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Abstract
Antiviral drugs, most notably the neuraminidase inhibitors, are an important component of control
strategies aimed to prevent or limit any future influenza pandemic. The potential large-scale use of
antiviral drugs brings with it the danger of drug resistance evolution. A number of recent studies
have shown that the emergence of drug-resistant influenza could undermine the usefulness of
antiviral drugs for the control of an epidemic or pandemic outbreak. While these studies have
provided important insights, the inherently stochastic nature of resistance generation and spread, as
well as the potential for ongoing evolution of the resistant strain have not been fully addressed. Here,
we study a stochastic model of drug resistance emergence and consecutive evolution of the resistant
strain in response to antiviral control during an influenza pandemic. We find that taking into
consideration the ongoing evolution of the resistant strain does not increase the probability of
resistance emergence, however it increases the total number of infecteds if a resistant outbreak occurs.
Our study further shows that taking stochasticity into account leads to results that can differ from
deterministic models. Specifically, we find that rapid and strong control can not only contain a drug
sensitive outbreak, it can also prevent a resistant outbreak from occurring. We find that the best
control strategy is early intervention heavily based on prophylaxis at a level that leads to outbreak
containment. If containment is not possible, mitigation works best at intermediate levels of antiviral
control. Finally, we show that the results are not very sensitive to the way resistance generation is
modeled.

Introduction
It is almost certain that sooner or later, a new influenza A virus will emerge against which
humans have little or no immunity and that is able to spread through human populations and
potentially cause a pandemic (7,47). In the face of this threat, researchers have been studying
control strategies that might prevent or mitigate such a pandemic (11–13,16,32,33). Most
proposed intervention strategies rely to some extent on the use of antivirals, most notably the
neuraminidase inhibitors (15,36). Unfortunately, the strong selection pressure exerted by the
extensive use of drugs often leads to the evolution of drug resistance (8,27,30). Most situations
encountered so far in the realm of antibiotic resistance involve time-scales on the order of years
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before a large fraction of hosts harbors a resistant strain (28,30). However, the high mutation
rate of viruses can lead to a much more rapid evolution of resistance. One premier example is
the evolution of resistance that occurs in HIV during treatment with a single drug (6). Since
influenza is also a relatively fast evolving virus with a high mutation rate (37,38), it is possible
that drug resistance can become a problem during the course of a single pandemic outbreak.

A number of modeling studies investigated the possible impact of resistance emergence and
spread during an influenza outbreak (1,9,14,29,35,39,41,49). While these studies have
provided important insights, a few aspects remain to be fully addressed. Most importantly, the
majority of studies are based on deterministic models. This ignores the stochastic nature of the
rare events that lead to initial resistance generation and spread. while a few recent studies were
based on stochastic models (9,49), these studies only considered outbreaks in small populations
(less than 103 – 104 individuals). Further, these studies did not consider continued evolution
of the resistant strain. While resistance usually carries a fitness cost, the resistant mutants can
undergo further evolution, acquiring so called compensatory mutations that restore their fitness
while retaining the resistant phenotype (3,34). The result can be a strain that is at the same time
drug resistant and has a fitness close to – and in the worst case even higher than – the original
drug-sensitive strain. Limited in vitro evidence suggests that compensatory mutations might
occur for neuraminidase inhibitor resistant influenza (52). Only one study considered
compensatory mutations for influenza drug resistance (35). However, this study is based on a
deterministic framework, and due to the rarity of these compensatory mutation events, a
stochastic framework is more appropriate (22).

Here, we study a stochastic model of neuraminidase inhibitor resistance emergence and
consecutive evolution of the resistant strain in response to antiviral control during an influenza
pandemic in a large population. Our study shows that taking stochasticity into account leads
to results that can differ from deterministic models. Specifically, we find that rapid and strong
control can contain not only a drug sensitive outbreak but also prevent a resistant outbreak
from occurring. We find that the best control strategy to prevent resistance emergence and
reduce the total number of infecteds is early intervention heavily based on prophylaxis at a
level that leads to outbreak containment. If containment is not possible, mitigation works best
at intermediate levels of control. Taking into consideration the ongoing evolution of the
resistant strain does not increase the probability of resistance emergence, however it increases
the total number of infecteds if a large resistant outbreak occurs. We also show that the results
are largely insensitive with respect to the detailed implementation of the resistance generation
process.

