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ABSTRACT

We suggest two extensions of the coalescent effective population size of Sjödin et al. (2005) and make a
third, practical point. First, to bolster its relevance to data and allow comparisons between models, the
coalescent effective size should be recast as a kind of mutation effective size. Second, the requirement that
the coalescent effective population size must depend linearly on the actual population size should be lifted.
Third, even if the coalescent effective population size does not exist in the mathematical sense, it may be
difficult to reject Kingman’s coalescent using genetic data.

MODERN population genetics is data driven and
yet relies on modeling to capture the long-term

interaction of forces shaping genetic variation. Data are
interpreted by comparing observed patterns of variation
to the predictions of mathematical models. Minimally,
these models incorporate mutation and random genetic
drift, but often include other factors, such as population
structure and natural selection. The standard neutral
coalescentprocess(Kingman1982;Hudson1983;Tajima

1983), also known as Kingman’s coalescent, is the ac-
cepted null model for the initial interpretation of
data. For this reason, Sjödin et al. (2005) argued that
Kingman’s coalescent is a more relevant idealized model
for discussions of effective population size than the
traditional Wright–Fisher model (Fisher 1930; Wright

1931).
The idea of effective population size is to map a given

population onto a simpler well-known model of a
population. The effective size of a population is often
defined loosely as the corresponding size of a Wright–
Fisher population that would have the same ‘‘rate of
genetic drift.’’ Several different definitions of effective
population size have been proposed on the basis of
single measures of the rate of genetic drift or single
measures of polymorphism, such as heterozygosity (Crow

and Kimura 1970; Ewens 1982, 1989). As Sjödin et al.
(2005) point out, an effective size based on convergence
to Kingman’s coalescent is preferable because its exis-
tence implies that all aspects of genetic variation should

conform to the predictions of Kingman’s coalescent,
meaning that any statistical test applied to data should
reject the model only at the nominal level.

A coalescent effective size is also preferable because
Kingman’s coalescent has been shown to hold for a sur-
prisingly wide variety of population models (Kingman

1982; Möhle 1998; Nordborg and Krone 2002), in-
cluding the Wright–Fisher model and many others. In
short, the complicated details of many populations
disappear in the limit as the population size N tends
to infinity, with time rescaled appropriately, so that
the ancestry of a sample is determined by a very simple
process. Each pair of lineages ancestral to the sample
coalesces independently with rate 1 and each single
lineage experiences mutations independently with rate
u/2. Note that defining an effective population size Ne in
this context means we are interested only in its value or
behavior asymptotically as the population size N tends
to infinity.

We include mutation in ‘‘Kingman’s coalescent’’ and
argue that this is crucial because, without mutation,
Kingman’s coalescent (or any other model) cannot
make predictions about genetic variation. The mutation
parameter is defined as u ¼ 2Nem for haploids and u ¼
4Nem for diploids, where m is the mutation probability
during meiosis at a locus under study. In cases where the
complicated details of a population collapse to King-
man’s coalescent as N / ‘, we advocate calling this Ne in
u the coalescent effective population size. This can be seen as
a type of mutation effective size (Ewens 1989), which dif-
fers from previous definitions (Maruyama and Kimura

1980; Whitlock and Barton 1997; Charlesworth

2001; Pannell 2003) in that it applies to the parameter
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of the entire ancestral process, with its manifold pre-
dictions about data, rather than just to single measures
of variation such as the heterozygosity of the population.

Sjödin et al. (2005) dealt with mutation implicitly.
Following Möhle (2001) and Nordborg and Krone

(2002), their definition focused instead on the way in
which time is rescaled to achieve a coalescence rate
equal to 1 for each pair of lineages. If AN(k) denotes the
number of lineages ancestral to a sample in generation k
in the past for a given population, and A(t) denotes the
number of lineages ancestral to the sample at rescaled
time t in the past under Kingman’s coalescent, then if
AN([Nt/c]) / A(t) as N / ‘, the coalescent effective
size is N/c. Importantly, Sjödin et al. (2005) restricted
their definition to cases in which c is a constant factor.
In addition, because they considered populations with
nonoverlapping generations, Sjödin et al. (2005) did
not define a ‘‘generation’’ explicitly, as needed if the
coalescent effective size is to apply to populations more
generally (Felsenstein 1971; Hill 1979).

