply a concat-
enation of strings corresponding to amino acids from the peptide. To
make the model more accurate, we further added the doubly charged
b- and y-ions as additional types of ions generated by the peptide
strings.

MS-Dictionary Scoring Function—When applying the above model
for peptide identification, we are interested in the ratio of probabilities
that a spectrum is generated by a given peptide � versus probability

that a spectrum is generated by a string consisting of all zeros (noise).
This can be represented as Prob(s��)/Prob(s�0) � �i�1

n Prob(si��i)/�i�1
n

Prob(si�0). We further express it as the sum of log odds ratios as
follows.

log
Prob	s��


Prob	s�0

� �

i�1

n

log
Prob	si��i


Prob	si�0

(Eq. 1)

Using the training data set (described below), we learn the values of
(Prob(si��i))/(Prob(si�0)). The learning is done separately for the lower
and the higher halves of the mass range (peaks corresponding to
doubly charged ions only appear in the lower part of the spectrum). A
smoothing function was applied on these values for lower intensity
peaks (ranks 11–150); for each ion type, the value at any rank was set
to the average value in a window of five ranks around the given rank.
The distribution of these values for each peak rank is shown in
supplemental Table S1 for three different spectrum lengths for the low
and the high mass region. These statistics vary with the length;
however, the differences between similar lengths (like 7 and 8) are
typically small as compared with differences between very different
lengths (like 7 and 20). Thus, specific length-dependent scoring can
be applied using the approximate length inferred from the parent
mass of the spectrum.

The MS-Dictionary scoring function described here was compared
with the scoring functions of the popular database search tools
SEQUEST (33), X!Tandem (31), and InsPecT (2). 50,000 spectra were
chosen randomly from the Shewanella data set and searched with
Sequest, X!Tandem, and InsPecT. The score of the best peptide for
each spectrum from the database search was compared with the
MS-Dictionary score for the same spectrum-peptide pair. We found
good correlation between the MS-Dictionary scoring function and the
scoring functions used in the database search tools; the correlation
coefficients are 0.87 for SEQUEST, 0.90 for X!Tandem, and 0.96 for
InsPecT (Fig. 3). These correlations are even better than the correla-
tion between the database search tools themselves (for example,
InsPecT and X!Tandem raw scores have a correlation coefficient of
only 0.75).

Suboptimal Peptide Reconstructions—We use the dynamic pro-
gramming algorithm for computing the spectral probability and the
generating function from Kim et al. (38). The number of peptide
reconstructions is computed for each mass value, and the optimal
score is determined for a mass within specified error tolerance from
the parent mass. We then generate top reconstructions such that
their SpectralProbability (see Ref. 38 for details) adds up to a fixed
threshold (we typically use 10�9). Starting from the topmost score,
reconstructions at each score are selected until their cumulative

FIG. 3. Correlation between InsPecT
and MS-Dictionary scores computed
on randomly selected 50,000 spectra
(correlation coefficient is 0.96).
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probability exceeds the threshold (all reconstructions at the bor-
derline score are selected; hence the total probability may margin-
ally exceed the threshold). We limit the number of reconstructions
generated for any spectrum to at most 100,000.

The dynamic programming table is constructed for all mass values
between 0 and parent mass � 0.5 with a resolution of 0.1 Da. The
number of reconstructions is computed by summing up the results for
all mass values in a window of 1 Da around the exact parent mass to
account for the low accuracy of ion trap mass spectrometers. In case
of precision mass spectrometry (e.g. FTMS), accurate solutions (with
low parent mass error) can be obtained by increasing the resolution
and reducing the size of the window around the parent mass. For
efficient computation, Ile and Leu are treated as the same amino acid,
resulting in a 19-letter amino acid alphabet at the time of generating
reconstructions. In the low accuracy setting, Gln and Lys are also
treated as the same amino acid.

Symmetric Versus Antisymmetric de Novo Reconstructions—
Some de novo reconstructions may be symmetric, i.e. the same
peak in the spectrum may contribute to the score up to four times
as a singly charged or doubly charged b-ion or y-ion. The algorithm
to alleviate this problem was proposed by Chen et al. (28) and
further improved by others (22, 29). Later Lu and Chen (43) de-
signed an algorithm for generating all antisymmetric peptide recon-
structions. We have chosen not to use the antisymmetric path
approach in MS-Dictionary because (i) it leads to a significant time
overhead when many reconstructions are generated and (ii) it does
not take into account doubly charged ion fragments that often have
high intensities and thus contribute significantly to MS-Dictionary
scores. To accurately score the symmetric reconstruction, MS-Dic-
tionary rescores the obtained peptide reconstructions to exclude mul-
tiple contributions from the same peak. Starting with the highest scoring
reconstructions, we check the peptide sequence to determine whether
there are any peaks that have multiple contributions to the score. These
peptides are rescored by using only the largest contributions from such
peaks.

