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Abstract
We introduce a new method for brain MRI segmentation, called the auto context model (ACM), to
segment the hippocampus automatically in 3D T1-weighted structural brain MRI scans of subjects
from the Alzheimer's Disease Neuroimaging Initiative (ADNI). In a training phase, our algorithm
used 21 hand-labeled segmentations to learn a classification rule for hippocampal versus non-
hippocampal regions using a modified AdaBoost method, based on ∼18,000 features (image
intensity, position, image curvatures, image gradients, tissue classification maps of gray/white matter
and CSF, and mean, standard deviation, and Haar filters of size 1×1×1 to 7×7×7). We linearly
registered all brains to a standard template to devise a basic shape prior to capture the global shape
of the hippocampus, defined as the pointwise summation of all the training masks. We also included
curvature, gradient, mean, standard deviation, and Haar filters of the shape prior and the tissue
classified images as features. During each iteration of ACM - our extension of AdaBoost - the
Bayesian posterior distribution of the labeling was fed back in as an input, along with its neighborhood
features, as new features for AdaBoost to use. In validation studies, we compared our results with
hand-labeled segmentations by two experts. Using a leave-one-out approach and standard overlap
and distance error metrics, our automated segmentations agreed well with human raters; any
differences were comparable to differences between trained human raters. Our error metrics compare
favorably with those previously reported for other automated hippocampal segmentations, suggesting
the utility of the approach for large-scale studies.
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Introduction
Alzheimer's disease (AD) is the most common type of dementia, and affects over 5 million
people in the United States alone (Jorm et al., 1987). The disease is associated with the
pathological accumulation of amyloid plaques and neurofibrillary tangles in the brain, and first
affects memory systems, progressing to involve language, affect, executive function, and all
aspects of behavior. A major therapeutic goal is to assess whether treatments delay or resist
disease progression in the brain before widespread cortical and subcortical damage occurs. For
this, sensitive neuroimaging measures have been sought to quantify structural changes in the
brain in early AD which are automated enough to permit large-scale studies of disease and the
factors that affect it.

To track the disease process, several MRI- or PET-based imaging measures have been
proposed. Many studies have sought optimal volumetric measures (e.g., of the hippocampus
or entorhinal cortex) to differentiate normal aging from AD, and from mild cognitive
impairment (MCI), a transitional state that carries a 4-6 fold increased risk of imminent decline
to AD relative to the normal population (Petersen, 2000; Petersen et al., 2001; Petersen et al.,
1999). A common biological marker of disease progression is morphological change in the
hippocampus, assessed using volumetric measures (Jack et al., 1999; Kantarci and Jack,
2003) or by mapping the spatial distribution of atrophy in 3D (Apostolova et al., 2006a;
Apostolova et al., 2006b; Csernansky et al., 1998; Frisoni et al., 2006; Thompson et al.,
2004).

Using MRI at millimeter resolution, subtle hippocampal shape changes may be resolved.
However, isolating the hippocampus in a large number of MRI scans is time-consuming, and
most studies still rely on manual outlining guided by expert knowledge of the location and
shape of each region of interest (ROI) (Apostolova et al., 2006a; Du et al., 2001). To accelerate
epidemiological studies and clinical trials, this process should be automated. Some automated
systems have been proposed for hippocampal segmentation (Barnes et al., 2004; Crum et al.,
2001; Fischl et al., 2002; Hogan et al., 2000; Powell et al., 2008; Wang et al., 2007; Yushkevich
et al., 2006), but none is yet widely used.

Pattern recognition techniques (Duda et al., 2001) offer a range of promising algorithms for
automated subcortical segmentation. Most pattern recognition (or machine learning)
algorithms attempt to assign a probability to a specific outcome. In image segmentation, image
cues are pooled to determine with a specific probability whether each image voxel is part of
an ROI (e.g., the hippocampus) or not. In pattern recognition, cues are usually referred to as
features, and different pattern recognition algorithms combine these features in different ways.
When using pattern recognition approaches, it is standard practice to divide a dataset into two
non-overlapping classes, for training and testing. The training set is used to learn the patterns
(e.g., estimate a function or decision rule for classifying voxels), and the testing set is used to
validate how well new datasets can be classified, based on the patterns that were learned.

Since medical images are complex, many possible features may be created to represent each
voxel. Given the large number of voxels in an MRI scan, computing and storing this amount
of data may become unmanageable. For example, features may consist of image intensity, x,
y, and z positions, image curvature, image gradients, or the output of any other general image
filter. To overcome this problem, here we use a variant of a machine learning algorithm called
AdaBoost (Freund and Schapire, 1997). AdaBoost is a weighted voting algorithm, which
combines “weak learners” into a “strong learner.” A weak learner is any pattern recognition
algorithm that guesses correctly greater than half of the time. At each iteration, AdaBoost
selects a weak learner that minimizes the error for all voxels based on the classification of
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previously selected weak learners. Therefore, an incorrectly classified example at one iteration
will receive more weight on subsequent iterations.

To segment the hippocampus in an MRI scan, here we use AdaBoost inside a new pattern
recognition algorithm we call the auto context model (ACM). ACM is not specific to AdaBoost
and may be used with any classification technique, but here we use it with AdaBoost, which
has previously been found to be effective for subcortical segmentation in smaller samples of
subjects (Morra et al., 2007; Quddus et al., 2005; Tu et al., 2007).

This paper presents a validation study of ACM using data from an Alzheimer's disease study.
We show that this approach accurately captures the hippocampus and may therefore be useful
in large scale studies of AD where manual tracing would be prohibitive.