The Model
We model the outbreak using a stochastic, compartmental, SIR-type model. A schematic flow
diagram of the model is shown in Figure 1, Table 1 gives the transitions and their propensities
which fully specify the model, while Table 2 summarizes the variables and parameters of the
system.

We consider a pandemic outbreak in the United States. We assume that for a novel, pandemic
strain, no immunity exists, the whole population is susceptible (S). Susceptible hosts receive
prophylaxis with a uniform probability, or phrased differently, a fraction fp of susceptible hosts
receive prophylaxis, which has an efficacy of ep. If prophylaxis fails, hosts become infected.
We assume that all infected persons will become ill and show symptoms, we ignore the
possibility of asymptomatic infections. Infecteds are divided into five different compartments.
A fraction ft of hosts infected with the drug sensitive strain receive antiviral treatment (It), while
the remainder of the hosts infected with the sensitive strain do not (Iu). Following Lipsitch et
al. (29), we assume that failed prophylaxis leads to a course of infection comparable to a treated
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host. Additionally, three compartments for resistant mutants are considered, (I1, I2 and I3). We
assume that treatment has no effect on the resistant strains. All infected hosts leave the infected
stage after some time, either through recovery or death. The rates of “clearing” the infection
by either means are listed in Table 2.

There are several important differences that distinguish our model from previous ones. Most
previous models include a conversion rate from wild-type infected to resistant infected hosts.
This assumes that once a host converts to a resistant one, the infection “starts over”. In contrast,
we assume here that resistance can emerge during treatment, and with probability ct cause new
infections that are dominated by the resistant strain. We believe that this way of implementing
resistance generation is more realistic. Additionally, we allow resistance to arise and spread
with a small probability, cu, in untreated patients. Values for ct and cu are chosen based on
estimates we obtained in a previous study (20). Specifically, we chose the value for ct as
obtained from the immune response model with treatment occurring one day after infection,
while the value for cu was chosen slightly lower than that obtained for the no treatment case
(see Figure 4 in (20)). Also note that in our model, prophylaxis has no direct effect on the
generation of resistant infecteds. Instead, prophylaxis influences resistance generation through
the fact that failed prophylaxis places infecteds into the treated class (which is more likely to
give rise to resistance than the untreated class).

Our model includes the evolution of the resistant strain. While back-mutations to the fitter,
susceptible strain are possible, it is often more likely that instead of reversion to the original,
drug sensitive genotype, the resistant mutant undergoes further, so called compensatory
mutations (22,26,34). These mutations reduce the fitness cost that comes with resistance, while
at the same time retaining the resistant mutation. The result can be a strain that is at the same
time resistant and has a fitness similar to the initial, sensitive strain. Evolution of compensatory
mutants could occur along a single linear pathway or there could be multiple routes with
multiple possibilities for compensatory mutations to increase fitness. For illustrative purposes,
we choose a simple, linear pathway with 3 levels of fitness for the resistant strain. While the
positive selection pressure experienced by the fitter, compensated mutants could be less strong
compared to the selection pressure induced by drug treatment, there is no data for estimates of
the rate at which compensated mutants arise and spread. As a conservative estimate, we assume
that resistant mutants with increased fitness are generated at the same rate as the initial
generation of resistance during treatment, i.e. we choose c1 = c2 = ct.

Since the creation of resistance is a rare event, stochasticity is important. Therefore, we use a
stochastic model. The model is a variation of a discrete time, Monte-Carlo simulation, often
referred to as the Gillespie algorithm (17). The Gillespie algorithm produces exact trajectories
of the stochastic process. Since a straightforward implementation of the Gillespie algorithm
would be computationally too expensive for the population size we consider, we instead use a
recently introduced hybrid stochastic solver known as partitioned leaping algorithm (23). The
algorithm uses the exact Gillespie method for low numbers and reaction rates, i.e. when
stochasticity is important, but switches automatically to computationally more efficient
methods using Poisson, Langevin and deterministic approximations when appropriate (23).
This leads to a significant reduction in execution time, while still essentially retaining the
“exactness” of the Gillespie algorithm. The simulations are implemented in Fortran 90, the
code is available from the authors upon request.