By pinning the concept of Ne to Kingman’s coalescent,
we follow Sjödin et al. (2005) in saying that the co-
alescent effective population size does not exist if
AN([Nt/c]) converges to some other kind of ancestral
process, such as a coalescent with multiple mergers
(Pitman 1999; Sagitov 1999) or simultaneous multiple
mergers (Schweinsberg 2000; Möhle and Sagitov

2001; Sagitov 2003). Thus, Ne here is different, and in
this sense more restrictive, than the earlier definition
by Möhle (2001), which allowed convergence to any of
these continuous-time ancestral processes and also applied
when the effective size could not be expressed as N/c
with a constant c. However, the restriction to Kingman’s
coalescent seems desirable because multiple mergers
can dramatically alter the most basic predictions of the
model—for example, see Eldon and Wakeley (2006)
and Sargsyan and Wakeley (2008)—so the utility of
mapping populations onto a general set of coalescent
models is not clear.

The Ne in the rescaled mutation parameter u of
Kingman’s coalescent is a composite of two quantities
that are crucial to genetic ancestry in any population: (1)
the probability that a pair of ancestral lineages are de-
scended from a common ancestor and (2) the proba-
bility that a single ancestral lineage is newly born (i.e., is
the descendant of a birth or reproduction event). Both
of these probabilities are computed for a single time step
back into the ancestry of the sample. Importantly this
initial unit of time will depend on the details of the
population. When generations are nonoverlapping, as
in the Wright–Fisher model, time is measured in units
of generations. When generations are overlapping, as
in the model of Moran (1958), time may be measured
in other units, at least initially. Ultimately, we would like
to measure time in comparable units in every model,
namely in generations, and this is the purpose of the
probability (2) above.

To illustrate, let cN and bN denote the probabilities (1)
and (2) above, with subscripts to indicate possible depen-
dence on the population size. In the haploid Wright–
Fisher model, cN ¼ 1/N and bN ¼ 1, the latter because
in each unit of time every individual in the population
is replaced by a newborn. Compare this to the discrete-
time Moran model, where in each time step a single
offspring is produced and replaces a single adult who
dies, including possibly the parent. For the Moran
model we have cN ¼ 2/N 2, because one of the lineages
we are following must be the offspring and the other
must be the parent and there are two ways for this to
occur, and bN ¼ 1/N, because in this case the single
lineage we are following must be the offspring itself.

These same probabilities apply in every time step, so
in both cases the waiting time back to the event is geo-
metrically distributed. A generation is defined as the av-
erage time back to the birth of a single lineage, or 1/bN.
For the Wright–Fisher model, 1 time step constitutes 1
generation. For the Moran model, it takes N time steps
to make 1 generation.

The convergence of ancestral processes as N / ‘ is
described in detail in Möhle and Sagitov (2001), and
we emphasize that our Ne exists only when multiple
mergers become negligible and the limiting ancestral
process is Kingman’s coalescent. Convergence is achieved
by measuring time in units of 1/cN time steps, which is
the average time back to a coalescent event for a pair of
lineages. In the Wright–Fisher model, 1/cN ¼ N, and in
the Moran model, 1/cN ¼ N 2/2. Note that this means
that the Moran model does not have a coalescent
effective population size according to the definition of
Sjödin et al. (2005) because they require that 1/cN is a
linear function of N. The Ne we proposed above avoids
this potential problem.

Here, after Eldon and Wakeley (2006) and Sargsyan

and Wakeley (2008), we focus not only on the way
time must be rescaled by 1/cN time steps to obtain a
coalescence rate of 1 for each pair of lineages, but also
on the additional role that the opportunity for mutation
plays in establishing a mutation rate of u/2 for each
single lineage in Kingman’s coalescent. This additional
scaling in u is especially important when generations are
overlapping. Convergence to Kingman’s coalescent,
with mutation rate u/2 ¼ 2Nem for haploids or u/2 ¼
4Nem for diploids, occurs with a coalescent effective
population size defined as

Ne ¼
1=cN

1=bN
¼ bN

cN
:

The intermediate step in this equation illustrates that Ne

is the average time to a coalescent event measured in
units of the average time back to a birth event (i.e., a
generation). We have Ne ¼ N for the Wright–Fisher
model and Ne¼N/2 for the Moran model, as expected.
For any model of nonoverlapping generations, bN ¼ 1,
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and our Ne becomes identical to the time-scale-only
definitions of Möhle (2001) and Sjödin et al. (2005).

This new definition of Ne and the two points we make
below are motivated by recent work (Sargsyan and
Wakeley 2008) on a population model inspired by the
biology of sessile marine organisms that reproduce by
broadcast spawning. Individuals of these species, for
example mussels, periodically release huge numbers of
gametes into the water, which then may unite with
gametes from other individuals to form larvae. Larvae
spend varying amounts of time in the water column
before settling in hopes of beginning adult life. Many
gametes fail to unite and only a small fraction of larvae
become successful adults. In addition, disturbance can
be an important factor in opening up patches of habitat
for colonization by larvae (Dayton 1971; Paine and
Levin 1981).

