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Abstract

Cocaine is an addictive psychostimulant that induces immediate early gene (IEG) expression by
activating dopamine (DA) D1 and glutamate NMDA receptors in the striatum. In this study, we show
that a single cocaine administration (30 mg/kg) time-dependently increases ERK phosphorylation,
c-Fos and FosB protein expression, and MKP-1 phosphorylation (p-MKP-1), in the caudate-putamen
(CPu) and nucleus accumbens (NAc) of Fischer rats. In the CPu, one hour after cocaine injection,
the increase in c-Fos and FosB proteins expression is totally abolished by pre-administration of DA-
D1 receptor antagonist, SCH23390. In the NAc, SCH23390 also inhibits cocaine-induced c-Fos
protein expression. The pre-treatment of NMDA receptor antagonist, MK801, partially reduces
cocaine-activated c-Fos protein expression in the CPu. Furthermore, the escalation of p-MKP-1 after
acute cocaine administration is dependent on both DA-D1 and NMDA receptors activation in both
brain regions examined. Our data suggest that cocaine may modulate ERK pathway signaling through
the activation of DA-D1 and NMDA receptors, subsequently influencing the IEG protein expression.
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1. Introduction

Cocaine is a major drug of abuse in Western countries and induces its psychomaotor effects by
blocking monoamine transporters. Among three monoaminergic systems, the dopaminergic
inputs from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and the
nigrostriatal projections to the caudate-putamen (CPu) have been postulated to be the main
regulator of cocaine’s behavioral and biochemical effects (reviewed in Hyman and Malenka
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2001; Koob and Nestler 1997; Spanagel and Weiss 1999). For example, in vitro and in vivo,
cocaine administration causes a buildup of synaptic dopamine (DA) levels and increases DA
neuronal activity in the CPu and NAc (Carboni et al., 1989; Kalivas and Duffy 1988;
Maisonneuve and Kreek 1994; Reith et al., 1997). Cocaine also exerts its influence on the
glutamatergic system. For instance, in the CPu and NAc, studies have shown that single or
repeated cocaine injection modulates extracellular glutamate concentration (Pierce et al.,
1996; Reid and Berger, 1996; Smith et al., 1995; Zhang et al., 2001).

Extracellular signal-regulated kinases (ERK), one of isoforms of mitogen-activated protein
kinases, has been characterized to respond to extracellular stimuli and regulates cell
proliferation and differentiation (Seger and Krebs, 1995). In both CPu and NAc, acute cocaine
administration induces ERK phosphorylation (p-ERK; Corbille et al., 2007; Jenab et al.,
2005; Sun et al., 2007; Valjent, et al., 2000; 2005; Zhang et al., 2004; review in Zhai et al.,
2008). p-ERK, in turn, translocates to the nucleus and controls gene expression through
regulating cCAMP response element binding protein (CREB) and ternary complex factor Elk-1
(Adams and Sweatt, 2002; Davis et al., 2000; Hill et al., 1993). Pharmacological inhibition of
mitogen-activated protein kinase/ERK kinase (MEK), an upstream activator of ERK,
attenuates cocaine-induced immediate early gene (IEG) expression in mesocorticolimbic brain
regions (Ferguson et al., 2006; Valjent et al., 2000); suggesting that ERK-mediated cascades
are important for cocaine-regulated transcriptional mechanisms.

Mitogen-activated protein kinase phosphatase-1 (MKP-1) belongs to the family of dual
specificity phosphatase that is highly regulated by ERK activation. For example, p-ERK
directly induces MKP-1 expression in vivo and in vitro (Brondello et al., 1997; Sgambato et
al., 1998). After induction, MKP-1 dephosphorylates p-ERK, inactivating it, as a negative
feedback mechanism (Duff et al., 1995; Sun et al., 1993). Corticostriatal stimulation
coincidently increases MKP-1 and c-fos mRNA in an ERK-dependent manner (Sgambato et
al., 1998). In the striatum, MKP-1 mRNA and protein levels were increased after either acute
or chronic methamphetamine administration (Takaki et al., 2001; Ujike et al., 2002). In
addition, chronic amphetamine injection also induces MKP-1 mRNA in the ventral VTA
(Rajadhyaksha et al., 2004). Furthermore, there is evidence that MKP-1 is phosphorylated (p-
MKP-1) by p-ERK at two extreme C-terminal Ser residues in vitro (Brondello et al., 1999).
The phosphorylation stabilizes MKP-1 protein but dose not influence its ability to
dephosphorylate p-ERK.

