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Abstract: Gene-set analysis of microarray data evaluates biological pathways, or gene sets, for their differential expression 
by a phenotype of interest. In contrast to the analysis of individual genes, gene-set analysis utilizes existing biological 
knowledge of genes and their pathways in assessing differential expression. This paper evaluates the biological performance 
of fi ve gene-set analysis methods testing “self-contained null hypotheses” via subject sampling, along with the most popu-
lar gene-set analysis method, Gene Set Enrichment Analysis (GSEA). We use three real microarray analyses in which dif-
ferentially expressed gene sets are predictable biologically from the phenotype. Two types of gene sets are considered for 
this empirical evaluation: one type contains “truly positive” sets that should be identifi ed as differentially expressed; and 
the other type contains “truly negative” sets that should not be identifi ed as differentially expressed. Our evaluation suggests 
advantages of SAM-GS, Global, and ANCOVA Global methods over GSEA and the other two methods.

Introduction
Analytic methods of microarray data were initially formulated to identify individual genes that are dif-
ferentially expressed according to a phenotype of interest[1]. Biological inference with microarray data, 
however, often focuses on the identifi cation and interpretation of pathways (or gene sets) that are dif-
ferentially expressed according to a phenotype. Prior to the publication of Gene Set Enrichment 
Analysis (GSEA) in 2003[2], such pathway-level inference was conducted unsystematically, often 
subjectively and manually by investigators going through the results of an individual-gene analysis. 
We would like to emphasize that the methods considered in this paper focus on identifying a-priori 
defi ned pathways, and not searching for statistically signifi cant gene sets in Gene Ontology, by taking 
into account its hierarchical structure. However, gene set analysis methods considered here can be 
applied to a collection of a-priori defi ned gene sets from Gene Ontology.

GSEA proposed a systematic approach for evaluating gene sets for their differential expression 
between two classes of a phenotype. Using the Kolmogorov-Smirnov statistic, GSEA assesses the 
degree of “enrichment” of a set of genes (e.g. a pathway) in the entire range of the strength of associa-
tions with the phenotype of interest. GSEA has been modifi ed in 2005[3] and has been used widely in 
gene-set analyses of microarray data. Following the proposal of GSEA, a number of gene-set analysis 
methods have been proposed.

The goal of this paper is to compare the performance of various gene-set analysis methods biologi-
cally. Our strategy for the biological comparison is to use microarray data with phenotypes that are 
known to be associated with certain gene sets (pathways). We used the 60 human cancer cell lines 
microarray expressions dataset (the NCI-60), assembled by the National Cancer Institute for anticancer 
drug discovery. To defi ne the phenotype, we utilized the list of mutation status for 56 of the 60 cell lines 
provided for each of 24 genes studied by Ikediobi et al.[4]. We restricted our attention to genes where 
the mutation occurred in more than 10 cell-lines so that the performances of gene-set analysis methods 
can be compared in a statistically meaningful manner. There were four such genes among the 24 genes: 
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40 cell lines with mutant p53 gene and 16 cell lines 
with wild-type p53 gene; 31 cell lines with mutant 
Cyclin-dependent kinase inhibitor 2A (CDKN2A 
or p16) gene and 25 cell lines with wild-type 
CDKN2A gene; 11 cell lines with mutant Phospha-
tase and tension homologue (PTEN ) gene and 45 
cell lines with wild-type PTEN gene; 11 cell lines 
with mutant Kirsten rat sarcoma viral oncogene 
homolog (KRAS ) gene and 45 cell lines with wild-
type KRAS gene. For the CDKN2A mutation based 
phenotype, for example, pathways (or gene sets) 
that involve, or are closely related to, CDKN2A 
have a clear biological basis for being differentially 
expressed between the mutant-class and the wild-
type-class of the phenotype of interest. On the other 
hand, pathways (or gene sets) that are far from 
CDKN2A’s functions have a biological basis for 
not being differentially expressed between the two 
classes of the phenotype. Using these pathways 
that are “biologically expected” or “biologically 
unexpected” to be associated with the phenotype, 
we can compare sensitivity (true positive rate) for 
identifying the “biologically expected” pathways 
as differentially expressed and specifi city (true 
negative rate) for identifying the “biologically 
unexpected” pathways as not differentially 
expressed, across various gene-set analysis meth-
ods under the framework of Receiver Operating 
Characteristic (ROC) Analysis[5]. Here we used 
three microarray datasets corresponding to pheno-
types defi ned by CDKN2A, PTEN, and p53. We 
did not study KRAS-defi ned phenotype comparison 
because there were only four biologically expected 
gene sets for KRAS, using the defi nition of “truly 
positive” gene sets described in Materials and 
Methods, which was insuffi cient for any statistical 
evaluation.