This combination of life-history characteristics is not
captured in the standard population genetic models or
Wright–Fisher and Moran models. For example, there
may be a ‘‘sweepstakes effect,’’ in which a relatively small
number of individuals may have very large numbers
of offspring, possibly even replacing a substantial frac-
tion of the population in a single reproduction event
(Beckenbach 1994; Hedgecock 1994). Events of this
sort can never happen in the Moran model, with its
single, paired birth–death events. In the Wright–Fisher
model, even though all adults die and are replaced by
offspring every generation, the chance that a substantial
fraction of the population are the offspring of a few
individuals is vanishingly small because every individual
is equally likely to be the parent of every offspring.

The model in Sargsyan and Wakeley (2008) con-
tains both the Wright–Fisher model and the Moran
model as special cases and also includes the possibility
of sweepstakes-like reproduction. Consider a discrete-
time model of a finite population of constant size N, in
which the default mode of reproduction is given by the
Moran model. However, with probability eN a distur-
bance event occurs that removes XN individuals from the
population. These are replaced by XN new individuals
that are the offspring of YN adults whose larvae happen
to the present at that time. The XN and YN individuals
are chosen at random without replacement from the
population, and each of the YN adults is equally likely to
be the parent of each of the XN offspring. Subscripts
denote that the dynamics in the limit N / ‘ will depend
on the relative magnitudes of these parameters.

After defining Ne above, the second point we wish to
make is that the coalescent effective population size
should not be limited to cases in which Ne depends
linearly on N. The model described above can converge
to several different kinds of processes in the limit N /
‘, including a discrete-time Markov process, Kingman’s
coalescent, or a coalescent process with multiple merg-
ers or simultaneous multiple mergers. For a detailed
analysis, see Sargsyan and Wakeley (2008). Here we

consider one of the special cases of the model in which
the coalescent effective size exists, as we have defined it,
but is not a linear function of the population size N.

Table 1 gives the parameters of the model, including
some of those used to classify the limiting ancestral
processes (Sargsyan and Wakeley 2008). Here we
consider the case in which the probability of a distur-
bance event (eN) and the fraction of the population that
is replaced in a disturbance event (XN/N) converge to
finite, nonzero constants in the limit: 0 , e , ‘ and 0 ,

f , ‘. At the same time, we assume that the number of
potential parents at each disturbance event is large, that
is, YN / ‘ as N / ‘. However, we assume that YN grows
more slowly than N, in particular YN/N / 0 as N / ‘.
Two simple examples are YN ¼

ffiffiffiffiffi

N
p

and YN ¼ log(N),
but it is not necessary to adopt any particular function
form.

The details of why the ancestral process is Kingman’s
coalescent in this case are in Sargsyan and Wakeley

(2008), but heuristically it follows from the fact that the
number of potential parents (YN) is large. Note that,
although it may in fact be reasonable to suppose, we do
not necessarily imply that there is a biological depen-
dence between YN and N. We simply offer the limiting
model as a potentially useful approximation to the
behavior of a very large population in which disturbance
events occur with measurable frequency (e) and in-
tensity (f)—perhaps as described for the mussel Mytilus
californianus by Paine and Levin (1981)—and in which
there are a large number of potential parents at each
disturbance event; but for whatever reasons YN >N .

For this version of the model, using Equation 1 in
Sargsyan and Wakeley (2008) gives

cN ¼
ef2

YN
ð1 1 oð1ÞÞ;

where o(1) denotes terms that go to zero as N / ‘.
Ignoring the o(1) term, this formula is easily understand-

TABLE 1

Parameters of the model of SARGSYAN and WAKELEY (2008)

Discrete model parameters

N Population size, the no. of (haploid)
individuals

eN Probability of a disturbance event per
time unit

XN No. of individuals that die in a
disturbance event

YN No. of potential parents of the offspring
that will replace the (XN) individuals
that died in a disturbance event

Limiting model parameters

e ¼ lim
N /‘

eN

f ¼ lim
N /‘

XN

N
Fraction of population removed in

each disturbance event
Y ¼ lim

N /‘
YN
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able as a simple product: the probability of a disturbance
event times the probability that both ancestral lineages
are newborns times the probability that they have the
same parent. Similarly, using Equation 10 in Sargsyan

and Wakeley (2008) gives

bN ¼ efð1 1 oð1ÞÞ;

which, ignoring the o(1), is the product of the proba-
bility of a disturbance event and the probability that the
ancestral lineage is among the newborns (and so may be
a mutant). Thus, we have

Ne ¼
YN

f
ð1 1 oð1ÞÞ;

which is a less-than-linear function of N due to our as-
sumption about YN. We argue that the coalescent ef-
fective size should extend to cases like this since genetic
variation in a sample from such a population should
agree in every way with the predictions of Kingman’s
coalescent.