Recently, our group and others have shown that cocaine induction of p-ERK may be mediated
via DA-D1 and NMDA receptors activation (Jenab et al., 2005; Zhang et al., 2004). Although
MPK-1 and c-fos mRNA induction in response to ERK activation has been documented, the
parallel p-MKP-1 and Fos-related protein expression after acute cocaine administration has
not been elucidated. To this end, we examined the activation profile of p-ERK, p-MKP-1 and
Fos-related proteins expression after a single cocaine injection. In a second study, we
determined the effects of DA-D1 and NMDA receptor blockade on cocaine-increased p-
MKP-1 and Fos protein expression in the CPu and NAc.

Effects of acute cocaine administration on p-ERK, Fos protein expression and p-MKP-1

As shown in Fig. 1, acute cocaine administration time-dependently increased p-ERK protein
levels in the CPu and NAc [CPu: 5 min: t (6) = 2.98, P<0.05; 15 min: t (6) = 2.45, P<0.05;
NAC: 5 min: t (6) = 3.19, P<0.05; 15 min: t (6) = 2.50, P<0.05]. In both CPu and NAc, c-Fos
protein levels were also significantly higher after cocaine administration when compared to
saline controls [CPu: 45 min: t (6) = 3.16, P<0.05; 90 min: t (6) = 3.17, P<0.05; 180 min: t (6)
= 2.44; P<0.05; NAc: 45 min: t (6) = 2.50, P<0.05; 90 min: t (6) = 4.62, P<0.01; 180 min: t
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(6) = 2.66; P<0.05; Fig. 2A and B respectively]. Furthermore, cocaine induced FosB protein
expression from 45 to 360 min in both brain regions [CPu: 90 min: t (6) = 3.08, P<0.05; 180
min: t (6) = 3.85, P<0.01; 360 min: t (6) = 2.76; P<0.05; NAc: 90 min: t (6) = 11.91, P<0.001;
180 min: t (6) = 2.68, P<0.05; 360 min: t (6) = 3.16; P<0.05; Fig. 2C and D respectively].
Cocaine also induced p-MKP-1 protein levels in both the CPu and NAc [CPu: 45 min: t (6) =
2.97, P<0.05; 90 min: t (6) = 3.17, P<0.05; NAC: 45 min: t (6) = 2.49, P<0.05; 90 min: t (6) =
3.91, P<0.01; Fig. 3C and D, respectively]. The pattern of cocaine induction in the CPu and
NAc was similar for all four proteins [Fig 1.-3]. In addition, acute cocaine administration did
not alter total protein levels of ERK and MKP-1 in both brain regions [Table 1A and B].

Effects of MK801 and SCH23390 pre-treatments on cocaine-induced Fos protein expression
and p-MKP-1

In the CPu, a significant antagonist treatment main effect was found [F (5, 29) = 3.06, P<0.05;
Fig. 4A]. Both MK801 and SCH23390 pre-treatments blocked acute cocaine-induced c-Fos
protein induction [P<0.05]. However, in the NAc, although a main effect of antagonist
pretreatment was observed in c-Fos protein expression [F (5, 29) = 2.92, P<0.05; Fig. 4B], only
SCH23390 attenuated cocaine-induced c-Fos expression when compared with saline/cocaine-
treated rats [P<0.05].