Methods
Subjects

The Alzheimer's Disease Neuroimaging Initiative (ADNI) (Mueller et al., 2005a; Mueller et
al., 2005b) is a large multi-site longitudinal MRI and FDG-PET (fluorodeoxyglucose positron
emission tomography) study of 800 adults, ages 55 to 90, including 200 elderly controls, 400
subjects with mild cognitive impairment, and 200 patients with AD. The ADNI was launched
in 2003 by the National Institute on Aging (NIA), the National Institute of Biomedical Imaging
and Bioengineering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies and non-profit organizations, as a $60 million, 5-year public-private
partnership. The primary goal of ADNI has been to test whether serial MRI, PET, other
biological markers, and clinical and neuropsychological assessment can be combined to
measure the progression of MCI and early AD. Determination of sensitive and specific markers
of very early AD progression is intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen the time and cost of clinical trials.
The Principal Investigator of this initiative is Michael W. Weiner, M.D., VA Medical Center
and University of California – San Francisco.

All subjects underwent thorough clinical/cognitive assessment at the time of scan acquisition.
As part of each subject's cognitive evaluation, the Mini-Mental State Examination (MMSE)
was administered to provide a global measure of cognitive status based on evaluation of five
cognitive domains (Cockrell and Folstein, 1988; Folstein et al., 1975); scores of 24 or less (out
of a maximum of 30) are generally consistent with dementia. Two versions of the Clinical
Dementia Rating (CDR) were also used as a measure of dementia severity (Hughes et al.,
1982; Morris, 1993). The global CDR represents the overall level of dementia, and a global
CDR of 0, 0.5, 1, 2 and 3, respectively, indicate no dementia, very mild, mild, moderate, or
severe dementia. The “sum-of-boxes” CDR score is the sum of 6 scores assessing different
areas of cognitive function: memory, orientation, judgment and problem solving, community
affairs, home and hobbies, and personal care. The sum of these scores ranges from 0 (no
dementia) to 18 (very severe dementia). Table 1 shows the clinical scores and demographic
measures for our sample. The elderly normal subjects in our sample had MMSE scores between
26 and 30, a global CDR of 0, a sum-of-boxes CDR between 0 and 0.5, and no other signs of
MCI or other forms of dementia. The MCI subjects had MMSE scores ranging from 24 to 30,
a global CDR of 0.5, a sum-of-boxes CDR score between 0.5 and 5, and mild memory
complaints. Memory impairment was assessed via education-adjusted scores on the Wechsler
Memory Scale - Logical Memory II (Wechsler, 1987). All AD patients met NINCDS/ADRDA
criteria for probable AD (McKhann et al., 1984) with an MMSE score between 20 and 26, a
global CDR between 0.5 and 1, and a sum-of-boxes CDR between 1.0 and 9.0. As such, these
subjects would be considered as having mild, but not severe, AD. Detailed exclusion criteria,
e.g., regarding concurrent use of psychoactive medications, may be found in the ADNI protocol
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(page 29,
http://www.adni-info.org/images/stories/Documentation/adni_protocol_03.02.2005_ss.pdf).
Briefly, subjects were excluded if they had any serious neurological disease other than incipient
AD, any history of brain lesions or head trauma, or psychoactive medication use (including
antidepressants, neuroleptics, chronic anxiolytics or sedative hypnotics, etc.).

The study was conducted according to Good Clinical Practice, the Declaration of Helsinki and
U.S. 21 CFR Part 50-Protection of Human Subjects, and Part 56-Institutional Review Boards.
Written informed consent for the study was obtained from all participants before protocol-
specific procedures, including cognitive testing, were performed.

Training and Testing Set Descriptions
As noted earlier, when using a pattern recognition approach to identify structures in images,
two non-overlapping sets of images must be defined, for training and testing (Morra et al.,
2007; Powell et al., 2008). The training set consists of a small sample of brain images,
representative of the entire dataset, which are manually traced by experts. The testing set is a
group of brain images that are to be segmented by the algorithm, but have not been used for
training the algorithm. Our training set consisted of 21 brain images, from 7 healthy elderly
individuals, 7 individuals with MCI, and 7 individuals with AD. Since we only have manual
tracings of these brains, we construct our testing set using a leave-one-out approach. For testing,
we train 21 models, each one ignoring one subject (i.e., not using that subject for training), and
we then test each model on the subject that it ignored. This gives a testing set of the same 21
brains, each with a ground truth segmentation for comparison purposes; even so, it ensures the
independence of the training and testing sets, a common requirement in validating computer
vision methods. We chose to train on 21 subjects because this number was sufficient in previous
studies that varied the training sample size (Morra et al., 2007); smaller training sets degraded
segmentation performance. Each of the three groups (AD, MCI, and controls) were age- and
gender-matched as closely as possible as shown in Table 1.

MRI Acquisition and Pre-Processing
All subjects were scanned with a standardized MRI protocol, developed after a major effort
evaluating and comparing 3D T1-weighted sequences for morphometric analyses (Jack et al.,
2007; Leow et al., 2006).