Our third point is more practical than theoretical.
Namely, our ability to discern from genetic data whether
a coalescent effective population size is an appropriate
concept for a given species may be limited. In our model
there are cases in which the limiting ancestral process is
not Kingman’s coalescent, but rather a coalescent pro-
cess with multiple mergers or simultaneous multiple
mergers, and yet many of the predictions of the model
are similar to those of Kingman’s coalescent (Sargsyan

and Wakeley 2008). We use another special case of the
model, not too different from the one above, to show
that the ability to distinguish these other ancestral
processes from the standard coalescent can depend
heavily on the sample size.

We consider a situation in which the probability of a
disturbance event is small, but is still much larger than
the probability of a coalescent event in the background
Moran model, specifically N 2eN / ‘ as N / ‘. In this
case, a continuous-time coalescent process with simul-
taneous multiple mergers is obtained if YN / Y, with 2 #

Y , ‘, and XN/N / f, with f . 0. The resulting model
should approximate the behavior of a very large
population in which disturbance events occur infre-
quently, but still dominate the ancestral process, and
where the offspring of a possibly small number of
parents replace a substantial fraction of the population.
This corresponds to the classic ‘‘sweepstakes’’ model of
reproduction (Beckenbach 1994; Hedgecock 1994)
and is captured in simulation Algorithm 1 of Sargsyan

and Wakeley (2008).
There is no coalescent effective population size in this

case because the ancestral process is not Kingman’s
coalescent but rather a coalescent with simultaneous
multiple mergers. One of the ways that data from such
a sweepstakes population should differ from data from
a coalescent population is in having an excess of

low-frequency polymorphisms (Beckenbach 1994;
Hedgecock 1994; Sargsyan and Wakeley 2008). The
commonly used test statistic D (Tajima 1989) should
tend to be negative and may be used to reject Kingman’s
coalescent in favor of a coalescent with simultaneous
multiple mergers. We use Tajima’s test to illustrate that
some aspects of genetic variation under this model may
be similar to those under Kingman’s coalescent, but we
note that there may be more powerful tests (e.g., based
on patterns of linkage disequilibrium).

We generated 100,000 pseudodata sets under the
above model, with u ¼ 10 and f ¼ 0.5, and for a range
of sample sizes and values of Y. We assumed that mu-
tations occurred according to the infinite-sites model
without intralocus recombination (Watterson 1975).
We compared the values of Tajima’s D to the lower 5%
cutoff obtained for each sample size under Kingman’s
coalescent with u ¼ 10, also using simulations. Figure 1
shows the fraction of simulation replicates for which the
value of Tajima’s D is below the 5% cutoff, which is
denoted q5% in Figure 1. Almost no pseudodata sets had
significant positive values of D (results not shown),
consistent with our expectation that D would deviate in
the negative direction.

As Figure 1 shows, with very small samples there is
little power to reject Kingman’s coalescent regardless of
Y. For larger samples, the power increases, but the rate
of increase depends strongly on Y. Even with a sample
of size 1500 (not shown in the graph), the probability
that D , q5% becomes only �0.32 for Y ¼ 80. This is
understandable because Y is the number of potential
parents at each disturbance event. Unless the sample
size is greater than Y, the chance of observing a multiple-
merger coalescent event may be very small; see Wakeley

and Takahashi (2003) for a similar result in a different
model. Even though the ancestral process is not King-
man’s coalescent, so that the coalescent effective pop-
ulation size does not exist, it may be very difficult to
know this on the basis of samples of genetic data. On the

Figure 1.—The power to reject the standard neutral coales-
cent at the 5% level using Tajima’s D under the coalescent
with simultaneous multiple mergers described in the text.
Each point is based on 100,000 simulation replicates with
u ¼ 10, and q5% is the lower 5% quantile computed under
Kingman’s coalescent with u ¼ 10, also using simulations.
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other hand, it would not make sense to apply the
concept of a coalescent effective population size in this
case because a large sample (or perhaps multiple loci)
would show patterns of variation distinctly different
from those predicted by Kingman’s coalescent and with
some power would reject that model.
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