In the CPu, a significant main effect of antagonist treatment on cocaine-induced FosB protein
expression was found [F (5, 29) = 3.77, P<0.05; Fig. 4C]. SCH23390 blocked cocaine induction
of FosB protein levels [P<0.05]. However, neither MK801 nor SCH23390 altered cocaine
effects on FosB in the NAc. Similar to Fig. 3, cocaine administration significantly increased
p-MKP-1 protein levels in the CPu. A significant main effect of antagonist treatment in p-
MKP-1 protein levels was obtained [F (5, 29) = 3.06, P<0.05; Fig. 4E]. SCH23390 blocked
the increase in p-MKP-1 after cocaine injection [P<0.05]. Although MK801 pre-treatment
decreased cocaine-induced p-MKP-1 protein levels by approximately 40%, it failed to reach
the significant level [P>0.05]. In the NAc, a significant main effect of antagonist treatment on
cocaine-induced p-MKP-1 was observed [F (5, 29) = 3.54, P<0.05; Fig. 4F]; where both
MK801 and SCH23390 pre-treatments reduced cocaine-induced p-MKP-1 activation
[P<0.05]. As shown in Table 1C, antagonists pre-treatment and/or acute cocaine injections had
no effect on non-phosphorylated MKP-1 protein levels in both CPu and NAc.

3. Discussion

In the present study, after a single cocaine injection, a rapid and transient increase of p-ERK
protein levels was observed in the CPu and NAc. This is consistent with studies demonstrating
that acute cocaine induced ERK activation in drug reward associated areas (Corbille et al.,
2007; Jenab et al., 2005; Sun et al., 2007; Valjent, et al., 2000; 2005; Zhang et al., 2004). In
addition, we further showed the delayed elevation of IEG protein expression and
phosphorylation in response to acute cocaine administration. Two transcription factors, EIk-1
and CREB, have been characterized as nuclear targets of ERK activation (Adams and Sweatt,
2002; Davis et al., 2000; Hill et al., 1993). Previous studies have reported that acute cocaine
administration increases EIk-1 phosphorylation in the striatum (Jenab et al., 2005; Sun et al.,
2007; Valjent et al., 2000). Pharmacological inhibition of ERK pathway signaling also
attenuates acute cocaine-induced c-Fos and FosB protein rexprssion in the striatum
(Radwanska et al., 2006; Guan et al., 2008). In mice CPu and NAc, acute cocaine injection
augments CREB phosphorylation in ERK-dependent manner (Brami-Cherrier et al., 2005;
Kano et al., 1995; Karasinska et al., 2005; Walters et al., 2003). To the best of our knowledge
there is no evidence showing that acute cocaine increases CREB phosphorylation in the CPu
of rats. However, in rats, we have observed an elevation of CREB phosphorylation in the NAc
after acute cocaine injection (Nazarian et al., unpublished observation). Furthermore, ERK-
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regulated phosphorylation of pp90 ribosomal S6 kinase, a kinase mediating CREB
phosphorylation, was increased in response to acute cocaine administration in the CPu of
Fischer rats (Sun et al., 2007). Thus, ERK-activated EIk-1 and/or CREB may underlie cocaine-
induced gene expression in both CPu and NAc.

Numerous studies have demonstrated that acute cocaine induces c-fos, FosB mRNA and Fos-
like protein expression (Brown et al., 1992; Chen et al., 1995; Graybiel et al., 1990; Hope et
al., 1992; Jenab et al., 2003; Steiner and Gerfen, 1993; Sun et al., 2007; Young et al., 1991).
Herein, similar to previous studies suggesting distinct cocaine effects on Fos-like protein
induction (Nestler et al., 2001;Ranwanska et al., 2006; Young et al., 1991), we also found that
acute cocaine administration induces differential activation profiles in immediate early gene
proteins expression in both areas examined: a rapid and transient c-Fos protein expression (45—
180 min) and delayed activation of FosB (90-360 min). A recent study has indicated that acute
cocaine induced robust and moderate histone H4 acetylation in c-fos and FosB promoters,
respectively (Kumar et al., 2005). In addition, after chronic cocaine injection, the histone H3
acetylation is evident in FosB but not in c-fos. Therefore, the distinct protein expression and
histone modification may further promote different transcriptional regulation after cocaine
exposure.