The recent review of gene-set analysis methods 
by Goeman and Bühlmann[6] provided an excel-
lent summary of the methods. They made an impor-
tant distinction among the gene-set analysis 
methods: those testing “self-contained null hypoth-
eses” via. subject sampling and those testing “com-
petitive null hypotheses” via. gene sampling. They 
pointed out that the competitive hypothesis testing 
via. gene sampling is subject to serious errors in 
calculating and interpreting statistical signifi cance 
of gene sets, because of its implicit or explicit 
untenable assumption of stochastic independence 
across genes. Following the argument of Goeman 
and Bühlmann, we consider in this paper fi ve meth-
ods that test “self-contained null hypotheses” via. 

subject sampling. We also include GSEA in the 
comparison as it is the most commonly-used 
method of gene-set analysis to date. The fi ve meth-
ods that test “self-contained null hypotheses” via. 
subject sampling are: SAM-GS[7]; Global Test[8]; 
ANCOVA Global Test [9]; the method of Tian et al. 
[10]; the method of Tomfohr et al.[11]. Briefl y, 
SAM-GS by Dinu et al.[7] is a gene-set analysis 
method that extended the individual-gene analysis 
method of SAM to gene-set analyses. It can also 
be seen as a modifi cation of Dempster’s Test[13] 
for the two-sample multivariate mean comparison 
under a small-sample setting where the standard 
Hotelling’s T cannot be applied. Global Test was 
proposed by Goeman et al.[8] modeling and testing 
differential gene expression by use of random-
effects logistic regression models. Mansmann and 
Meister[9] proposed ANCOVA Global Test in 
which the roles of phenotype and genes were 
exchanged in the regression modeling framework 
of Global Test. Tian et al.[10] assessed the signifi -
cance of a gene set by taking the mean of t-test 
statistic values of genes in the gene set as a gene-set 
test statistic and evaluating its signifi cance by a 
permutation of phenotype labels. Tomfohr et al.[11] 
reduced the gene set’s expression into a single sum-
mary value by taking the fi rst principal component 
of expressions of genes in the gene set and per-
formed a phenotype-label permutation test of the 
single summary. GSEA was initially proposed by 
Mootha et al.[2] using the Kolmogorov-Smirnov 
statistic to quantify the degree of “enrichment” of 
a set of genes in the entire range of the strength of 
associations with the phenotype. GSEA was later 
modifi ed by Subramanian et al.[3].  Although GSEA 
is not a method for testing “self-contained null 
hypotheses” via. subject sampling, we included it 
here for comparison, as it is the most widely-used 
method of gene-set analyses.

For Global Test and ANCOVA Global Test, we 
previously found that it is necessary to standardize 
gene expression to eliminate the dominance within 
a gene-set by its member(s) with large variances 
[14]. We used the following equation to standard-
ize the gene expression scores:

 x
x x

sjk
jk j

j
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where xjk is the gene expression for gene j in sample 
k, x j and sj are the mean value and standard 
deviation of gene j expression of all samples.
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Results
To compare the performance of the six methods, we 
used three gene-mutation based phenotypes (i.e. 
mutated vs. wild-type) in the NCI-60 microarray 
data: CDKN2A; PTEN; and p53. The gene sets 
accompanying the datasets were those used by 
Subramanian et al. [3]. For each of the three genes 
that defi ned the phenotype, we consider those gene 
sets containing that specifi c gene as “truly positive”, 
in the sense that a good gene set analysis method 
should identify those gene sets as being associated 
with the phenotype. For CDKN2A, there were 17 
such gene sets. To defi ne the “truly negative” gene 
sets, we search for genes whose frequency of appear-
ance in the gene sets catalog was also 17, and iden-
tifi ed 4 such genes. When searching PUBMED for 
links of each of these 4 genes with CDKN2A, we 
found that only PRKACB (protein kinase, cAMP-
dependent, catalytic, beta) has no close link with 
CDKN2A, the gene defi ning the phenotype. We used 
the 17 gene sets, containing PRKACB, as “truly 
negative” gene sets. For the other two phenotypes, 
the “truly positive” and “truly negative” pathways 

were defi ned in the same way. For PTEN, there were 
18 “truly positive” pathways; 5 other genes appeared 
18 times in the gene sets catalog. We used PRKAR2B 
(protein kinase, cAMP-dependent, regulatory, type 
II, beta) to defi ne the “truly negative” pathways, as 
we did not fi nd any close links of this gene with 
PTEN, the gene defi ning the phenotype. For p53, 
there were 25 “truly positive” pathways; only one 
other gene appeared 25 times in the gene sets cata-
log: RAC1 (ras-related C3 botulinum toxin 
substrate 1). We used RAC1 to defi ne the “truly 
negative” pathways, as we did not fi nd any close 
links of this gene with p53, the gene defi ning the 
phenotype. In the remaining of this section, we 
present the performance of the six gene set analysis 
methods on identifying these “truly positive” and 
“truly negative” gene sets.

Identifi cation of “truly positive” 
pathways: sensitivity of the methods
Table 1 shows the p-values of 17 “truly positive” 
pathways for differential expression by the 

Table 1. P-values of the 17 pathways that include CDKN2A gene by the six methods (with p-value or FDR � 0.05 
in bold).