High-resolution structural brain MRI scans were acquired at multiple ADNI sites using 1.5
Tesla MRI scanners manufactured by General Electric Healthcare and Siemens Medical
Solutions. ADNI also collects data at 3.0 T from a subset of subjects, but to avoid having to
model field strength effects in this initial study, only 1.5 T images were used. All scans were
collected according to the standard ADNI MRI protocol
(http://www.loni.ucla.edu/ADNI/Research/Cores/index.shtml). For each subject, two T1-
weighted MRI scans were collected using a sagittal 3D MP-RAGE sequence. Typical 1.5 T
acquisition parameters are repetition time (TR) of 2400 ms, minimum full excitation time (TE),
inversion time (TI) of 1000 ms, flip angle of 8°, 24 cm field of view, acquisition matrix was
192×192×166 in the x-, y-, and z- dimensions yielding a voxel size of 1.25×1.25×1.2 mm3

(Jack et al., 2007). In plane, zero-filled reconstruction yielded a 256×256 matrix for a
reconstructed voxel size of 0.9375×0.9375×1.2 mm3. The ADNI MRI quality control center
at the Mayo Clinic (in Rochester, MN, USA) selected the MP-RAGE image with higher quality
based on standardized criteria (Jack et al., 2007). Additional phantom-based geometric
corrections were applied to ensure spatial calibration was kept within a specific tolerance level
for each scanner involved in the ADNI study (Gunter et al., 2006).
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Additional image corrections were also applied, using a processing pipeline at the Mayo Clinic,
consisting of: (1) a procedure termed GradWarp for correction of geometric distortion due to
gradient non-linearity (Jovicich et al., 2006), (2) a “B1-correction”, to adjust for image intensity
non-uniformity using B1 calibration scans (Jack et al., 2007), (3) “N3” bias field correction,
for reducing intensity inhomogeneity (Sled et al., 1998), and (4) geometrical scaling, according
to a phantom scan acquired for each subject (Jack et al., 2007), to adjust for scanner- and
session-specific calibration errors. In addition to the original uncorrected image files, images
with all of these corrections already applied (GradWarp, B1, phantom scaling, and N3) are
available to the general scientific community, as described at
http://www.loni.ucla.edu/ADNI. Ongoing studies are examining the influence of N3 parameter
settings on measures obtained from ADNI scans (Boyes et al., 2007).

Image Pre-processing
To adjust for global differences in brain positioning and scale across individuals, all scans were
linearly registered to the stereotactic space defined by the International Consortium for Brain
Mapping (ICBM-53) (Mazziotta et al., 2001) with a 9-parameter (9P) transformation (3
translations, 3 rotations, 3 scales) using the Minctracc algorithm (Collins et al., 1994). Globally
aligned images were resampled in an isotropic space of 220 voxels along each axis (x, y, and
z) with a final voxel size of 1 mm3.

Feature Selection
All discriminative pattern recognition techniques involve taking some set of examples with a
label and learning a pattern based on those examples. Usually the examples are themselves
each a vector of problem-specific information, referred to as features. Each feature must be
calculable for each example (for implementation purposes, hopefully quickly), and the features
should provide some insight into the classification task. For medical image segmentation, these
features are derived at each voxel in all brains, so at each voxel, there exists a vector for which
each entry is a specific feature evaluated at that voxel.

In our case, we chose features based on image intensity, tissue classification maps of gray
matter, white matter, and CSF (binary maps obtained by an unsupervised classifier, PVC
(partial volume classifier; (Shattuck et al., 2001))) and neighborhood-based features derived
from the tissue classified maps, x, y, and z positions (along with combinations of positions such
as x+y or x*z), curvature filters, gradient filters, mean filters, standard deviation filters, and
Haar filters (Viola and Jones, 2004) of sizes varying from 1×1×1 to x, y, z positions were
determined using stereotaxic coordinates after spatial normalization to the standard space. In
addition to these features, we exploited the fact that all the brains had been registered to devise
a basic shape prior to capture the global shape of the hippocampus. Our shape prior was defined
as the pointwise summation of all the training masks. Differential positional effects in the x,
y, and z positions are therefore captured by using a shape prior, and also by including products
of x, y, and z voxel indices as features.

Since brain MRIs consist of many voxels, the product of the number of features and the number
of voxels can be exceedingly large. However, because all of our brains are registered to the
same template, the hippocampi will always appear in approximately the same localized region.
We can exploit this fact to reduce our search space by constructing a bounding box, and only
classifying examples (feature vectors at each voxel) for voxels that fall in this bounding box.
To define the box we scan over all the training examples and find the minimum and maximum
x, y, z positions of the hippocampus. Next, we add the size of the largest neighborhood feature
(in this case, 7 voxels) and some additional voxels to cope with as yet unseen testing brains
(in this case, 10 voxels). Then training commences on only voxels inside of this box. Also,
when testing a new brain, only voxels inside this box are classified, all others are assumed
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negative. All features are computed at each voxel, rather than averaging them over the bounding
box. When classifying each voxel, features such as image intensity, image gradient, and tissue
classification are computed voxel-wise. The number of features is approximately 18,000 per
voxel, and the same set of candidate features are available to the classifier at every voxel, so
the number of features does not depend on the size of the bounding box.

AdaBoost Description
AdaBoost is a machine learning method that uses a training set of data to develop rules for
classifying future data; it combines individual rules that do not work especially well into a pool
of rules that can be used to more accurately classify new data. The overall classifier can greatly
outperform the component classifiers. The component classifiers are often called “weak
learners”, as they may perform only slightly better than random; for example, a classifier of
hippocampal voxels based on the binary feature “voxel is gray matter” could classify the
hippocampus only slightly better than chance (i.e., 50% correct), as there are many
nonhippocampal gray matter voxels. AdaBoost iteratively selects weak learners, h(x), from a
candidate pool and combines them into a strong learner, H(x) (Freund and Schapire, 1997). In
what follows, an example is defined as the feature vector at a voxel in the training dataset, with
its associated classification; a weak learner classifies example voxels as belonging to the
hippocampus or not belonging to the hippocampus. When classifying an example, a weak
learner gives a binary output value of +1 for example voxels that it regards as positive (i.e., in
the hippocampus) and −1 for example voxels it regards as negative (i.e., outside the
hippocampus).