Accumulating evidence has established that the interaction between DA-D1 and NMDA
receptors in the postsynaptic region is necessary for Fos-like proteins induction in the striatum
(Berretta et al., 1992; Das et al., 1997). Previous studies have shown that, in the CPu, the acute
cocaine-induced c-fos mMRNA and protein expression is dependent on both DA-D1 and NMDA
receptor activation (Jenab et al., 2003; Torres and Rivier, 1993; Young et al., 1991). We also
demonstrated that DA D1 antagonist, SCH23390, abolished cocaine-mediated c-Fos protein
expression in the CPu and NAc. However, only in the CPu, the NMDA receptor antagonist,
MK801, partially inhibited c-Fos expression. Three plausible explanations may underlie the
regional discrepancy in response to NMDA receptor antagonism. First, microdialysis studies
in freely moving rats have indicated that systematic MK801 administration (0.2-0.5 mg/kg)
significantly increases extracellular DA levels in the prefrontal cortex and the NAc but not in
the CPu (Mathe et al., 1996; Wedzony et al., 1993; Wolf et al., 1993). In addition, previous
studies indicated that moderate to high doses of MK801 (0.5-8.0 mg/kg) may induce Fos-like
protein expression in various brain regions including the striatum (Draunow and Faull, 1990;
Liu et al., 1994; Storvik et al., 2006). However, in both CPu and NAc, low dose of MK801
(0.1-0.3 mg/kg) itself had no effect on c-fos MRNA induction (De Leonibus et al., 2002; Dalia
and Wallace, 1995). Similarly, although MK801 (0.25 mg/kg) itself did not change basal c-
Fos protein expression in present study, it is possible that both MK801 and cocaine
administration may elevate on dopamine outflow in the NAc by a synergistic action and result
in inefficiency of MK801 blockade of c-Fos protein expression. Nevertheless, the relationship
between MK801-induced extracellular DA level and postsynaptic IEG protein expression
should be further elucidated. Secondly, as postulated by Zhai et al (2008), glutamate signaling
may play a subsidiary role while DA signaling is dominant. In our CPu extract, NMDA
antagonism partially blocked cocaine-induced c-Fos protein expression similar to a previous
study using higher dose of MK801 or CPP (Torres and River, 1993). On the other hand,
administration of SCH23390 abolished cocaine-induced c-Fos protein expression in both brain
regions. In the CPu, DA-D1 but not NMDA receptor blockade also prevents the early
development of FosB expression after acute cocaine injection. Since high dose of cocaine was
used in present studyi, it is tentative to suggest that dopaminergic signaling cascade is the major
component mediating IEG expression. Finally, CPu and NAc are two neuronal substrates in
mediating distinct cocaine-induced behavioral responses (Hyman et al., 2006). With detail
examination, we have demonstrated that acute cocaine induced high and moderate magnitude
IEG proteins expression in the CPu and NAc, respectively (Fig. 2). A different activation time
course was also observed in both brain regions. One hour after cocaine administration, a fully
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developed c-Fos protein expression may occur in the CPu depending on both DA and glutamate
signaling. However, DA-D1 receptors activation is necessary for a premature/initial c-Fos
development in the NAc. Thus, the different activation profile and sensitivity in response to
receptor antagonism may reflect a shift in neuronal activity between both regions underlying
cocaine’s psychomotor responses.