Gene set SAM-GS Global ANCOVA 
global

Tian Tomfohr GSEA
P FDR

arfPathway �0.001 0.004 0.005 0.284 1.000 0.143 0.807
breast_cancer_estrogen_signalling �0.001 0.002 0.009 0.506 0.750 0.443 0.824
cell_cycle_arrest �0.001 0.053 0.056 0.174 1.000 0.904 0.892
cellcyclePathway �0.001 0.001 �0.001 0.926 1.000 0.371 0.638
g1Pathway �0.001 �0.001 �0.001 0.476 1.000 0.190 0.549
SA_G1_AND_S_PHASES �0.001 0.012 0.011 0.164 1.000 0.163 0.824
SIG_PIP3_signaling_in_B_lym-
phocytes

�0.001 0.006 0.005 0.898 1.000 0.497 0.815

SIG_PIP3SIGINCARDIACMYOCTES �0.001 0.011 0.009 0.712 1.000 0.285 0.605
ST_Phosphoinositide_3_Kinase_
Pathway

�0.001 0.004 0.004 0.822 1.000 0.122 0.743

SIG_InsulinReceptorPathwayIn 
CardiacMyocytes

0.001 0.019 0.015 0.218 0.999 0.249 0.608

p53_signalling 0.002 0.042 0.036 0.010 1.000 0.038 0.594
ST_Integrin_Signaling_Pathway 0.005 0.045 0.036 0.028 1.000 0.175 0.515
HTERT_UP 0.011 0.056 0.056 0.164 1.000 0.510 0.703
drug_resistance_and_metabolism 0.013 0.104 0.102 0.822 1.000 0.526 0.789
CR_CELL_CYCLE 0.018 0.116 0.109 0.600 1.000 0.623 0.757
Cell_Cycle 0.019 0.103 0.091 0.160 1.000 0.720 0.852
PROLIF_GENES 0.049 0.097 0.070 0.246 1.000 0.404 0.645
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phenotype according to the six gene-set analysis 
methods for CDKN2A mutation vs. wild-type 
comparison. SAM-GS, Global Test, and ANCOVA 
Global Test agreed closely and the majority of the 
17 pathways showed statistically signifi cant dif-
ferential expression by the phenotype with p-value 
�0.05. On the other hand, the other three gene-set 
analysis methods identified only a few “truly 
positive” pathways with p-value �0.05. Similar 
results are found for PTEN mutation vs. wild-type, 
presented in Table 2, although SAM-GS found 
more signifi cant gene sets than Global Test, and 
ANCOVA Global Test. The results for p53 com-
parison, presented in Supplementary File, Table S1 
online, agreed closely for SAM-GS, Global Test, 
and ANCOVA Global Test, and the majority of the 
25 pathways showed statistically significant 
differential expression by the phenotype with 
p-value �0.05. On the other hand, the other three 
gene-set analysis methods identifi ed only a few 
“truly positive” pathways with p-value �0.05.

Identifi cation of “truly negative” 
pathways: specifi city of the methods
Table 3 shows the p-values of 17 “truly negative” 
pathways for differential expression by the pheno-
type, for CDKN2A mutation vs. wild-type com-
parison, according to the six gene-set analysis 
methods. Under the binomial assumption in a 
random sampling of 17 observations with p = 0.05 
of “failure”, the probability observing 0, 1, 2, 3 
“failure” in 17 observations are 0.42, 0.37, 0.16, 
and 0.04, respectively. None of the six gene-set 
analysis methods showed inconsistent results with 
the expected false positive numbers based on the 
binomial assumption. The results of the PTEN 
mutation vs. wild type analysis are presented in 
Table 4 for the 18 “truly negative” pathways for 
differential expression by the phenotype, according 
to the six gene-set analysis methods. Under the 
binomial assumption in a random sampling of 18 
observations with p = 0.05 of “failure”, the prob-
ability observing 0, 1, 2, 3 “failure” in 18 

Table 2. P-values of the 18 pathways that include PTEN gene by the six methods (with p-value or FDR � 0.05 
in bold).

Gene set SAM-GS Global ANCOVA 
global

Tian Tomfohr GSEA
P FDR

igf1mtorPathway �0.001 0.032 0.019 0.258 0.808 0.141 0.987
ptenPathway �0.001 0.008 0.006 0.012 1.000 0.000 0.106
SA_PTEN_PATHWAY �0.001 0.003 0.008 0.014 1.000 0.023 0.734
tumor_supressor �0.001 0.014 0.016 0.876 1.000 0.482 0.956
INS 0.002 0.031 0.022 0.004 1.000 0.038 0.664
eif4Pathway 0.003 0.038 0.037 0.280 0.987 0.717 0.979
mtorPathway 0.003 0.113 0.123 0.302 1.000 0.204 0.974
SIG_PIP3_signaling_in_B_lympho-
cytes

0.005 0.061 0.058 0.222 1.000 0.548 0.936

metPathway 0.008 0.034 0.039 0.806 1.000 0.732 0.977
ST_Phosphoinositide_3_Kinase_
Pathway

0.008 0.080 0.066 0.276 1.000 0.116 1.000

SIG_CHEMOTAXIS 0.014 0.085 0.073 0.588 1.000 0.721 0.964
SIG_InsulinReceptorPathwayIn 
CardiacMyocytes