Figure 1 gives an overview of the AdaBoost algorithm. In our implementation, labeling the
hippocampus is formulated as a two-class classification problem, in which the training data
consists of input vectors of features, x1…xN , also called examples, and associated labels, yi.
The components of the features are the outputs of the Haar filters, intensity measures, positions,
and other feature detectors detailed earlier. The training phase of AdaBoost attempts to find
the best combination of classifiers. Each data point, or example, is initially given a weight,
D1(i). The weighting parameter for each data point is initially set to 1/N for all data points.

At this point, the construction of the set of weak learners hj (of size J) needs to be defined. We
define a weak learner to be any feature, a threshold, and a boolean function representing
whether or not observations above that threshold are positive (belong to the ROI) or negative
(do not belong to the ROI). Therefore, our weak learner selects the feature that best separates
the data into positive and negative examples given Dt. In order to do this, two histograms are
constructed for each feature based on Dt, one that is only the positive examples, and another
that is only the negative examples, these are then normalized and converted into cumulative
distribution functions (CDFs). Finally, the threshold that minimizes the error based on these
CDFs is chosen, and the lowest error over all features determines which weak learner is
selected.

More formally, as detailed in Figure 1, at each stage t of the algorithm (t = 1 to T), AdaBoost
trains a new weak learner in which the weighting coefficients, Dt(i), on the example data points
are adjusted to give greater weight to the previously misclassified data points. In Figure 1, εj
is the total error of the jth weak learner, determined by counting up all the examples
misclassified, 1(yi ≠ hj(xi)), weighted by their current weights at time t, Dt(i). As such, they are
weighted measures of the error rates of the weak learners. The best weak learner for stage t is
the one with the lowest error, εt. This learner is based on a feature that is most “independent”
of the previous learners. The best weak learner at each step is chosen from the full set of weak
learners, not just from the new ones computed in successive steps by AdaBoost. The coefficient
αt = (1/2) log((1 − εt) / εt) is defined to be a weighting coefficient for the t-th weak learner,
which favors learners with very low error. The key to AdaBoost is that the influence of each
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example in the training set is re-weighted using the following rule: Dt exp(−αtyiht (xi)) / Zt ,
with Zt a normalizer defined in Figure 1, chosen so that the Dt+1(i) will be a probability
distribution, i.e., sum to 1 over all examples xi. This re-weighting emphasizes examples that
were wrongly labeled at the prior iteration. Successive classifiers are therefore forced to
prioritize examples that were incorrectly classified, and these data points receive increasing
priority, Dt(i). The formula for αt chosen such that it is the unique αt that minimizes Zt
analytically, by satisfying dZt (αt) / dαt = 0 ; picked in this way αt is guaranteed to minimize
Zt. The final vote H(x) is based on a thresholded weighted sum of all weak learners (Figure 1).

Because of the large number of examples to be classified, instead of using AdaBoost just once,
a cascade was created, where at each node in the cascade examples that are clearly negative
are discarded (a probability below 0.1). This allows the classifier to use different features for
examples that are difficult to classify. The value of 0.1 was chosen because it was empirically
shown to give good results in our other studies (Morra et al., 2007).

Probabilistic Interpretation
Friedman et al. (Friedman et al., 2000) noted that the update rule for weights (the “boosting”
steps) in AdaBoost can be given a probabilistic interpretation, i.e. it can be derived by assuming
that the goal is to sequentially minimize an exponential error function. Given a linear

combination of weak learners , then the exponential error of a mislabeling

may be defined as , where yi are the training set target values. If we

wish to minimize E by optimizing the weak learner , then it can be shown that the best
re-weighting of the examples is given by the update rule for Dt+1(i) (Friedman et al., 2000).
Two comments are necessary: first, other AdaBoost variants have proposed altering the
exponential error function, which AdaBoost minimizes, to be the cross-entropy, which is the
log-likelihood of a well-defined probabilistic model and generalizes to the case of K > 2 classes
(Friedman et al., 2000); and second, if the exponential error function is used, AdaBoost will
find its variational minimizer over all the functions in the span of the weak learners. In fact,
AdaBoost iteratively seeks a minimizer of the expected exponential error

and arrives at the final classification by constrained minimization. Although minimization of
the number of classification errors may seem like a better goal, in general the problem is
intractable (Hoffgen and Simon, 1992), so it is conventional to minimize some other

nonnegative loss function such as E. The process of selecting αt and  may be interpreted
as a single optimization step minimizing the upper bound on the empirical error; improvement
of the bound is guaranteed, so long as εt< 1/2, and choosing ht and αt in this way results in the
greatest decrease in the exponential loss, in the space of weak learners, and converges to the
infimum of the exponential loss (Collins et al., 2002).

Also, traditionally, AdaBoost does not define the  term, and just uses the sign of  as
the strong learner. However, when using ACM, it is necessary that the output not be a decision
rule, but rather a value in the range [0 1] representing the confidence that the given example
is positive or negative. Therefore, we employ the LogOdds transform (Apostolova et al.,
2007; Pohl et al., 2007) to map the interval (-∞ ∞) to (0 1). The LogOdds transform essentially
makes the optimal classifier produce Bayesian maximum likelihood estimates of the labeling,
under the premise of using an exponential loss function.
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As noted by Collins et al. (Collins et al., 2002), instead of using  as a classification rule,

one can consider that the yi are generated through a generative probability law, using  to

estimate the probability of the associated label yi. A common way to do this is to pass 

through a logistic function, and use the estimate  The

likelihood of the labels occurring in the training set is then .
Maximizing this likelihood is equivalent to minimizing the log loss of this model

.