Template-free Spectral Recalibration—Recalibration of tandem
mass spectra is important for correcting systematic mass errors. All
existing spectral recalibration tools use templates (interpreted spectra
with known b/y-peaks) to perform linear recalibration using either
least squares fit (19, 22, 44) or least median of squares fit (23). In the
de novo peptide sequencing framework the reliable templates are
hard to obtain thus reducing the utility of spectral recalibration to
Q-TOF and LTQ-FT data. In the low mass accuracy setting, the
applications of template-based spectral recalibration are mainly lim-
ited to validating candidate peptide identifications. As a result, de
novo peptide sequencing programs commonly default to a rather high
fragment mass tolerance (e.g. 0.5 Da for ion trap data) and thus result
in many erroneous spectral interpretations. We describe a template-
free spectral recalibration procedure for ion trap mass spectra and
demonstrate that it reduces the required mass tolerance from 0.5 to
0.2 Da. We further show that this recalibration leads to significant
improvement in MS-Dictionary accuracy.

The fractional masses of amino acids may be as large as 0.1 for
arginine (mass, 156.1 Da). The first step of our MS-Recalibration
tool is rescaling all peaks in the spectrum by multiplying all masses
by 0.9995 to minimize the theoretical fractional masses of amino
acids. After rescaling the fractional mass of arginine is 0.02 (156.02
Da), and the fractional masses of all other amino acids are below
0.04 (the average fractional mass is reduced 3-fold from 0.06 to
0.02).

MS-Calibration further filters the rescaled spectra to retain the
high intensity peaks using a sliding window as described above.
Using Int(m) and Frac(m) to denote the integer and fractional part of
mass m (respectively), our goal is to find � and � minimizing the

sum �(Frac(��m � �))2 over all masses m in the rescaled filtered
spectrum (Fig. 4a). The coefficients � and � are computed with the
least squares fit algorithm and are used to recalibrate all peaks in
the rescaled spectrum. Although MS-Recalibration has no informa-
tion about the peptide that produced the spectrum, Fig. 4b illus-
trates that it achieves almost the same accuracy as the template-
based approaches that recalibrate the spectra based on the
information about the correct positions of b/y-ions. After applying
MS-Recalibration, one can safely set the mass tolerance to 0.2 Da
(and retain 96% of b/y-peaks) as compared with the 0.5 Da in existing
approaches. Another advantage of our method is that it makes the mass
error distributions centered around zero regardless of their positions
in the spectrum. This feature is important for designing a new scoring
function that carefully account for errors in peak positions (see below).

Incorporating Mass Errors into the Scoring Function—Most de
novo peptide sequencing tools (4, 6, 19, 20, 22–24, 26, 27, 29,
45–47) set up a fixed mass error threshold (e.g. 0.5 Da for ion traps)
and compute the scoring functions for all peaks within this error
threshold. Bafna and Edwards (48) and Mo et al. (26) noticed that
assigning the same scores to all peaks within the error threshold
may not be the optimal way to score spectra in both database
search and de novo peptide sequencing applications. For example,
a high intensity peak with mass error 0.5 Da is typically less “reli-
able” than a medium intensity peak with mass error 0.1. Recent
incorporation of mass errors into the scoring function (as a quan-
titative component rather than a cutoff) led to a significant improve-
ment in MSNovo accuracy (26). MS-Dictionary also incorporates
mass errors in the scoring functions and further improves MSNovo
model as described below.

MSNovo uses a unified peak error model (Gaussian distribution)
and peak rank model (exponential distribution) independent of the
ion type, rank, and position of each peak. However, Fig. 5a illus-
trates that different fragment ions have different error models. Fig.
5b reveals that peak ranks and mass errors (that are assumed to be
independent in MSNovo) are strongly correlated. Also Fig. 5b re-
veals subtle irregularity in noise peaks indicating that the noise
model in Mo et al. (26) needs to be adjusted. MS-Dictionary takes
these observations into account and incorporates the mass errors
into its scoring function using a more adequate error model than Mo
et al. (26). Below we briefly describe the error-dependent scoring
for Boolean spectra (this model can be extended to MS/MS spectra
as described above).