MKP-1 protein, an IEG product, is the phosphatase involved in the inactivation of ERK in
several transfected cells (Alessi et al., 1993; Sun et al., 1993). P-ERK has been reported to
induce and stabilize p-MKP-1 without altering its intrinsic capability to downregulate ERK
activation (Brondello et al., 1999). Previous studies have shown that acute methamphetamine
administration induces MKP-1 mRNA in the striatum (Ujike et al., 2002; Takaki et al.,
2001). In the CPu and NAc, we further demonstrate an elevation of p-MKP-1 protein levels in
DA-D1 and NMDA receptor-dependent manner. After acute cocaine, the increasing p-MKP-1
protein levels is followed by the downregulation of p-ERK suggesting that p-MKP-1 may
regulate the time-limited activation of ERK. Interestingly, acute cocaine administration
coincidentally induces c-Fos protein expression and p-MKP-1. Although a different
experimental paradigm, Sgambato et al (1998) showed a spatially coincident distribution of
c-fos and MKP-1 mRNAs in the striatum via electrical stimulation of the glutamatergic
corticostriatal pathway. In addition, blocking Elk-1 and CREB activation using intrastriatal
infusion of the ERK inhibitor, PD 98059, completely abolished c-fos and MKP-1 induction.
Since the dose of antagonists used in present study has been shown to attenuate acute cocaine-
induced p-ERK in the CPu (Jenab et al., 2005), it is reasonable to suggest that the decrease in
cocaine-activated p-MKP-1 after DA D1 and NMDA receptor antagonism is due to the
inactivation of ERK signaling. Taken together, in both CPu and NAc, we demonstrated that p-
MKP-1 protein levels were significantly increased after single cocaine injection. Perhaps, via
the ERK-mediated intracellular cascade, DA-D1 and NMDA receptor antagonist pretreatment
abolished cocaine-induced p-MKP-1. In addition, administration of abused drug and/or striatal
stimulation may regulate MKP-1 gene induction and its protein phosphorylation underlying
the synaptic plasticity in the striatum. However, the contribution of total MKP-1 and p-MKP-1
protein to p-ERK inactivation after cocaine administration should be further examined.

In summary, several drugs, including cocaine, stimulate the expression of IEG in specific
regions resulting in the modulation of downstream genes expression. Our data demonstrate
that acute cocaine administration induces the IEG protein expression (c-Fos and FosB) and
phosphorylation (p-MKP-1). However, such protein activation profiles vary in the CPu and
NAc, indicating that cocaine exerts differential influence on the two brain regions. In addition,
the activation of DA-D1 and/or NMDA receptors seems to converge on ERK-mediated
signaling and control alternation of IEG underlying the cocaine-induced neuronal plasticity
and psychomotor effects.

60-day-old male Fischer rats (Charles River, Raleigh, NC) were individually housed in
Plexiglas chambers (20 x 20 x 41 cm). Rats were maintained on a 12-hour light/dark cycle
(lights on at 9:00 a.m.) with free access to food and water. Animal care and use was in
accordance with the Guide for the Care and Use of Laboratory Animals (NIH publication 85—
23, Bethesda, MD) and approved by the Institutional Animal Care and Use Committee of
Hunter College.
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4.2. Drug and antibodies

Cocaine hydrochloride, MK-801, and SCH23390 hydrochloride were purchased from Sigma
Chemical Co. (St. Louis, MO). Primary antibodies for ERK (#9102), p-ERK (#9101), p-MKP-1
(#2857), c-Fos (#4384) and FosB (#2251) were purchased from Cell Signaling Technologies
(Beverly, MA). Antibodies against MKP-1 (sc-370) and a-tubulin (sc-8035) were purchased
from Santa Cruz Technologies (Santa Cruz, CA). Both horseradish peroxidase-conjugated anti-
rabbit IgG (NA-934) and anti-mouse IgG (NA-931) were from Amersham Pharmacia
(Piscataway, NJ).

4.3. Drug administration

Cocaine solutions were prepared by dissolution in physiological saline (0.9%) and injected
intra-peritoneally (i.p.). One week after arrival, rats received an injection of saline (1 ml/kg)
or cocaine (30 mg/kg). For evaluating p-ERK protein levels, rats were sacrificed 5, 15, 30, or
60 min after drug treatment. For the measurement of p-MKP-1, c-Fos and FosB protein
expression, rats received same doses of saline or cocaine administration and sacrificed 45, 90,
180 or 360 min later. For experimental paradigm involving antagonists, rats were administered
MK801 (0.25 mg/kg in 0.9% saline, i.p.) or SCH23390 (0.25 mg/kg in 0.9% saline, i.p.) 30
min before single cocaine (30 mg/kg) or saline injections and sacrificed 60 min after the last
injection. The doses of MK801 and SCH23390 were previously reported to inhibit the acute
cocaine-induced pERK in the striatum (Jenab et al., 2005).