Auto Context Model
According to Bayesian theory, the goal of pattern recognition algorithms is to correctly model
the posterior distribution defined as P(y = ±1 | x) = P(x | y = ±1)P(y = ±1) / P(x). AdaBoost
itself may be regarded as providing an approximation to this probability (Shi et al., 2005), and
since we are using a shape prior, AdaBoost models the combination of the conditional and
prior probabilities (the marginal probability is a constant). In the simplest case, Bayes' rule
looks at each example independently of all others. However, in our case, and in fact in most
image segmentation cases, the posterior distribution of nearby voxels should influence each
other. In any pattern recognition algorithm that attempts to model the Bayesian posterior, this
information is mostly ignored, although some Markov methods have been proposed that make
use of empirically-estimated prior distributions on the joint labeling of contiguous voxels
(Fischl et al., 2001). Here, we include this information by modeling P(y = ±1 | x, xneighbors) =
P(x, xneighbors | y = ±1)P(y = ±1) / P(x, xneighbors).

ACM attempts to model the above distribution iteratively; a description is given in Figure 2.

In our context, H is the cascade of AdaBoosts without the final binary classification step. In
order to improve ACM, instead of starting P1 with a uniform distribution, we instead start with
our shape prior. Also, in order to give more information about the classifications of neighboring
voxels, when running AdaBoost inside of ACM, we included neighborhood features defined
on Pt. Specifically we included the same Haar, curvature, gradient, mean, and standard
deviation filters on the posterior map as we do on the images.

We can prove that for each iteration of ACM, the error is monotonically decreasing. Define
the error of the classification algorithm (in our case a cascade of AdaBoosts) at iteration t to
be εt, we then prove that εt ≤ εt−1. First, we define pt (yi | xi) to be the probability change
associated with iteration t of ACM. Next, since Pt−1 includes all previous iterations of ACM,
we can write  and . In the trivial
case, pt (yi | xi, Pt−1(i)) = Pt−1(i) yi by simply choosing pt to be a uniform distribution. However,
since it has been shown that AdaBoost decreases the error at every iteration, it must choose
weak learners that decrease pt, so therefore εt ≤ εt−1.

Segmentation Overview
When implementing our method there are a number of parameters that must be set, but very
few that need to be tweaked. We used approximately 18,000 features in our feature pool. This
includes both features based on the images, and those based on the posterior maps from ACM.
We chose to run each AdaBoost for 200 iterations, obtaining 200 weak learners per AdaBoost
cascade node, a cascade depth of two nodes, and five ACM iterations. This leads to running
ten iterations of AdaBoost during the training phase. Overall, training takes about twelve hours.
Even so, testing is very short, taking less than one minute to segment the hippocampus on a
new brain image.
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It is also of interest to note which features AdaBoost chose in order to obtain insight into the
segmentation process. During the first iteration of ACM, AdaBoost chose mostly features based
on the Haar filter and based on the tissue classified image (i.e., binary maps of gray and white
matter and CSF). Later iterations of ACM choose mostly Haar filter outputs and mean filter
outputs based on the previously selected posterior distribution, which means that neighboring
voxels are influencing each other, as is to be expected. These features are not totally
independent, since most are based on the same underlying image intensities; however each
adds some classification ability to the final decision rule. An advantage of this approach is that
the algorithm does not have to rely on the same small subset of features when trained on
different training sets, and can select different features when trained on different examples, if
they are optimal. As with other boosting methods, it is not expected or even desirable that the
same feature sets be recovered when analyzing images from different sources, and it is not
expected that each of the features used has good classification ability in its own right; in fact,
any boosting method uses so-called ‘weak learners’, with individual classification performance
only slightly better than chance, and combines them effectively using the boosting strategy.

Results
When validating a machine learning approach it is essential to examine error metrics on both
the training and testing sets. A test set independent of the training set is vital in machine
learning, in order to show the effectiveness of a classifier on data totally withheld from the
training set. Since we used 21 hand-labeled brains to train the algorithm, we employed a leave-
one-out analysis to guarantee a separation between the training and testing sets. In order to put
our error metrics in context and decide whether they were acceptable for the application, we
had a second independent expert rater trace the same 21 brains. We were then able to create a
triangle of comparisons as shown in Figure 3, in which the algorithm's segmentations can be
compared with those of the human rater who trained the algorithm (rater 1; A.G.) and with
those of an independent rater (rater 2; C.A.) who did not train the algorithm.

In order to show agreement with a human expert not involved with training the algorithm, we
only trained our algorithm on manual segmentations from rater 1 and were still able to achieve
good segmentation results that agreed well with rater 2's manual tracings. We emphasize that
the validation against rater 1 is also an independent validation in the sense that our algorithm
was classifying images that it was not trained on (i.e. a leave-one-out approach).

Secondly, we further validated our approach using volumetric results of three kinds. We
hypothesized that hippocampal volume would decrease as the disease progresses further, and
verified this by comparing mean volumes in groups of controls, MCI subjects, and AD patients.
We also examined whether, in the full sample, hippocampal volume was correlated with
clinical measurements of cognitive impairment; encouragingly, we found that measures from
our segmentations correlated more strongly with cognition, in the hippocampus, than measures
from a popular technique for quantification of brain atrophy, tensor-based morphometry, which
is closely related to voxel-based morphometry.