The Boolean spectra model assumes that a peptide symbol �i gen-
erates the spectrum symbol si at exactly the same position. We now
extend this model by assuming that the peptide symbol �i can generate
spectrum symbol si � � where � represents a mass measurement error.
We assume that errors are “small,” i.e. they do not exceed a threshold
�max (�max is typically 0.5 for ion trap spectra). Incorporating errors into
the spectrum generation model requires introducing the three-dimen-
sional matrix Prob(x, ��y) where ��max 	 � 	 ��max and x and y are
Boolean as before. The probability of peptide � generating a spec-
trum s with error � � �1, . . . , �n can now be defined as Prob(s, ���).
The Peptide Sequencing Problem can now be reformulated as the
Peptide Sequencing Problem with Errors: given a spectrum s and a
DAG G, find a G-peptide � and mass errors � maximizing
Prob(s, ���) � �i�1

n Prob(si��i
, �i��i) over all G-peptides and over all

mass errors �.
The matrix Prob(x, ��y) was learned from the training sample, and

the learned parameters were further used in the dynamic program-
ming algorithm as described before. Table I compares the perform-
ance of MS-Dictionary with PepNovo version 1.03 and illustrates that
MS-Dictionary outperforms PepNovo for all peptide lengths.
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a

FIG. 4. a, comparison of template-free (solid line) and template-based (dashed line) recalibrations for a single spectrum. Each black dot
represents a two-dimensional point (m, Frac(m)) for a mass m (for every peak in the rescaled and filtered spectrum). Each white dot
represents a two-dimensional point (m, Error(m)) for a b- or y-peak with mass m and the difference between the theoretical and
experimental mass of the peak equal to Error(m) (for every b- and y-peak in the original spectrum). b, MS-Recalibration performance on
1745 identified spectra of length 10 in the Shewanella data set. The template-based recalibration uses the positions of theoretical b- and
y-ions in the spectrum to fit the positions of b- and y-ions in the experimental spectrum using the least squares fit algorithm. The
template-free MS-Recalibration does not require knowledge of the theoretical b- and y-ions. The error distribution for non-calibrated
spectra is shown for comparison. The average error is 0.13 before recalibration, 0.07 after MS-Recalibration, and 0.06 after the
template-based recalibration. Before recalibration, only 79% of b/y-ions are within a mass error of 0.2 Da as compared with 96% after
MS-Recalibration (similar to 98% for the template-based recalibration).
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RESULTS

Data Sets—We used the previously published Shewanella
oneidensis MR-1 spectral data set containing 14.5 million
spectra. The experimental procedures8 for acquiring the
spectra and identifications from this data set are described
in Gupta et al. (14). 28,377 peptides were reliably identified
with false discovery rate 5% using InsPecT (spectrum-level
false discovery rate (FDR) is 1%). The InsPecT search was
run using default parameter settings (fragment ion tolerance
of 0.5 Da and parent mass tolerance of 2.5 Da). For this
study, we selected 21,087 tryptic peptides with charge 2,

8 The spectra were acquired on an ion trap MS (LCQ, ThermoFinni-
gan, San Jose, CA) using ESI. The program extract_msn (Ther-
moFinnigan) was used to generate the dta files with standard options.
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FIG. 5. a, different fragment ions
have different rank distributions (sta-
tistics are given for all spectra of
length 10 from the Shewanella data
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TABLE I
Comparison of MS-Dictionary and PepNovo reveals that MS-Dictio-
nary outperforms PepNovo for all peptide length (Shewanella data set)

Length
Correct amino acids Correct peptides

PepNovo MS-Dictionary PepNovo MS-Dictionary

% %

8 88.7 92.2 51.1 58.1
10 85.8 91.2 38.2 49.6
12 79.7 87.2 23.1 34.5
14 71.1 81.7 11.8 17.8
16 61.1 79.0 3.8 12.9
18 56.8 74.2 1.5 7.6
20 49.8 65.6 0.3 3.3
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obtained one representative spectra for each of these pep-
tides (most peptides were identified from multiple spectra),
and grouped these by the length of their peptide identifica-
tions to form a test data set for each length. We will refer to
the length of the InsPecT identification of a spectrum as the
spectrum length. For the sake of convenience, all lengths 7
through 10 and even lengths between 10 and 20 were
considered. The trends across these lengths show smooth
progression, and there is no reason to believe that the odd
lengths between 10 and 20 would show any deviant behav-
ior. To avoid computational artifacts introduced by errors in
the parent mass, we have chosen to correct the parent
masses according to the InsPecT identifications.