Results
Antiviral control affects the drug sensitive strain by reducing its fitness, defined in our setting
as the average number of secondary infections caused by an infected host, the reproductive

Handel et al. Page 3

J Theor Biol. Author manuscript; available in PMC 2010 January 7.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



number (2,10,25). The reproductive number of the sensitive strain is given by the largest
eigenvalue of the matrix M = FV−1 (43), where

and

From this one finds that the reproductive number in the presence of control is

(1)

Note that we ignored the negligible contributions of resistance generation, i.e. we set ci ≈ 0.
The reproductive numbers for untreated and treated hosts Ru and Rt, as well as the other
parameters are given in Table 2. If Rf < 1, on average less than one new host gets infected with
the sensitive strain and therefore the outbreak will die down. For Rf > 1, containment of the
outbreak is likely to fail. However, treatment or prophylaxis will still reduce the number of
hosts infected with the sensitive strain. Note that the antiviral has no effect on the fitness of
the resistant strains.

For any infectious disease outbreak, there will be a time lag between the occurrence of the first
infection, the recognition of the outbreak as such, and implementation of control measures.
Since the probability that resistance is generated depends on the number of infected hosts, rapid
containment of the outbreak will reduce the probability that a resistant mutant is generated and
spreads. In the following sections, we study how resistance emergence depends on the number
of infecteds before control starts. We consider this for different scenarios by varying the
evolutionary pathway of the resistant strain and the type (prophylaxis versus treatment) and
strength of the antiviral control.

Compensatory mutations do not change the probability of resistance emergence, but
increase the number of infecteds in large outbreaks

We start by considering how ongoing evolution of the resistant strain can influence the
probability of resistance generation and the size of a pandemic outbreak. For the first scenario,
we assume that antiviral control is not strong enough to control the drug sensitive strain, that
is we have Rf > 1. The control effort leads to only a mitigation in outbreak size. Since in this
situation, a large number of infections occur, resistance is always generated. In the presence
of compensatory mutations, the resistant strain can evolve to higher fitness and therefore
contribute to a larger outbreak, increasing the attack rate by ≈ 20% (Fig. 2). Including ongoing
evolution also increases the variance in the outbreak size, which is expected since stochastic
effects are most important when a new resistant strain is created, which happens three times
for the scenario with ongoing evolution, versus only one time in the absence of further
evolution. Since the dynamics is nonlinear, it is not expected that the mean of the stochastic
simulations agrees with the result found from the equivalent deterministic model. However,
as Fig. 2 shows, there is relatively good agreement. If control starts early, almost all infections
are caused by the resistant strain(s). If control starts later, the sensitive strain causes a significant
outbreak before the resistant strains emerge and cause their own outbreaks. These multiple
smaller outbreaks cause less infections compared to one large outbreak, leading to the observed
decline in overall attack rate for late control. This phenomenon has been noted previously
(22,29) and we will return to it in a later section.
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In the next scenario, we assume that the control effort is strong enough to lead to Rf < 1, i.e.
the outbreak caused by the sensitive strain can be contained. If containment occurs before the
resistant strain has emerged, no major epidemic occurs. If, on the other hand, the resistant strain
is generated and starts to spread, antiviral control efforts become ineffective and a large
epidemic caused by the resistant strain occurs. We find that including evolution of the resistant
strain barely changes the probability of resistance emergence (Fig. 3). However, as was the
case in the mitigation scenario above, the increase in fitness of the resistant strain due to
compensatory mutations leads to an increase in attack rate by as much as ≈ 20%.

Evolution through compensatory mutations can be mapped onto a one-step process
While continued evolution of a resistant strain is without doubt going to occur, the details of
the evolutionary process can not be predicted. Above, we assumed that fitness increases in
equal steps, from R1 = 1.5 over R2 = 1.75 to R3 = 2.0, the original fitness of the sensitive strain.
We further assumed that the probability of these events happening was the same as the
probability of emergence during treatment, i.e. ct = c1 = c2. However, other scenarios are
equally likely. The increase in fitness could for instance occur in unequal steps or the
probabilities for these events could differ. While it is impossible to explore all these scenarios
(see (22) for some more details), it is worth investigating if and how the evolutionary trajectory
can be mapped onto a simple process where a resistant strain emerges and does not undergo
further compensatory mutations. Two mappings might be expected to be possible. First, a 3-
step trajectory with fitness levels R1 = 1.5, R2 = 1.75 and R3 = 2.0 could be equivalent to a
single step to a resistant strain with some different fitness R′. Alternatively, the three
probabilities ct, c1 and c2, might be mapped into a single probability c′, directly leading to the
final strain. As Figure 4 shows, while it is indeed possible to find a 1-step process with resistant
fitness R′ that produces a result similar to that of the 3-step process, it is not possible to map
the jump probabilities into a single one. The reason for this latter finding is is that the main
“bottleneck” in the process is caused by the initial generation of resistance. Once the resistant
strain has been generated, it starts to spread and quickly reaches levels at which the generation
of fitter strains is almost certain. Therefore, the initial rate of resistance generation is crucial
in determining the probability of resistance emergence, and therefore the average attack rate.
Changing this rate to a different value, c′, does not lead to dynamics that resembles a process
with three transition rates.