0.015 0.076 0.072 0.120 1.000 0.034 1.000

ST_Integrin_Signaling_Pathway 0.023 0.076 0.066 0.538 1.000 0.915 0.976
SIG_PIP3SIGINCARDIACMYOCTES 0.092 0.318 0.320 0.130 1.000 0.216 1.000
cell_proliferation 0.127 0.170 0.171 0.950 1.000 0.409 0.894
PROLIF_GENES 0.143 0.222 0.225 0.310 1.000 0.377 0.914
CR_SIGNALLING 0.154 0.299 0.302 0.042 1.000 0.278 1.000
breast_cancer_estrogen_signalling 0.207 0.438 0.423 0.472 1.000 0.780 1.000
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observations are 0.40, 0.38, 0.17, and 0.05, 
respectively. None of the six gene-set analysis 
methods showed inconsistent results with the 
expected false positive numbers based on the bino-
mial assumption. The results of the p53 mutation 
vs. wild-type analysis are tabulated in Supplemen-
tary File, Table S2 online. Under the binomial 

assumption in a random sampling of 25 observations 
with p = 0.05 of “failure”, the probability observ-
ing 0, 1, 2, 3 “failure” in 25 observations are 0.28, 
0.37, 0.23, and 0.09, respectively. None of the six 
gene-set analysis methods showed inconsistent 
results with the expected false positive numbers 
based on the binomial assumption.

Table 3. P-values of the 17 pathways that include PRKACB gene by the six methods (with p-value or FDR � 0.05 
in bold).

Gene set SAM-GS Global ANCOVA Tian Tomfohr GSEA
   global   P FDR
crebPathway 0.022 0.026 0.032 0.006 1.000 0.009 0.409
gpcrPathway 0.036 0.057 0.058 0.122 1.000 0.041 0.495
pparaPathway 0.070 0.087 0.083 0.016 1.000 0.079 0.471
nos1Pathway 0.119 0.138 0.132 0.350 1.000 0.428 0.649
badPathway 0.124 0.148 0.134 0.144 1.000 0.082 0.617
gata3Pathway 0.130 0.224 0.204 0.446 1.000 0.292 0.605
amiPathway 0.131 0.133 0.119 0.014 0.998 0.285 0.533
cskPathway 0.131 0.133 0.119 0.014 0.998 0.285 0.525
chrebpPathway 0.135 0.209 0.193 0.286 1.000 0.353 0.597
no1Pathway 0.166 0.260 0.283 0.050 1.000 0.078 0.557
ck1Pathway 0.243 0.372 0.373 0.428 1.000 0.291 0.564
mprPathway 0.243 0.285 0.263 0.886 0.999 0.591 0.760
mcalpainPathway 0.283 0.383 0.369 0.060 1.000 0.146 0.509
shh_lisa 0.317 0.361 0.362 0.880 1.000 0.431 0.656
CR_PROTEIN_MOD 0.368 0.405 0.392 0.362 1.000 0.395 0.647
nfatPathway 0.424 0.534 0.556 0.352 1.000 0.198 0.529
vipPathway 0.449 0.546 0.569 0.026 1.000 0.309 0.601

Table 4. P-values of the 18 pathways that include PRKAR2B gene by the six methods (with p-value or FDR � 0.05 
in bold).

Gene set SAM-GS Global ANCOVA Tian Tomfohr GSEA 
   global   P FDR
INS 0.002 0.031 0.022 0.004 1.000 0.038 0.664
amiPathway 0.042 0.054 0.032 0.002 1.000 0.117 0.777
cskPathway 0.042 0.054 0.032 0.002 1.000 0.117 0.743
mprPathway 0.128 0.180 0.161 0.148 0.984 0.138 0.756
gpcrPathway 0.217 0.202 0.169 0.386 1.000 0.063 0.661
no1Pathway 0.355 0.270 0.248 0.528 1.000 0.642 0.931
nfatPathway 0.386 0.335 0.347 0.396 1.000 0.898 0.948
vipPathway 0.403 0.350 0.328 0.462 1.000 0.394 0.970
nos1Pathway 0.413 0.454 0.431 0.926 1.000 0.153 0.744
mcalpainPathway 0.621 0.629 0.601 0.190 1.000 0.625 1.000
pparaPathway 0.665 0.674 0.668 0.130 1.000 0.549 0.934
shh_lisa 0.671 0.689 0.661 0.294 1.000 0.496 0.963
ck1Pathway 0.704 0.758 0.762 0.174 1.000 0.123 0.793
crebPathway 0.732 0.798 0.806 0.708 1.000 0.119 0.756
chrebpPathway 0.745 0.809 0.804 0.232 1.000 0.155 0.753
CR_PROTEIN_MOD 0.760 0.805 0.788 0.852 1.000 0.608 0.920
badPathway 0.830 0.876 0.854 0.480 1.000 0.747 0.948
gata3Pathway 0.921 0.883 0.880 0.522 1.000 0.555 0.933