Generating Multiple de Novo Reconstructions—A spectrum
may have many reconstructions with the optimal score, and in
these cases, reporting only one reconstruction is clearly de-
ficient. For example, Fig. 6 shows a spectrum for which two
distinct peptides, LHEALPDPEK and HLEALGAFYK, receive
the optimal de novo score of 90.

We further argue that even generating all optimal recon-
structions may not be sufficient for finding the correct pep-
tide. For many spectra, the correct peptide has a lower score
than an incorrect peptide. Fig. 7 shows a spectrum for which
the correct peptide FINVIMQDGK (as identified reliably by
InsPecT) has a score of 111, a high score that exceeds the
average score of correct identifications. However, another
reconstruction, YPNVMLQDGK (not present in the database),
has an even higher score of 123. We note that for �60% of
length 10 spectra, the correct peptide has a suboptimal Pep-
Novo score (�50% for MS-Dictionary score), and this fraction
quickly increases with the peptide length (Fig. 8). Because the
existing de novo approaches fail to identify the correct pep-
tide as the optimal reconstruction in a large fraction of the
spectra, a de novo method should consider multiple recon-
structions with suboptimal scores.

How Existing Database Search Approaches Fare While
Searching Very Large Databases—All database search tools
we tested would fail to identify the correct peptide for more
than half of the length 10 spectra if they were searching
through the database of all possible peptides. This is an
indication of limitations of the scoring functions of existing
database search tools. Because actually searching a data-
base of all peptides is impractical, we conservatively estimate
the error rates of MS/MS database search tools by construct-
ing a custom database for each spectrum containing all de
novo reconstructions with MS-Dictionary scores better or
equal to the correct peptide. Even if we used the theoretical
database of all possible peptides, it is likely that the identified
peptides would be one of those top reconstructions that we
included in our custom database. The rate of finding the
correct peptide would only drop if more peptides were added.
InsPecT was able to identify the correct peptide (peptide
identified in the Shewanella database in Gupta et al. (14)) in
such a custom database in only 42% of the cases, and

X!Tandem was able to identify the correct peptide in 35% of
cases for length 10 peptides. Both InsPecT (version
2006.09.07) and X!Tandem (version 2007.01.01.2) were run
with parent mass tolerance of 2.5 Da, fragment mass toler-
ance of 0.5 Da, fixed modification of Cys � 57, and no
optional modifications and without any enzyme preference.
The best match for each spectrum is reported. The parent
masses of spectra were corrected according to the mass of
the correct peptide. Table II illustrates that the accuracy of
various tools decreases sharply with the increase in the spec-
trum length. PepNovo (a de novo search method) has similar
or better accuracy than InsPecT in finding the correct peptide
reconstruction. PepNovo version 1.03 was used with fixed
Cys � 57 modification.

We remark that in some applications (e.g. the search in
large EST databases or using MS/MS for proteogenomics
annotations (13, 14)), the databases are very large. It implies
that the search in such databases (at least for shorter pep-
tides) is not unlike the search in the database of all peptides.
Table II leads to a surprising conclusion that for short peptides
simply generating de novo reconstructions and matching
them against the database may be a more accurate (and
much faster) approach than X!Tandem/InsPecT in the case of
very large databases. Below we show that MS-Dictionary
leads to a better performance than InsPecT/X!Tandem/Pep-
Novo in such applications (Fig. 9).

Performance of MS-Dictionary—The test data sets (all pep-
tide identifications in Shewanella) were analyzed with MS-
Dictionary for each peptide length. The size of the spectral
dictionary depends on the SpectralProbability parameter of
the generating function (38) that influences the error rate of
peptide identifications if the spectrum was submitted to a
database search. Because we deal with tryptic peptides, we
only consider the reconstructions that end in Lys or Arg
(although MS-Dictionary is not limited to tryptic peptides).9

As the spectrum length increases, the size of the peptide
search space increases dramatically, making it harder to gen-
erate the spectral dictionary. Thus all de novo search methods
yield lower accuracy for longer peptides. The generating func-
tion approach allows one to dynamically determine the num-
ber of peptide reconstructions and increase the chance of
finding the correct peptide in the set of de novo reconstruc-
tions (see Fig. 9).