Early control based on strong prophylaxis is the best control strategy to prevent resistance
emergence

While treatment with neuraminidase inhibitors will be important to reduce morbidity and
mortality of individuals, epidemiological control can be achieved with treatment or
prophylaxis. While resistance is more likely to emerge during treatment, the fact that
prophylaxed individuals are only susceptible to the resistant strain leads to strong selective
pressure for resistance (29). Nevertheless, we find that if control is strong enough to contain
the outbreak caused by the sensitive strain, prophylaxis fares better in preventing resistance
emergence and therefore reducing the attack rate (Fig. 5). Stronger control measures (i.e. a
further reduction in Rf) contain the sensitive outbreak faster, thereby further reducing the
probability that resistance emerges. This leads to a shift of the curves in Figure 5 towards the
right (not shown). Equivalently, resistance emergence becomes more likely and the curves shift
to the left if control is less strong and containment takes longer. Note that again, the distribution
underlying the average for the attack rate is bimodal, consisting of a fraction of simulations
for which no resistant outbreak occurred, and another fraction (given by the probability of
resistance emergence) for which resistant outbreaks occur. Changing the level of control does
not change the size of a resistant outbreak once it occurs, it only changes the probability of
such a resistant outbreak to occur.
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Optimal mitigation occurs at intermediate control strength
If control can not contain the outbreak, but instead can only mitigate its strength, resistance is
very likely to be generated. However, if control does not bring the fitness of the sensitive strain
below that of the initially generated resistant mutant, the sensitive strain will dominate. The
resistant strain will cause few infections, not enough to have a significant chance of generating
further mutants with fitness levels above that of the sensitive strain. The pandemic is almost
certain to end before resistance can emerge (i.e. account for more than 5% percent of infecteds)
and virtually all infections are caused by the sensitive strain (Fig. 6, Rf = 1.5). Increasing control
measures to a level where Rf < R1 leads to a decrease of sensitive infecteds, but now resistance
will emerge and contribute to the attack rate (Fig. 6, Rf = 1.35). Once control measures are
strong enough to sufficiently suppress the sensitive strain, the resistant strain will dominate
and lead to a large resistant outbreak, which in turn leads to an overall increase in infecteds
(Fig. 6, Rf = 1.2). Therefore, if it is not possible to contain the outbreak, an intermediate level
of control is optimal. We will discuss this point in more detail in the next section. In contrast
to the containment scenario (Rf < 1), for the mitigation scenario (Rf > 1) the type of control
(prophylaxis or treatment) has almost no impact on the overall attack rate (not shown).

Optimal treatment strategies differ between stochastic and deterministic models
Above results suggest, and previous studies have shown, that if there are two outbreaks, one
caused by the drug sensitive strain and one by a drug resistant strain, an intermediate level of
antiviral control can lead to a minimum in the total number of infecteds (29,35). This can be
explained by one of our previous studies, where we showed that the minimization of an
“overshoot” – defined as the excess infections that occur during the waning phase of an
outbreak – will lead to an optimal control strategy for multiple outbreaks, such as a drug
sensitive outbreak followed by a drug resistant one (21). Essentially, two small outbreaks,
sensitive and resistant, lead to less overshoot and therefore a smaller overall number in infecteds
compared to one large outbreak (21,29). These studies are based on a deterministic modeling
framework, for which resistance is always generated. We decided to see if these proposed
strategies are still optimal when stochasticity is taken into account. Figure 7 shows that for
Rf > 1 (area left of the dotted vertical line in Fig. 7), there is indeed an intermediate level of
control which minimizes the attack rate, in agreement with the results obtained for the
mitigation scenario above. However, if control can be implemented such that Rf < 1, Figure 7
suggests that more control is better, since it can reduce the probability of resistance generation
(area right of the dotted vertical line in Fig. 7). This is in contrast to results obtained using a
deterministic framework (35), for which resistance is always generated and causes a second
outbreak. In such a deterministic scenario, high levels of antiviral use lead to rapid generation
of resistance and an increased overall attack rate, with an intermediate control level producing
the lowest attack rate. The stochastic framework suggests that rapid and strong control that
might lead to quick containment of the outbreak is best.