362

Dinu et al

Cancer Informatics 2008:6 

ROC analysis of the performance 
of the six gene-set analysis methods
Since the p-value threshold of 0.05 is arbitrary, 
we applied the ROC analysis to the classifi cation 
of the “truly positive” and “truly negative” path-
ways that is independent of a specifi c choice of 
the threshold. That is, for each of the six gene-set 
analysis methods, we used the p-value for dif-
ferential expression as the classifi er of the two 
classes of pathways and evaluated the classifi ca-
tion performance by the area under the ROC 
curve. Table 5 presents the areas under the ROC 
curves of the six methods and their associated 
95% confi dence intervals. The methods of Tian 
et al., Tomfohr et al., and GSEA had signifi cantly 
smaller areas under the ROC curves compared 
to any of SAM-GS, Global Test, and ANCOVA 
Global Test (p � 0.05), indicating their signifi -
cantly poorer performance in correctly classify-
ing “truly positive” and “truly negative” 

pathways. The area under the ROC curve was 
above 0.80 for SAM-GS, Global Test, and 
ANCOVA Global Test, with each of them being 
significantly better than the random guess 
(p � 0.05). On the other hand, the area under the 
ROC curve was less than 0.65 for the other three 
methods, with each of them not being signifi -
cantly different from the random guess. For the 
PTEN mutation vs. wild-type example, SAM-GS 
had significantly larger area under the ROC 
curves compared to Global (p � 0.05) and 
ANCOVA Global Tests (p � 0.05).

A smaller area under the ROC curve is expected 
for the un-standardized versions of the global tests. 
According to Qi et al.[14] the standardized ver-
sions of global tests are more powerful than the 
un-standardized versions, although the differences 
in performance may not be too large.

Any method that provides correct p-values can 
be used in conjunction with FDR methods such as 

Table 5. ROC analysis comparing the six methods for each of the three microarray datasets.

Phenotype Gene-set analysis method Area under the ROC curve 
(95% Confi dence Interval)

CDKN2A mutation vs. wild type SAM-GS 0.993 (0.977, 1.000)
Global 0.945 (0.873, 1.000)

ANCOVA Global 0.948 (0.879, 1.000)
Tian* 0.360 (0.163, 0.557)

Tomfohr* 0.545 (0.396, 0.694)
GSEA p-value* 0.395 (0.195, 0.594)

GSEA FDR* 0.180 (0.038, 0.321)
PTEN mutation vs. wild type SAM-GS 0.918 (0.822, 1.000)

Global 0.847 (0.715, 0.979)
ANCOVA Global 0.832 (0.691, 0.972)

Tian* 0.506 (0.309, 0.703)
Tomfohr* 0.528 (0.435, 0.620)

GSEA p-value* 0.500 (0.301, 0.699)
GSEA FDR* 0.265 (0.086, 0.445)

P53 mutation vs. wild type SAM-GS 0.854 (0.752, 0.957)
Global 0.828 (0.714, 0.942)

ANCOVA Global 0.831 (0.718, 0.944)
Tian* 0.625 (0.464, 0.785)

Tomfohr* 0.647 (0.525, 0.769)
GSEA p-value* 0.529 (0.361, 0.697)

GSEA FDR* 0.482 (0.315, 0.649)

*These methods have signifi cantly smaller area under the ROC curve compared to SAM-GS, Global, or ANCOVA Global methods 
(p � 0.05).
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the q-value method[15]. We included the FDR 
values for GSEA in our presentation, because it 
has a specifi c way of computing these values, and 
also because GSEA is the most popular method. 
Although we choose the p-values to rank the meth-
ods, we expect similar ranking based on the FDR 
values.

Discussion
Proper evaluation of bioinformatics methods for 
microarray data analysis is not simple to perform. 
Simulation studies are useful for evaluating prop-
erties of methods under certain simplifi ed condi-
tions. It is, however, not possible to simulate 
complex correlations and noise properties that exist 
in real microarray data in measuring gene expres-
sion. On the other hand, evaluating data analysis 
methods empirically based on real microarray 
datasets is also subject to limitations, among which 
the most critical ones would perhaps be the ques-
tion of generalizability of fi ndings due to the use 
of specifi c datasets and not knowing what the 
underlying true expression profi les are. In this 
paper, we chose to evaluate the six gene-set analy-
sis methods empirically using three analyses with 
the NCI-60 microarray data, each of the three cor-
responding to a phenotype defined based on 
mutated vs. wild-type of known cancer genes: 
CDKN2A, PTEN, and p53. Our goal was to com-
pare gene-set analysis methods based on biological 
criteria. Although our strategy does not overcome 
the generalizability limitation, we were able to 
address the issue of unknown underlying expres-
sion profi les by utilizing the phenotype defi ned by 
mutation of a gene and analyzing biologically 
expected, and unexpected, differentially expressed 
gene sets.

The comparison of the six methods with respect 
to the true-positive and true-negative rates showed 
varying biological performance of these gene-set 
analysis methods, suggesting advantages of SAM-
GS, Global, and ANCOVA Global methods over 
GSEA and the other two methods. These results 
are consistent to methodological features of the six 
methods. We provide two methodological remarks 
here that are relevant to the interpretation of the 
observed results. First, the six methods do not 
consider directions of the gene expression and the 
phenotype of interest in the same way. Both the 
method of Tian et al. and GSEA separate positive 
(over-expressed) and negative (under-expressed) 