Finally, since longitudinal follow-up scans were available for the individuals tested in this
paper, we used scans taken six months later to assess the longitudinal stability of the
segmentations of the same subject. We showed that the amount of hippocampal volume change
was consistent with prior reports in the literature.

Error Metrics
To assess our segmentations' performance, we first define a number of error metrics based on
the following definitions: A, the ground truth segmentation, and B, the testing segmentation.
Additionally, we define d(a,b) as the Euclidean distance between points a and b.
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•

•

•

•

• H1 = maxa∈A(minb∈B(d(a,b)))

• H2 = maxb∈B(mina∈A(d(b,a)))

•

• Mean = avga∈A(minb∈B(d(a,b)))

First, Table 2 presents our segmentation performance on the training set. For this analysis, we
used all 21 brains as training data, and tested on all 21 brains. These performance results on
the training set represent an upper bound for the expected accuracy on the testing set. Next,
we used our leave-one-out approach to obtain testing metrics comparing our results to rater 1
(leg “b” in Figure 3), shown in Table 3. Table 4 compares our method with rater 2 (leg “c” in
Figure 3), again using the leave-one-out technique. Finally, we compared the two human raters
directly with one another (leg “a” in Figure 3) in Table 5.

The first thing to note is that the error metrics from the training and test sets are very close to
each other, with the testing metrics being slightly worse than the training metrics (which is to
be expected). This shows that ACM is not memorizing the data, but instead learning the
underlying structure of the hippocampus. Next, our algorithm shows only a small difference
in the error metrics as opposed to the difference between the two human raters. Specifically,
if Table 4 and Table 5 are compared, the relative overlap between two human raters is on
average 74.9% for the left and 74.3% for the right hippocampus (Table 5), while the relative
overlap between the algorithm and a rater not involved in training it was 75.4% for the left and
71.9% for the right hippocampus (Table 4). This shows that the errors in our algorithm are
comparable to the differences between two raters. In terms of precision, the agreement between
the two human raters is about 3% higher than the agreement between the algorithm and the
rater not used to train it, with all values in the 83-89% range. For recall, the algorithm agrees
with the 2nd rater at least as well as the 1st rater agrees with the 2nd rater, with all values in the
82-86% range. The only metric for which the human raters agree with each other more than
they do with the algorithm is the mean error (see Table 4 and Table 5), but for that metric
agreement is very high between all three suggesting that any biases are very small.

To further compare the performance of our approach with other segmentation methods, in
Table 6 we present error metrics from three other papers that report either fully or semi-
automated hippocampal segmentations. We present these only to show that ours is within the
same range as other automated approaches. Since each study uses a different set of scans, an
exact comparison is not possible.

Volumetric Validation
Figure 4 shows an example brain from the test set, with the right and left hippocampi overlaid
in yellow and green. There is good differentiation of the hippocampus from the surrounding
amygdala, overlying CSF, and adjacent white matter, and the traces are spatially smooth,
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simply connected, and visually resemble manual segmentations by experts. This image was
chosen at random from the test set, and is representative of the segmentation accuracy
obtainable on the test images.

Table 7 shows that the inter-rater r (intraclass correlation) between the two raters' hippocampal
volumes and the volumes obtained from our algorithm's segmentations are comparable.
Although the inter-rater r is lower when comparing our approach to either rater versus the
difference between the two raters, the intraclass correlation is high, and, as expected,
statistically significant on both sides. For all of the tests in Table 7, we trained the algorithm
only on segmentations from rater 1, and this is one reason why there is a slightly higher
correlation observed with rater 1 than with rater 2.

Next, we present a disease-based validation technique, based on the premise that a necessary
but not sufficient condition for a valid classifier is that it differentiates group mean hippocampal
volumes between AD, MCI and controls. Since it is well-known that reductions in hippocampal
volume are associated with declining cognitive function (Jack et al., 1999), we showed that
our method is accurately capturing known mean volumetric differences between subgroups of
interest with different stages of dementia (controls, MCI, and AD). Due to the limited sample
size (N = 21), we pooled left and right hippocampal volumes together for some of these results.
Volumetric summaries were computed using the segmentations obtained in the leave-one-out
testing analysis.

Figure 5 and Table 8 show that there is a sequential reduction in volume between controls,
MCI, and AD subjects, consistent with many prior studies (Convit et al., 1997). This shows
that the brain MRIs we are working with show the expected profile of volumetric effects with
disease progression, and that the segmentation approach is measuring hippocampal volumes
with low enough methodological error to differentiate the 3 diagnostic groups, at least at the
group level, in a very small sample.

Table 9: shows strong and significant positive correlations between hippocampal volume and
MMSE scores (r = 0.587 for the average of the left and right hippocampal volumes; p < 0.01),
and with sum of boxes CDR scores, for both the left and right, and mean hippocampal volumes
(r = −0.642 for the mean volume, p < 0.01). Correlations are high (around 0.6) when the average
of the left and right hippocampal volumes is measured, suggesting that the hippocampal
volumes explain a significant proportion of the variation in clinical decline. Although these
associations are known, it provides evidence that the classifier error is low enough to allow
their detection in small samples. Each of these values is significant despite the very small
sample size, further confirming that our method is capable of capturing disease-associated
hippocampal degeneration.