The number of reconstructions obtained for these same
length spectra varies over orders of magnitude. Although the
peak of the distribution of the number of reconstruction is at
log2(size of spectral dictionary) � 10 (comparable to the number
of reconstructions generated in Alves and Yu (7)), some of these
spectra have fewer than 100 or more than 10,000 reconstruc-
tions. This remarkable variance in the size of spectral dictionar-
ies illustrates the point that different spectra have a different

9 Although this analysis loses peptides at the C terminus of pro-
teins, it will have a minor effect on the reported statistics.
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FIG. 6. Two optimal de novo interpretations, LHEALPDPEK (a) and HLEALGAFYK (b), for a particular spectrum.
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FIG. 7. Shown are the correct peptide FINVIMQDGK as identified by InsPecT database search (a) and YPNVMLQDGK, a de novo
reconstruction, for a particular spectrum (b). The former gets a score of 111 compared with a higher score of 123 for the latter.
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number of plausible reconstructions and raises a concern about
de novo methods that return a fixed number of peptides.

Recently Frank et al. (46) described de novo peptide se-
quencing for data acquired from FT-ICR instruments when
both the parent mass and the peak positions are accurate.
However, acquiring such spectra remains time-consuming,
and an intermediate approach that is gaining prominence is to
acquire mass spectra with high precision at MS1 stage and
lower precision at MS/MS stage, giving accurate parent mass
but inaccurate peak positions. However, the existing de novo
search methods are aimed toward ion traps or other low
accuracy mass spectrometers, which may have parent mass
errors on the order of 1 dalton. Because vertices in the spec-
trum graph are constructed based on low accuracy peaks, it
is not clear how to exploit the accurate parent mass informa-
tion that is available from new high accuracy instruments.
Availability of accurate parent mass values can be effectively
utilized in MS-Dictionary to filter the reconstructions. The
number of reconstructions for 5-ppm accuracy is typically
4–16 times smaller than the corresponding numbers for 0.5-
dalton accuracy (data are not shown).

Using MS-Dictionary for Database Search—In any database
search, a large number of spectra remain unidentified. This may
happen due to several reasons: these spectra may have many
missing or noisy peaks making them difficult to interpret, the
corresponding peptide may not be present in the database, or
the peptide may have a post-translational modification not cap-

tured by the search algorithm. In the case of S. oneidensis
MR-1, only �10% of the 14.5 million spectra were reliably
identified (14). We show that MS-Dictionary is able to find iden-
tifications for some previously unidentified spectra.

We selected all (�600 thousands) spectra of charge 2 from
the Shewanella data set within the parent mass range from
1100 to 1200 Da (the typical mass range for length 10 pep-
tides). All these spectra were searched against the
Shewanella proteome with MS-Dictionary (generated with
spectral probability 1e�9), InsPecT, and X!Tandem. The same
analysis was repeated with a decoy database of the same
size. A spectrum is considered identified if any of the recon-
structions are present in the Shewanella database (target
database). Fig. 10 demonstrates that InsPecT and MS-Dictio-
nary significantly improve on X!Tandem (at 5% FDR, X!Tan-
dem, InsPecT, and MS-Dictionary identified 3272, 4184, and
4137 peptides, respectively). We further rescored InsPecT
identifications using MS-GF spectral probabilities achieving
an even better performance for the hybrid InsPecT � MS-GF
hybrid tool (4299 peptide identifications at 5% FDR). Fig. 11
shows the Venn diagrams of peptides identified by X!Tandem,
InsPecT, MS-Dictionary, and InsPecT � MS-GF. To further
illustrate the applicability of MS-Dictionary in proteogenomics
applications we extended the analysis of Shewanella pro-
teome described above (Fig. 10) to the 7 times larger six-
frame translation of Shewanella. We selected all spectra from
the Shewanella data set that were not identified in the InsPecT
database search with the ParentMass range from 1100 to
1200 Da and with MS-GF scores above 50 (24,814 spectra).10

MS-Dictionary generated spectral dictionaries for these spec-
tra at three different values of SpectralProbability. The same
analysis was repeated with a decoy database of the same
size. A spectrum is considered identified if any of the recon-
structions are present in the six-frame translation of the
Shewanella genome (target database). Table III shows the
number of new peptides identified by MS-Dictionary in each
database that were not found in the earlier database search.

10 Although most spectra with MS-GF scores above 50 correspond
to high quality peptide identifications by both InsPecT and X!Tandem,
a significant portion of them may have borderline InsPecT/X!Tandem
scores. As discussed previously (38), such low scores may reflect
deficiencies of the underlined scoring approaches.
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TABLE II
Accuracy of InsPecT and X!Tandem against a database of all peptides
estimated as the percentage of spectra for which the correct peptide

will be identified with maximal score in the database search

PepNovo and MS-Dictionary accuracy (percentage of spectra for
which the correct peptide is a top scoring peptide) is added for
comparison. Peptides that differ by amino acid substitutions Ile/Leu
and Lys/Gln with similar masses are considered valid reconstructions.