associations of gene expression with the pheno-
type. That is, if some genes in a pathway are over-
expressed and others are under-expressed by the 
phenotype, they work towards canceling each other 
in measuring the strength of association in these 
two methods. On the other hand, SAM-GS, Global 
Test, and ANCOVA Global Test take both direc-
tions of association as an indication of the asso-
ciation. Thus, pathways with a mixture of 
over-expressed and under-expressed genes are 
more likely to be identifi ed as being signifi cantly 
associated with the phenotype by these three meth-
ods than the method of Tian et al. or GSEA. The 
method of Tomfohr et al. initially reduces the gene 
expression of a pathway by taking the fi rst princi-
pal component of the pathway’s gene expression 
without considering the phenotype. Thus, unless 
the direction of the fi rst principal component is the 
direction along which the phenotype-associated 
expression differences appear, the method does not 
capture the phenotype-associated differential gene 
expression. Second, the six methods are not testing 
the same statistical null hypothesis. In the case of 
GSEA, for example, the null hypothesis tested is 
that genes of a pathway are not clustered along the 
axis of an association measure, such as correlation 
between the phenotype and gene expression[7]. 
This null hypothesis does not correspond to 
hypotheses of biological interest: if the genes of a 
pathway are clustered around the correlation values 
of zero, for instance, GSEA would still identify 
such pathways as being associated with the phe-
notype. In SAM-GS, Global Test, and ANCOVA 
Global Test, the null hypothesis is properly formu-
lated statistically in three different ways.

There is a caveat in our approach to defi ning 
the “truly positive” and “truly negative” gene sets. 
In the p53 analysis, for example, we took the gene 
sets that include TP53 as “biologically expected 
truly positive” gene sets and those that include 
RAC1 as “biologically expected truly negative” 
gene sets. We recognize that the appropriateness 
of the selection of these pathways may be debat-
able. In this example, there is one gene set, “arf 
pathway”, overlapping between the truly positive 
and truly negative gene sets. None of the six meth-
ods found evidence of signifi cance for this path-
way. There is no overlap in the CDKN2A analysis. 
In the PTEN analysis, “ins pathway” was listed as 
both “truly positive” and “truly negative”. PTEN 
is a tumour suppressor involved in cell cycle pro-
gression as an inhibitor of insulin (INS) signaling. 
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In roundworms, a PTEN homologue has been 
related to development and longevity regulation 
through the INS-like pathway[12]. In addition to 
the overlapping issue, our defi nition of “truly 
positive” needs a remark. We considered gene sets 
as “truly positive” if they included the gene whose 
mutation defi ned the phenotype. For example, by 
including the CDKN2A gene that plays key bio-
logical functions in cell cycle regulations, the gene 
sets with CDKN2A are likely to be infl uenced by 
its mutation, at least partially, and, therefore, serve 
as biologically tenable “truly positive” gene sets. 
Note, however, that these gene sets may not neces-
sarily be regulated primarily by the phenotype-
defi ning gene.

In summary, our biological evaluation illustrated 
some appreciable performance differences among 
the six gene-set analysis methods. Our evaluation 
results are consistent throughout the three datasets 
in the sense that, SAM-GS, Global Test, and 
ANCOVA Global Test performed considerably bet-
ter than the other three methods. More biologically-
oriented evaluations of microarray analysis methods 
are needed, including those for gene-set analysis, 
for identifying truly effective gene-expression-
analysis tools for biology and medicine.

Materials and Methods

The phenotypes being compared 
in the microarray dataset
To compare performance of the six methods, we 
obtained the NCI-60 microarray dataset from 
http://discover.nci.nih.gov/cellminer[16]. The 
microarray experiment of the NCI-60 was con-
ducted by hybridizing 60 cancer cell lines’ mRNAs 
to Affy U95(A-E) chip. The expression data were 
normalized using RMA[17]. These arrays contain 
49,064 ProbeSets and their expressions were 
reduced from the probe level to the gene level of 
17,693 unique genes by a method described in the 
GSEA website [http://www.broad.mit.edu/gsea], 
by taking the maximum probe set expression of 
each gene in each sample. The mutation status of 
each cell line was based on the analysis of Ikediobi 
et al.[4]. According to Ikediobi et al. 59 of the 60 
cell lines were made available, and a total of 56 
independent cell lines were used for the mutation 
analysis: there were three pairs among the 59 cell 
lines that seemed to have been derived from the 
same individual. The synonymous pairs are the 

following: (a) ‘‘breast’’ cancer line NCI/ADR-RES 
and the ovarian cancer OVCAR-8, which have 
identical TP53 and ERBB2 variants and 99% 
genotype similarity; (b) the melanoma line M14 
and the ‘‘breast’’ cancer line MDA-MB-435, which 
have identical BRAF, CDKN2A, and TP53 variants 
and 97% genotype similarity; and (c) two glioma 
lines SNB-19 and U251, which have identical 
TP53, CDKN2A, and PTEN variants and 96% 
genotype similarity. Lists of mutation status for 
each of the 56 cell lines were provided for each of 
24 cancer genes studied by Ikediobi et al.[4]. We 
restricted our attention to four of the 24 genes 
where the mutation occurred in more than 10 cell-
lines: p53 (40 mutated vs. 16 wild-type); CDKN2A 
(31 mutate vs. 25 wild-type); PTEN and KRAS 
(both 11 mutated vs. 45 wild-type). Of these four 
genes, we did not study KRAS-defi ned phenotype 
comparison because there were only four “truly 
positive” gene sets for KRAS, using the defi nition 
of “truly positive” gene sets described in the next 
two subsections, which was insuffi cient for any 
statistical evaluation.