In a previous cross-sectional study on the ADNI dataset, we used tensor-based morphometry
(TBM) to analyze brain differences associated with different stages of disease progression
(Hua et al., 2008). TBM is a method based on high-dimensional image registration, which
derives information on regional volumetric differences from a deformation field that aligns the
images. TBM and voxel-based morphometry (VBM (Ashburner and Friston, 2000)) are closely
linked and each measures voxelwise expansion (or contraction) of the brain as compared to a
minimal deformation template, which represents the mean anatomy of the subjects (Lepore et
al., 2007).

Voxel-based morphometry (Davatzikos et al., 2001; Good et al., 2001) is a related approach
that modulates the voxel intensity of a set of spatially normalized gray matter maps by the local
expansion factor of a 3D deformation field that aligns each brain to a standard brain template.
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Although TBM has proven useful in quantifying brain atrophy over time in 3D (Leow et al.,
2005a; Studholme et al., 2004; Teipel et al., 2007), in cross-sectional studies TBM can be less
effective for quantifying volumetric differences in small brain regions (such as the
hippocampus) when the ROI is defined on the minimal deformation template.

This is to be expected, as TBM may be considered a rudimentary hippocampal segmentation
approach that works by fluidly deforming a mean anatomical template onto the target image
– the criteria to guide accurate segmentations are typically limited to measures of agreement
in image intensities, such as the mutual information (Leow et al., 2005b; Viola and Wells,
1995). Table 10 shows the correlation between hippocampal volume (as measured with TBM)
and MMSE and sum of boxes CDR scores. Note that none of the correlations is even significant
in this small sample, and the measures compare poorly with those shown in Table 9. This
suggests that our direct segmentation of hippocampal anatomy via voxel-level classification
is better correlated with cognition than measures we previously obtained using a deformation-
based morphometry method.

Longitudinal Validation by Repeat Scanning
As a final validation approach, we segmented a set of six-month follow-up scans, acquired
using an identical imaging protocol, for the individuals whose baseline scans were analyzed
in this paper. At the time of writing, six-month follow-up scans were available for 18 of the
21 subjects analyzed in this paper, including 6 AD patients, 5 MCI patients, and 7 control
subjects. Due to the very small sample size (especially in the AD and MCI groups) and short
interval, we present this analysis to show that our algorithm is reproducible, giving relatively
consistent hippocampal volumes over a short interval, when minimal hippocampal volume loss
is expected. Table 11 shows that there is minimal loss over 6 months, which is to be expected.
We note that this change represents a combination of biological changes and the
methodological errors in segmentation, which derive partly from the algorithm and partly from
the fact that the image acquisition is not perfectly reproducible. As these sources of
methodological error are expected to be small and additive, the fact that the mean change is
near 1.5% for the left and 0% for the right hippocampus is in line with expectation. Given that
some small biological change is also occurring, this suggests good longitudinal stability for
the volume measurements obtained by our algorithm.

Discussion
In this study, we have demonstrated that ACM is an effective method for segmenting the
hippocampus. There were three major findings. First, the agreement between our algorithm
and two different human raters was comparable with their agreement with each other, which
is a reasonable target for segmentation accuracy given that even trained human raters do not
entirely agree on the labeling of all hippocampal voxels. Second, we found that the agreement
with a rater not involved with training the algorithm was almost as good as the agreement with
the rater who trained it, suggesting acceptable inter-rater reliability versus expert human raters.
Third, we found that the hippocampal volumes segmented by our algorithm correlated well
with cognitive and clinical ratings of dementia severity, which is an important characteristic
for an automated volume measurement algorithm. For an algorithm to be useable in a drug trial
context for the quantification of brain atrophy, it is necessary for the automatically measured
volumes to replicate known differences in mean hippocampal volume between AD, MCI, and
controls, and it is also desirable for the measures to be accurate enough to correlate with clinical
measures of disease burden as they did here in a small sample (21 subjects; 7 of each diagnosis).
In a further demonstration of longitudinal stability, we found that the change detected in 6-
month repeat scans was around 0-1.5% for a group of 18 subjects. As this group was
heterogeneous with regard to diagnosis and the time interval small, the intent of the experiment
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was merely to show that the mean changes were small, and within the range of expected
biological variation.

This study is representative of several current research efforts that use automated methods to
measure hippocampal atrophy in AD, including large diffeomorphic metric mapping
(Csernansky et al., 2004; Wang et al., 2007), volumetric analysis (Geuze et al., 2005), and fluid
registration (van de Pol et al., 2007). For purposes of comparison with our technique, we
computed hippocampal volume measures from a related technique, known as tensor-based
morphometry (TBM), which estimates anatomical structure volumes from a deformation
transform that re-shapes a mean anatomical template onto each individual scan. Our TBM
measures correlated poorly with cognitive assessments, although clearly in such a small sample
the power to detect such associations is severely limited. Some reasons why TBM may not be
optimal for hippocampal volumetric study are detailed in Hua et al. (2008) and (Apostolova et
al., 2006a; Becker et al., 2006; Frisoni et al., 2006). TBM is typically best for assessing
differences at a scale greater than 3-4 mm (the typical resolution of the spectral representation
used to compute the deformation field) (Hua et al., 2008; Leow et al., 2005a). For smaller-
scale effects, direct modeling of the structure, e.g. using surface-based geometrical methods,
may offer additional statistical power to detect sub-regional differences. Even then, it may not
be possible to achieve accurate regional measurements of atrophy, especially in small regions
such as the hippocampus, since that would assume a locally highly accurate registration. Direct
assessments of hippocampal volume by our ACM algorithm correlated better than TBM did
with clinical dementia ratings and MMSE scores, and explained a substantial proportion of
their variance even in this relatively small sample (r ∼ 0.6; p < 0.01; N = 21). Conversely, a
relative advantage of TBM, and other voxel-based mapping approaches, such as voxel-based
morphometry, is that they map the profile of atrophy throughout the brain without the need for
explicit segmentation of anatomical structures. VBM has been widely used in Alzheimer's
disease studies, and does not rely on an explicit segmentation of hippocampal anatomy in each
scan, other than that which is implied in a voxel-based analysis by aligning scans to a common
template. Chetelat et al. (Chetelat et al., 2005), for example, tracked gray matter loss with VBM
in a longitudinal study of 18 MCI patients. Whitwell and colleagues (Whitwell et al., 2007)
demonstrated the profile of gray matter loss over three years in 63 MCI subjects, and Good et
al. (Good et al., 2002) compared VBM to region-of-interest analysis and showed that they
compared favorably in detecting structural differences in Alzheimer's disease.