Length InsPecT X!Tandem PepNovo MS-Dictionary

7 63 51 54 57
8 59 47 51 58
9 48 41 45 51

10 42 35 38 50
12 18 22 23 35
14 16 11 12 18
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For SpectralProbability � 10�10, 1007 new peptides are iden-
tified from 6211 spectra in the target database, whereas only
six peptides (from six spectra) are identified in the decoy
database, corresponding to a peptide-level false discovery
rate of 0.6%. As the SpectralProbability is lowered, the false
discovery rate turns into zero at 2 � 10�11) with 794 peptide
identifications. 280 of them were identified previously by In-
sPecT (from other higher quality spectra), but 514 represent
new peptide identifications. Interestingly 512 (99.6%) of them
map to the known protein sequences (including contami-
nants), providing further confirmation that these identifica-
tions are correct. Indeed because the size of the Shewanella

protein database is only �15% of the size of six-frame Sh-
ewanella translation, one expects that only 15% of these
proteins would hit the Shewanella database by chance. More-
over of 512 peptides, 508 are matched to expressed proteins
(confirmed by at least two InsPecT identifications in Gupta et
al. (14)), and two are matched to proteins with a single iden-
tified peptide, confirming the expression of these proteins.
Supplemental Table S2 lists each of the new peptide
identifications.

A closer look at the two peptides that fall outside the
annotated proteins reveals two frameshifts. The first pep-
tide, IAVGLSSANFGR, maps downstream of the gene
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SO_2754, which is annotated as “hypothetical sodium-type
flagellar protein MotY” and has length 122 aa. Basic local
alignment search tool (BLAST) (49) query of the peptide
against other Shewanella strains shows that the peptide is
conserved in four other strains and contained in longer
proteins of length 289. By aligning the nucleotide sequence
of S. oneidensis MR-1 against these other strains, we find a
sequencing error (insertion of an extra A at nucleotide po-
sition 362) that results in a stop codon and early truncation
of the gene with only 122 amino acids. The second peptide,
SDIGWGSQIR, falls in the region of the gene SO_0991
(peptide chain release factor 2), which is now annotated in
The Institute for Genomic Research (TIGR) as a pro-
grammed frameshift (but has the correct protein sequence
missing from fasta files because of the frameshift). These
examples show that new peptide identifications from MS-
Dictionary not only increase coverage for annotated genes
but also provide clues for correcting gene annotations.

We note that peptide identifications reported here are
based on the spectra in the 1100–1200-Da parent mass range
only, and their number is expected to be much larger if spec-
tra of other masses are also included. Supplemental Table S3
shows that spectra in lower or higher mass ranges also show
similar trends as spectra in the 1100–1200-Da range. MS-
Dictionary thus has the potential to provide a significant num-
ber of new peptide identifications from spectra that were
missed in the traditional database searches.

Searching the Six-frame Translation of the Human Genome
with MS-Dictionary—Although mass spectrometry has been
successfully used for bacterial gene predictions (8–11, 14, 15,
50), the proteogenomics studies of large eukaryotic genomes
are still in infancy. Even the fastest MS/MS database search
tools become impractical in such studies because they re-
quire searches in huge databases resulting from the six-frame
translations of eukaryotic genomes (�2.5 billion amino acids
for repeat-masked human genome). Tanner et al. (13) and
Edwards (51) made a step toward proteogenomics searches
of the human genome by combining the EST and MS/MS
analysis. Although this approach is very valuable it can only
be successful if the same exons are supported by both EST
and MS/MS data. The largest proteogenomics analysis con-
ducted so far is the search of the six-frame translation of A.
thaliana that resulted in the discovery of nearly 800 new genes
using InsPecT.2 Although InsPecT is 10 times faster than
X!Tandem and 60 times faster than SEQUEST (see Payne
et al. (52)), it becomes too slow in searches of the translated
mammalian genomes. Because neither InsPecT nor X!Tan-
dem can search the translated human genome,11 we ran
InsPecT on a 124 times smaller database and assumed that
its running time is proportional to the database size. The

11 Both tools report unexpected errors on the translated human
genome.

FIG. 11. Venn diagram showing the overlap between peptides
identified by different approaches at 5% false discovery rate. a,
overlap between InsPecT, X!Tandem, and MS-Dictionary. b, overlap
between InsPecT, X!Tandem, and InsPecT � MS-GF.