Pathways/Gene sets
For gene sets, we used Subramanian et al.’s gene-
set subcatalogs C2 from [http://www.broad.mit.
edu/gsea] on “Molecular Signature Database.” In 
Subramanian et al. Catalog C2 consisted of 472 
sets containing gene sets reported in manually 
curated databases and 50 sets containing genes 
reported in various experimental papers. Following 
the GSEA paper[3], we restricted the set size to be 
between 15 and 500, resulting in 310 pathways to 
be examined.

Biological evaluation of gene-set 
methods

CDKN2A mutation vs wild-type
The phenotype of interest in this microarray exper-
iment was defi ned by mutation of a specifi c gene, 
CDKN2A. Thus, gene sets that are expected on the 
basis of biology to be differentially expressed 
include those which involve CDKN2A gene as a 
gene set member. We considered gene sets that 
contain CDKN2A as a gene set member as “truly 
positive” gene sets. In the CDKN2A analysis, there 
were 17 such gene sets. A good gene-set analysis 
method should identify these gene sets as having 
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differential expression between the mutant and 
wild-type classes. Regarding “truly negative” path-
ways, we searched the list of all genes on the micro-
array and identifi ed 4 more genes whose frequency 
of appearances in the 310 pathways was also 17. A 
search on PUBMED indicated PRKACB (protein 
kinase, cAMP-dependent, catalytic, beta) as the only 
gene among the four with no close link with 
CDKN2A. We, therefore, used the 17 pathways that 
included PRKACB as “truly negative” pathways.

As a measure of gene-set analysis performance, 
statistical signifi cance (p-value) of differential 
expression by the phenotype was computed for 
each of the 34 pathways by each of the six methods 
and tabulated. In the case of GSEA, which is not 
a method for testing “self-contained null hypoth-
eses” via. subject sampling, both p-values and 
False Discovery Rate (FDR) provided by Subra-
manian et al.[3] were tabulated. In addition, we 
evaluated the classifi cation performance of the six 
methods by the ROC analysis[4]. Conditioned on 
the fact that the 17 “truly positive” gene sets 
include CDKN2A as a member, we assumed con-
ditional independence among the 17 gene sets and 
estimated the sensitivity, or true-positive rate, of 
classifi cation (i.e. the proportion of the 17 “truly 
positive” gene sets which were correctly classifi ed 
as truly positive), given a threshold of p-value. 
Similarly, conditioned on the fact that the 17 “truly 
negative” gene sets include PRKACB as a member, 
we assumed conditional independence among the 
17 “truly negative” gene sets and estimated the 
specifi city, or true-negative rate, of classifi cation 
(i.e. the proportion of the 17 “truly negative” gene 
sets which were correctly classifi ed as truly nega-
tive), given a threshold of p-value. By varying the 
threshold, we can draw an ROC curve, a curve that 
goes through points of (sensitivity, 1-specifi city) 
across the whole range of classifi cation threshold. 
The area under the ROC curve of each of the six 
methods was calculated by Mann-Whitney Statis-
tic, and pairwise differences of the area under the 
ROC curve among the six methods were tested by 
the method of DeLong et al.[18]. Detailed calcula-
tions of the confi dence intervals and pairwise dif-
ferences tests are illustrated on a working example 
in the above mentioned reference. We used STATA 
to run these analyses.

PTEN mutation vs wild-type
The phenotype of interest in this analysis was 
defi ned by mutation of PTEN. We considered gene 

sets that contain PTEN as a member as “truly 
positive” gene sets. In the PTEN dataset, there were 
18 such gene sets. Regarding “truly negative” gene 
sets, we searched the list of all genes on the micro-
array and identifi ed 5 more genes whose frequency 
of appearances in the 310 pathways was also 18. 
A search on PUBMED indicated PRKAR2B 
(protein kinase, cAMP-dependent, regulatory, type 
II, beta) as the only gene among the fi ve with no 
close link with PTEN. We, therefore, used the 18 
gene sets that included PRKAR2B as “truly nega-
tive” gene sets. The ROC analysis was conducted 
analogous to the CDKN2A analysis.

TP53 mutation vs wild-type
The phenotype of interest in this analysis was 
defi ned by mutation of TP53. We considered gene 
sets that contain TP53 as a member as “truly 
positive” gene sets . In the p53 analysis, there were 
25 such gene sets. Regarding “truly negative” gene 
sets, we searched the list of all genes on the micro-
array and identifi ed one more gene whose fre-
quency of appearances in the 310 pathways was 
also 25, the same frequency as TP53. This gene 
was RAC1 (ras-related C3 botulinum toxin sub-
strate 1) for which we did not fi nd close link with 
p53. We, therefore, used the 25 pathways that 
included RAC1 as “truly negative” gene sets. The 
ROC analysis was conducted analogous to the 
CDKN2A analysis.
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Supplementary Tables

Table S1. P-values of the 25 pathways that include TP53 gene by the six methods (with p-value or FDR � 0.05 
in bold).