The machine learning approach presented here selects features based on a training set of expert
segmentations, so it may generalize well for segmenting other subcortical structures, such as
the thalamus and basal ganglia. The next step will be to further examine ACM with AdaBoost
by evaluating it on a large sample, and examining its performance on other subcortical
structures.
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Figure 1.
An overview of the AdaBoost algorithm. 1 is an indicator function, returning 1 if the statement
is true and 0 otherwise.
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Figure 2.
An overview of the auto context model.
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Figure 3.
A schematic description of the comparisons performed. For all of the tests performed in this
paper, training was performed on rater 1's tracings.
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Figure 4.
Automated segmentation results for an individual from the testing set. Here the right
hippocampus is encircled in yellow, and the left hippocampus in green. Axial, coronal, and
two sagittal slices through the hippocampus show that the hippocampal boundary is captured
accurately.
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Figure 5.
Volumetric analysis for the three different diagnostic groups. The error bars represent standard
errors of the mean. Percent differences are tabulated in Table 8.
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Table 6
This table reports hippocampal segmentation metrics for other semi- and fully automated approaches. Our results
compare favorably to those reported here. A complete comparison is not possible without testing performance on the
same set of brains.

Recall R.O. S.I.

(Powell et al., 2008) (Left: N = 5) 0.82 0.72 0.84

(Powell et al., 2008) (Right: N = 5) 0.83 0.74 0.85

(Fischl et al., 2002) (Left: N = 134) N.A. ∼0.78 N.A.

(Fischl et al., 2002) (Right: N = 134) N.A. ∼0.80 N.A.

(Hogan et al., 2000) (Left: N = 5) N.A. 0.7378 N.A.

(Hogan et al., 2000) (Right: N = 5) N.A. 0.7578 N.A.
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Table 7
Inter-rater r when comparing the three sets of volumes. These volumes were obtained from the leave-one-out analysis
so a realistic testing environment can be observed.

Left Right Mean

Rater 1 – Us 0.740** 0.717** 0.724**

Rater 2 – Us 0.694** 0.709** 0.699**

Rater 1 – Rater 2 0.844** 0.857** 0.854**

*
p < 0.05

**
p < 0.01
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Table 8
Mean differences in hippocampal volume (as a percentage) are shown for the groups listed in the left column for all
subjects. Even though this is a very small sample (N=21; 7 of each diagnosis), there is a hippocampal volume reduction
associated with declining function, and the group differences are significant even in a sample this small. These results
are shown for validation purposes; a large sample in the future would allow more accurate estimation of deficits and
factors that influence them.

All

Normal-AD 20.32%**

Normal-MCI 4.13%

MCI-AD 16.89%*

*
p < 0.05

**
p < 0.01
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Table 9
This table reports the correlations between hippocampal volumes and clinical covariates. A desirable but not sufficient
condition for a hippocampal segmentation approach is that the methodological error is small enough for correlations
to be detected between cognition and hippocampal volume. As expected, correlations are positive between MMSE
scores and hippocampal volume, as higher MMSE scores denote better cognitive performance. Also as expected,
correlations are negative between hippocampal volume and sum-of-boxes CDR, as higher CDR scores denote more
severe impairment.

Left HP volume Right HP volume Mean HP volume

MMSE 0.423* 0.579** 0.587**

Sum of Boxes CDR −0.369* −0.705** −0.642**

*
p < 0.05

**
p < 0.01
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Table 10
This table reports the correlations between hippocampal volumes estimated using tensor-based morphometry (as
reported (Hua et al., 2008)) and clinical covariates on the hippocampus when using TBM. None of these correlationshas
a significant p-value, by contrast with the hippocampal volume measures obtained by our algorithm, which correlate
strongly with cognitive and clinical decline Table 9.

Left HP expansion Right HP expansion Mean HP expansion

MMSE 0.099 0.143 0.126

Sum of Boxes CDR −0.151 −0.272 −0.153
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Table 11
This table reports the % loss of the hippocampus for all 18 subjects that had follow up scans over a 6 month interval.
For both hippocampi (and the mean volume), the mean percent loss is very small. This indicates good longitudinal
reproducibility of our segmentation algorithm. For all of these tests, the p-value is greater than 0.3, indicating that there
is no significant difference between baseline and 6 month follow up hippocampal volumes. For this test we segmented
the follow-up scans using the leave one out analysis so that a separation between training and testing brains at each
time point is maintained. For the mean difference, first we took the mean hippocampal volume of each subject (average
of left and right), then calculated the percent loss for each subject, and then averaged. This is why the mean loss is not
an average of the left loss and right loss.

Left HP Right HP Mean HP

% Loss −1.47% 0.08% −0.01%
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