TABLE III
MS-Dictionary identification of Shewanella spectra that were not iden-

tified in the InsPecT search in Gupta et al. (14)

For different values of SpectralProbability (first column), the number
of peptide identifications (IDs) on the target database (second col-
umn) and the decoy database (third column) are reported. The num-
bers in parentheses represent the corresponding number of spectral
identifications (many spectra correspond to the same peptide identi-
fication). The target database here is the six-frame translation of the
whole Shewanella genome containing �10 million aa, and a decoy
database of the same size is used. The fourth column provides the
FDR at the peptide level (ratio of decoy and target database peptide
identifications), and the fifth column specifies the number of new
peptides identified in the target database that were not observed in
the InsPecT search. The number in parentheses in the last column
shows the number of new peptides mapped to the protein-coding
regions and illustrates that although the protein database is only 15%
of the size of the six-frame translation 97.1–99.6% of these peptides
are mapped to the protein database. These peptides are missed by
InsPecT either because of borderline p values (as shown in Kim et al.
(38), the generating function of MS-Dictionary results in better sepa-
ration between correct and erroneous hits than the scoring functions
of InsPecT and X!Tandem) or because of the absence of good peptide
sequence tags.

SpectralProbability
IDs

FDR New
peptidesTarget Decoy

1e�9 1169 (8771) 29 (64) 0.025 768 (746)
1e�10 995 (6171) 6 (6) 0.006 652 (646)
5e�11 914 (5327) 2 (2) 0.002 595 (591)
2e�11 794 (4269) 0 (0) 0 514 (512)
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running time of InsPecT is estimated at 42 s per spectrum,12

whereas MS-Dictionary takes less than 1 s per spectrum on
average on a desktop machine with a 2.16-GHz Intel proces-
sor. Below we demonstrate that MS-Dictionary can search the
translated human genome and identify over 10,000 human
peptides with low FPR. Recently Tanner et al. (13) demon-
strated that such peptides can significantly improve the ac-
curacy of traditional de novo gene prediction tools and
boosted the accuracy of GeneID predictions by 0.65 correct
exons per gene on average.

MS-Dictionary generates the spectral dictionary for each
spectrum and uses fast pattern matching to match the spec-
tral dictionary against the indexed database.13 We used a
simple partitioning/indexing that divides the translated human
genome into 124 equally sized subgenomes. Generating a
spectral dictionary with 10,000 reconstructions takes 0.1 s per
spectrum, and pattern matching of a spectral dictionary
against all 124 databases (including file input and output
overhead) takes 0.8 s per spectral dictionary on average. This
results in less than 1-s running time, a 40-fold speedup over
InsPecT.14

To benchmark MS-Dictionary we used the human HEK293
MS/MS data set generated in Steve Briggs’ laboratory. We
focus on 48,926 doubly charged peptides with tryptic C ter-
minus identified by InsPecT15 (InsPecT version 20070613,
human IPI database version 3.18) with 2.5% false discovery
rate (for a detailed description see Refs. 13 and 53). We
removed 17,821 peptides that span the exon boundaries
(these peptides cannot be identified by searching the trans-
lated human genome) resulting in 31,105 peptides. Because
most peptides in HEK293 are represented by multiple spec-
tra, we randomly selected one spectrum of all spectra of the
same peptide. We further searched 31,105 spectra against
the translated human genome (version 48 from Ensembl) with
masked repeats and with corrected parent mass as described
before. For each spectrum, we generated a spectral diction-
ary with SpectralProbability � 10�11 and limited the maximum
size of spectral dictionaries to 10,000. Each peptide in the
spectral dictionary was matched (without errors) against the
translated human genome.

The searches in the translated human genome are not
expected to identify all spectra reliably identified in the human
protein database. Indeed Castellana et al.2“lost” �30% of all
identifications of peptides falling within exons after switching

from the protein database to the translated genome database
of A. thaliana. Such losses are unavoidable because many
reliable identifications in the protein database turn into statis-
tically insignificant identifications in the much larger translated
genome. For example, although SpectralProbability � 10�10

makes sense for searching the human protein database, it
results in very high error rates (FPR � 25%) in a �100 times
larger translated human genome. Therefore, all peptide iden-
tifications with SpectralProbability 
 10�10 will be lost after
switching from the protein database to the translated human
genome.16 We have therefore chosen SpectralProbability �

10�11 as a threshold resulting in estimated FPR �

DatabaseSize�SpectralProbability � 2.5�109�10�11 � 0.025.
Because 9470 of 31,105 peptides (30%) have SpectralProb-
ability exceeding 10�11, they cannot be identified in any sen-
sible database search against the translated human genome.
It leaves us with 21,635 peptides that can be potentially
identified in the translated human genome.