Gene set SAM-GS Global ANCOVA Tian Tomfohr GSEA
   global   P FDR
atmPathway �0.000 0.008 0.007 0.204 1.000 0.534 0.928
Cell_Cycle �0.000 0.005 �0.000 �0.000 0.359 0.120 0.620
DNA_DAMAGE_SIGNALLING �0.000 �0.000 �0.000 0.928 0.207 0.339 1.000
g1Pathway �0.000 �0.000 �0.000 0.428 0.037 0.360 0.948
g2Pathway �0.000 �0.001 �0.001 0.012 0.145 0.476 0.882
p53hypoxiaPathway �0.000 0.002 �0.001 0.028 1.000 0.323 1.000
p53Pathway �0.000 �0.000 �0.000 0.010 0.321 0.065 1.000
radiation_sensitivity �0.000 0.006 0.006 0.270 1.000 0.342 1.000
SA_G1_AND_S_PHASES �0.000 �0.000 �0.000 0.346 0.035 0.136 1.000
drug_resistance_and_metabolism �0.001 0.014 0.017 0.020 1.000 0.128 1.000
p53_signalling �0.001 0.017 0.015 0.818 1.000 0.855 0.956
CR_CELL_CYCLE 0.002 0.009 0.005 �0.000 0.399 0.340 0.886
chemicalPathway 0.005 0.052 0.039 0.980 1.000 0.291 0.899
breast_cancer_estrogen_signalling 0.032 0.111 0.123 0.564 1.000 0.540 0.904
ST_Fas_Signaling_Pathway 0.043 0.103 0.090 0.114 1.000 0.485 0.964
atrbrcaPathway 0.050 0.048 0.049 0.152 0.619 0.160 0.678
mitochondr 0.065 0.104 0.095 0.048 1.000 0.758 0.976
CR_DEATH 0.068 0.221 0.229 0.140 1.000 0.376 0.935
cell_cycle_checkpoint 0.122 0.119 0.106 0.012 0.855 0.030 0.420
tumor_supressor 0.187 0.173 0.177 0.038 1.000 0.167 0.883
RAP_UP 0.248 0.308 0.277 0.120 1.000 0.178 0.932
arfPathway 0.300 0.469 0.431 0.384 1.000 0.098 0.673
ST_JNK_MAPK_Pathway 0.579 0.707 0.705 0.362 1.000 0.790 0.951
telPathway 0.674 0.719 0.713 0.790 1.000 0.563 0.919
tidPathway 0.767 0.803 0.781 0.582 1.000 0.597 0.935
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Table S2. P-values of the 25 pathways that include RAC1 gene by the six methods (with p-value or FDR � 0.05 
in bold).

Gene set SAM-GS Global ANCOVA Tian Tomfohr GSEA 
   global   P FDR
Raccycd Pathway �0.001 0.003 0.002 0.560 0.997 0.192 0.968
actinY Pathway 0.03+2 0.074 0.067 0.092 0.970 0.119 1.000
NFKB_INDUCED 0.033 0.082 0.082 0.054 1.000 0.327 1.000
Ptdins Pathway 0.058 0.058 0.069 0.004 1.000 0.006 0.405
Creb Pathway 0.066 0.058 0.069 0.922 0.990 0.290 0.873
edg1 Pathway 0.134 0.155 0.148 0.558 1.000 0.658 0.934
Fml ppathway 0.135 0.200 0.193 0.006 1.000 0.023 0.578
Bcr Pathway 0.278 0.359 0.356 0.032 1.000 0.013 0.309
Arf Pathway 0.300 0.469 0.431 0.384 1.000 0.098 0.673
Cell_motility 0.369 0.430 0.455 0.456 1.000 0.205 0.891
G13_Signaling_Pathway 0.386 0.425 0.449 0.298 1.000 0.246 1.000
Wnt_Signaling 0.511 0.539 0.554 0.548 1.000 0.461 0.850
Mapk Pathway 0.609 0.683 0.649 0.750 1.000 0.940 0.981
SA_B_CELL_RECEPTOR_ 0.615 0.604 0.595 0.382 1.000 0.761 0.958
COMPLEXES
cell_adhesion 0.679 0.668 0.675 0.264 1.000 0.964 0.970
Tcr Pathway 0.709 0.779 0.772 0.036 1.000 0.453 0.853
p38mapk Pathway 0.715 0.762 0.765 0.376 1.000 0.222 0.996
Ucalpain Pathway 0.750 0.760 0.758 0.488 1.000 0.825 0.983
pyk2 Pathway 0.779 0.863 0.846 0.230 1.000 0.013 0.477
rac1 Pathway 0.785 0.720 0.707 0.264 1.000 0.697 0.965
CR_CAM 0.827 0.880 0.884 0.448 1.000 0.917 0.968
ST_MONOCYTE_AD_ 0.884 0.889 0.901 0.878 1.000 0.359 0.851
PATHWAY
Ras Pathway 0.911 0.921 0.912 0.642 1.000 0.895 1.000
at1rPathway 0.954 0.971 0.974 0.624 1.000 0.165 0.887
nkcellsPathway 0.974 0.992 0.986 0.872 1.000 0.939 0.991
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