It was also shown that for a deterministic model, a strategy of initial low control, followed by
a sudden increase in control strength once enough sensitive infecteds are depleted, could
perform better compared to a strategy that is based on a constant level of treatment (35).
However, little initial control is more likely to lead to generation of a secondary resistant
outbreak, while rapid and strong control might contain not only the sensitive outbreak, but also
prevent resistance generation. Figure 7 confirms this. We plot attack rate for a situation where
treatment starts at f = 0.1 and increases to f = 0.9 at the indicated time. The figure shows that
a scenario at which the switch to stronger control occurs at around 90 days leads to a local
minimum in the attack rate, again due to minimization of the overshoot (21). However, rapid
switch to strong control leads to the largest reduction in attack rate. This suggests that using a
“start low, then increase” control strategy as suggested in (35) might be suitable if a secondary
resistant outbreak is unavoidable. However, if control can reduce the number of infecteds
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enough to prevent generation and spread of resistance, then one should implement strong
control measures at high levels as soon as possible.

Details of modeling resistance emergence lead to small differences in results
Our study implements the process of resistance generation in a way that differs from previous
studies. Most previous models assume that a fraction of treated hosts exit the class of sensitive
infecteds and enter the class of resistant infecteds, thereby essentially “starting over”. In
contrast, we assume that resistance can emerge during treatment (and at much lower levels in
the absence of treatment), and with a certain probability cause new infections that are
dominated by the resistant strain. We believe that our implementation of resistance generation
is more realistic. To see if the different implementations of the resistance generation process
are important, we compared our model to previous ones. Specifically, we assumed – as done
in previous models – that as infected hosts leave their compartment, a small fraction, c′i, enter
a new resistant infected compartment (i.e. treated and untreated hosts enter the resistant
compartment I1, the first resistant strain enters compartment I2, etc.). It is not clear what the
rates for c′i should be – especially since we would argue that modeling resistance generation
in this way does not correspond directly to a biologically realistic mechanism. To allow some
comparison, we assume here that the fractions c′i are equal to the ci. Figure 8 shows that using
the two different ways of implementing resistance generation leads to small differences but
overall close agreement. We find the same for other types and levels of control (not shown).

Discussion
Several conclusions can be drawn from our study. First, we find that the ongoing evolution of
the resistant strain can contribute significantly to an increase in outbreak size. The fitness of
the resistant mutants is not known. If the initially generated resistant mutant spreads poorly
(i.e. R1 < Rf), it could take very long before compensatory mutations are created that improve
the fitness to a level where the strain can spread widely (4,22). While there was initial hope
that strains resistant to the neuraminidase inhibitors have strongly reduced fitness, recent data
suggest that at least some resistant mutants spread almost as well as the wild-type (24,40,51).
Therefore, assuming that resistant strains with fitness value similar to the ones we choose here
will emerge is (unfortunately) reasonable. For the (assumed but plausible) scenario where the
rates of compensatory mutation are as high as those of resistance generation during treatment
and the fully compensated resistant strain has a fitness the same as the drug sensitive strain,
we find that the number of infecteds can increase by as much as 20% owing to the evolution
of the resistant strain.

Second, our results show that if it is possible to quickly contain an outbreak caused by a drug
sensitive strain, it might also be possible to prevent resistance generation and an outbreak by
the resistant strain. For that to occur, it is crucial to start control early and at high levels.
Additionally, our results suggest that prophylaxis is the better control strategy to prevent
resistance emergence. However, prophylaxis of a fraction of the total population will likely
require many more doses of antivirals and is more problematic logistically, compared with
treatment of infecteds. This could be prevented by using targeted prophylaxis (32). In any case,
additional factors will likely influence the question of treatment versus prophylaxis. If a
pandemic strain with a high level of virulence were to spread, treatment might be crucial to
reduce mortality and could take precedence over prophylaxis.