MS-Dictionary identified 10,266 of 21,635 spectra in the
translated human genome. 98.9% of the identified peptides
fall into the human proteins, and only 1.1% fall into non-
coding regions.17 To further estimate FPR of our experiment,
we selected a single run (25,746 spectra), picked out uniden-
tified doubly charged spectra in this run (16,205 spectra), and
used MS-Dictionary to generate spectral dictionaries and
match them against the translated human genome. MS-Dic-
tionary identified only 71 spectra in this experiment, corre-
sponding to an FPR of 0.44%.

Therefore, MS-Dictionary reliably identifies �10,000 pep-
tides from human proteins without knowing the human pro-
teome. However, it also “loses” �11,000 peptides that can be
potentially identified in searches of the translated human ge-
nome. Fig. 12 illustrates that although MS-Dictionary identi-
fies a large fraction of peptides of length 10–13 the perform-
ance deteriorates for shorter and longer peptides. Because
the SpectralProbability threshold has to be low in proteog-
enomics applications, only very high quality spectra of shorter
peptides represent reliable identifications (only 23% of spec-
tra of length 9). This does not indicate the poor performance
of MS-Dictionary but rather reflects the stringent threshold.
For the spectra of length more than 14 aa, the performance of
MS-Dictionary deteriorates because of the limited size of
spectral dictionaries. Further algorithmic developments (e.g.
generating dictionaries of long tags) are needed to address
this shortcoming of MS-Dictionary.

DISCUSSION

Here we demonstrate the importance of obtaining multiple
de novo peptide reconstructions and describe the MS-Dictio-

12 This is a lower bound that does not account for overhead caused
by indexing/partitioning of large databases.

13 Indexing the entire six-frame translation of the human genome
takes less than an hour.

14 We estimate that optimized indexing/partitioning or running MS-
Dictionary on a large shared memory machine would further reduce
the running time.

15 Although MS-Dictionary generates both tryptic and non-tryptic
peptides, we selected doubly charged peptides with tryptic C termi-
nus to simplify benchmarking.

16 In particular, all peptides of length 8 and shorter are likely to be
lost because SpectralProbability even of a single peptide of length 8
is rather high (�0.4�10�10).

17 Although most spectral dictionaries have zero or one hit in the
human genome, 1.8% of them have multiple hits (typically two hits).
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nary tool for generating these reconstructions. We emphasize
that the number of generated reconstructions must not be
fixed a priori, as done by existing de novo tools, but decided
dynamically for the given spectrum because the number of
plausible reconstructions varies from spectrum to spectrum.
We use the generating function approach (38) that allows one
to determine the set of reconstructions that must be reported.
The ability to generate spectral dictionaries makes this
method useful for hybrid de novo-based database search by
increasing the likelihood of finding the correct peptide while
keeping the number of false identifications low. MS-Dictionary
identifies new peptides from spectra that were not identified
with a regular database search. MS-Dictionary can be modi-
fied to search for mutations and polymorphisms by simply
substituting the exact pattern matching by error-tolerant pat-
tern matching of spectral dictionaries against databases.

Future work will focus on developing this hybrid approach
into a viable tool for peptide identification by extending it to
highly charged spectra and improving the efficiency of this
approach in the case of longer peptides. Deteriorated per-
formance for highly charged and long peptides is an important
limitation of all de novo approaches to spectral interpreta-
tions. The existing de novo peptide sequencing tools are
aimed at charge 2 peptides with the single exception of the
greedy best strong tag algorithm (30) that is best suited for tag
generation rather than full-length de novo peptide sequenc-
ing, which is the focus of this study. All tools we tested also
deteriorated while searching longer peptides in very large
databases. For example, InsPecT and X!Tandem would cor-
rectly identify only 16 and 11% of all length 14 peptides in the
de novo peptide sequencing framework (Table II). Although
MS-Dictionary improves on these tools, its accuracy is also
rather low (18%). This observation reveals the shortcomings

of existing de novo and database search tools that often score
the incorrect peptides higher than the correct peptides. Frank
et al. (46) recently discussed the “homeometric peptides” that
represent the key obstacle for developing better de novo
algorithms (they become more pronounced with the increase
in the peptide length). This problem is partially alleviated by
generating all reconstructions with a given SpectralProbability
and further matching them against a database (Fig. 9).
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