4.4. Protein preparation and measurement

After decapitation (following a brief 20 s exposure to CO»), rat brains were removed, flash
frozen in 2-methylbutane (—40° C), and stored at —80° C until used. The coronal slices (Imm
thick) were cut out in a matrix (ASI instruments, Warren, MI) and areas of CPu and NAc were
simultaneously dissected out on a cold glass plate. Tissue samples were homogenized by using
a Polytron handheld homogenizer (Kinematica, Luzern, Switzerland) in lysis buffer (50 mM
Tris-HCI, 150 mM NaCl, 2 mM EDTA, 10% Glycerol, 1% Triton X-100, 1% Igepal CA-630,
1% sodium dexycholic acid) containing a mixture of phosphatase inhibitors. After 30 min
incubation, homogenates were centrifuged at 13,000 rpm for 15 min at 4° C. Supernatants were
then collected and stored at —80° C until used. Total protein content was determined using a
Bradford kit from Bio-Rad Laboratories (Hercules, CA).

4.5. Western blot analysis

Protein samples were analyzed by using Western blot analysis as previously described (Jenab
etal., 2005). Briefly, equal amount of protein extracts were boiled in Lammeli buffer containing
1% B-mercaptoethanol for 5 min and ran on SDS-PAGE gels, then transferred to PVDF
membranes. Membranes were blocked with 5% nonfat dry milk for 1hr at room temperature
and then incubated with primary antibodies of ERK (1:1000), p-ERK (1:1000), MKP-1 (1:500),
p-MKP-1 (1:1000), c-Fos (1:1000), and FosB (1:1000), individually, overnight at 4° C. After
three washes with Tris-Tween-20 Buffer (TBST; pH = 7.4), membranes were incubated with
their appropriate secondary antibodies (1:1000) for 1hr at room temperature followed by three
more washes with TBST. Antibody binding was detected by using an enhanced
chemiluminescence kit (ECL; Amersham Pharmacia, Piscataway, NJ). Intensity of protein
bands was quantified with a computer densitometer and Image Quant Program (Molecular
Dynamics). For normalization of protein levels, all membranes were re-probed with a-tubulin
antibody (1:1000).

4.6. Statistical analysis

Protein levels were expressed as a ratio to a-tubulin levels. Data was expressed as mean %=
SEM relative to respective saline controls, which were arbitrarily set at 100%. Student’s t-tests
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were used to determine differences between cocaine- and saline-treated animals at each time
point. To determine the effect of antagonist treatment on cocaine-induced activation, a one-
way ANOVA was used followed by with LSD post hoc analysis when appropriate.
Determination of statistically significant differences was considered at 0.05 level [P<0.05].
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Fig. 1. The time course of cocaine effects on p-ERK
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-tubulin

in (A) CPu and (B) NAc. Results represent as protein levels over a-tubulin expressed as
percentage of saline control (4 animals per group). 5, 15, 30, or 60 min after rats were given
injections. M is the molecular marker in kDa. *p <0.05 as compared with respective saline

group.
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Fig. 2. The time course of cocaine effects on Fos-like protein expression

c-Fos in (A) CPu and (B) NAc; FosB in (C) CPu and (D) NAc. Results represent as protein
levels over a-tubulin expressed as percentage of saline control (4 animals per group). 45, 90,
180, or 360 min after rats were given injections. M is the molecular marker in kDa. *p <0.05
as compared with respective saline group.
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Fig. 4. Effects of MK801 and SCH23390 on cocaine-induced Fos-like protein expression and p-
MKP-1

c-Fos in (A) CPu and (B) NAc; FosB in (C) CPu and (D) NAc; p-MKP-1 in (E) CPu and (F)
NAC. Rats were pre-administrated saline, MK801, or SCH23390 30 min before a single saline
or cocaine injection. Results represent as protein levels over a-tubulin expressed as percentage
of saline/saline control (5 animals per group). *p <0.05 as compared with saline/saline group
and #p<0.05 as compared with saline/cocaine group. [S/S= saline/saline; S/C=saline/cocaine;
MK/S=MK801/saline; MK/C=MK801/cocaine; SCH/S=SCH23390/saline; SCH/
C=SCH23390/cocaine].
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