Third, we find – in agreement with earlier studies (29,35) – that if containment is not possible
and outbreak mitigation is the best possible outcome, intermediate levels of control minimize
the number of infecteds, owing to a reduction in overshoot caused by two smaller outbreaks
(a sensitive and a resistant one) compared to one large outbreak (either a sensitive or a resistant
one) (21).
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Fourth, we find that details in which resistance generation is implemented in the model do not
significantly affect the results. This is reassuring, as it suggests a some robustness of the results
obtained by different models.

The inclusion of stochasticity and the consideration of evolution of the resistant virus gives a
somewhat more realistic model compared to most previous ones that were used to study
generation and spread of neuraminidase inhibitor resistance in influenza. Nevertheless, we still
made a number of simplifying assumptions. Our model assumes a homogeneous population.
Based on results by others, we expect that heterogeneity will likely change the detailed
dynamics of the outbreak, but the overall qualitative results will probably not change (29). We
also assume that every infected case is symptomatic. If asymptomatic cases do not spread the
virus, then including those into our model simply reduces the reproductive numbers and
therefore makes a given level of control more effective. If, however, asymptomatic cases
spread, and at the same time are not detected (i.e. do not receive treatment), it could undermine
treatment based control strategies. This would argue further for the importance of prophylaxis
as the better control strategy from an epidemiological standpoint. Implicit in our model
formulation is the assumption that infectious periods are exponentially distributed. It has been
shown that the assumption that infectious periods are exponentially distributed can lead to
different results in for instance parameter estimation and dynamical details, compared to
models that assume gamma-distributed infection periods (31,46). One way our results could
be affected is that an exponential distribution leads to a few hosts with unrealistically long
infection times. These hosts could potentially impact the probability that resistance is
generated, especially in the multi-step process including compensatory mutations. Based on
our experience using models with both exponential and gamma-distributed infection times, we
believe that a gamma-distributed model would not affect the qualitative results. However, we
have not formally tested this for the scenarios studied here, and it might merit further
investigation.

If an outbreak were to occur, treatment or prophylaxis will not be random and uniform as we
implemented it in our simple model, but instead public health authorities will likely use a
combination of targeted antiviral prophylaxis, contact tracing, preferential treatment of certain
groups, etc. Therefore, to carefully assess intervention methods that take into account drug
availability, as well as details in drug delivery, e.g. at what day post infection people start taking
the drug, for how long they continue to do so, and how that affects transmission, requires more
detailed, agent-based models (12,13,16,18,33). Such models that include resistance into agent
based models are in development (Neil Ferguson, personal communication).

To summarize, our results suggest that if we are able to detect an outbreak early and intervene
quickly, it might be possible to not only control a sensitive outbreak, but also to prevent the
emergence and spread of resistance. If on the other hand intervention is not quick enough, or
control measures are not able to stop the outbreak, then the emergence of resistance is very
likely. Therefore, while antivirals will certainly be an important component of pandemic
control, we should not rely on them too much. Instead, a comprehensive approach based on
good surveillance and rapid response with first-line control mechanisms such as antivirals and
behavior changes such as social distancing measures, as well as a concerned effort to rapidly
produce a potent vaccine, will be the best answer to an influenza pandemic (18). In fact, such
a multi pronged approach seems the most promising approach against most future, novel
emerging pathogens.
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Fig. 1.
Schematic of the compartmental model describing the infection dynamics. The compartments
are susceptibles, S, persons infected with the drug sensitive strain that are untreated, Iu, persons
infected with the drug sensitive strain that receive treatment, It, and persons infected with the
first, second and third resistant strain, I1, I2 and I3. The first resistant strain is the one initially
generated, ongoing evolution leads to further mutations that increase fitness of the resistant
strain, resulting in I2 and subsequently in I3. Table 1 show the possible transitions and their
propensities, Table 2 summarizes the model parameters. Further details are given in the text.
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Fig. 2.
Attack rate in the absence and presence of compensatory mutations. Control starts after the
indicated number of infections have occurred, with treatment and prophylaxis chosen at equal
levels, (ft = fp). Control can only mitigate the outbreak (Rf = 1.2). Attack rate is defined as the
total number of infecteds divided by the population size. Boxplots are results from 2000
stochastic simulations, lines show results from the equivalent deterministic model. The black
boxes and solid line are results in the absence of ongoing evolution through compensatory
mutations, the gray boxes and dashed line show results in the presence of ongoing evolution.
The dotted line shows the attack rate in the absence of control. The resistant strains have R1 =
1.5, R2 = 1.75 and R3 = 2.0, for the case with compensatory mutations, c1 = c2 = ct.
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Fig. 3.
Probability of resistance emergence and attack rate in the absence and presence of
compensatory mutations. Control is strong enough to contain the sensitive outbreak (Rf = 0.8).
Left: Probability of resistance emergence in the absence (black) and presence (gray) of
compensatory mutations. Resistance is considered to have emerged if at least 5% of the total
number of infections that have occurred during the outbreak are resistant infecteds (a higher/
lower percentage leads to a right/left shift of the curves). Right: Solid lines show attack rate
averaged over all 2000 stochastic simulations, dashed lines show attack rate averaged only
over those simulations where a (resistant) outbreak occurred. The variance in attack rate for
the stochastic simulations when an outbreak occurs is very small, we therefore only plot the
mean instead of showing boxplots. These mean values agree closely with the deterministic
results (not plotted). Rest as explained previously.
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Fig. 4.
Different evolutionary trajectories of the resistant strain. Control is strong enough to contain
the sensitive outbreak (Rf = 0.8), as previously shown in Figure 3. Left: Probability of resistance
emergence for the 3-step evolutionary trajectory previously shown in Figure 3 (solid line), a
1-step process with ct = 10−3 as before and R′ = 1.7 (dashed line), and a 1-step process with c
′ = 10−4 leading to a strain with fitness R′ = 2 (dash-dotted). Right: Average attack rate. Attack
rate here and in the following figures is the average over all stochastic simulations, independent
of the occurrence of a resistant outbreak.
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Fig. 5.
Probability of resistance emergence and attack rate for different control strategies. Control
starts after the indicated number of infections have occurred. It leads to Rf = 0.8, which is strong
enough to contain the outbreak caused by the sensitive strain. Control strategies are: only
treatment (solid line), equal levels of prophylaxis and treatment (dashed line) and only
prophylaxis (dash-dotted line). Evolution through compensatory mutations is included.
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Fig. 6.
Average attack rate for different levels of control. Treatment and prophylaxis are chosen equal
(f = fp+ft). Control starts after the indicated number of infections have occurred. Control can
only reduce, not contain the outbreak caused by the sensitive strain. The solid, dashed and
dash-dotted lines show results for Rf = 1.5, Rf = 1.35 and Rf = 1.2. Black lines are total attack
rate, gray lines indicate fraction of cases caused by the resistant strains. Evolution through
compensatory mutations is included as previously described.
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Fig. 7.
Attack rate for varying levels of control. Control starts after 500 infected cases have occurred,
treatment and prophylaxis are used equally (f = ft = fp). Left: control strength is varied from 0
to 1 and kept constant throughout the outbreak. The vertical dotted line indicates the level of
control for which Rf = 1. Right: Low level of control (f = 0.1) for the indicated number of days,
followed by a switch to strong control (f = 0.9). The horizontal dotted line indicates the
minimum attack rate obtained for the constant treatment schedule. Evolution through
compensatory mutations is included.
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Fig. 8.
Probability of resistance emergence and attack rate for different implementation of resistance
generation. Control based on treatment only (black) or prophylaxis only (gray) for the model
with resistance generation as used here (solid) and as used in previous studies (dashed). See
text for details on the two model implementations. Evolution through compensatory mutations
is included.
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Table 1
Possible transitions and their propensities (the propensity multiplied with the time step gives the probability that a given
event occurs).

transitions propensity

S → S − 1, Iu → Iu + 1 (1 − fp)(1 − ft)(βu(1 − cu)Iu + βt(1 − ct)It)S
S → S − 1, It → It + 1 (fp(1 − ep) + (1 − fp)ft)(βu(1 − cu)Iu + βt(1 − ct)It)S
S → S − 1, I1 → I1 + 1 (βucuIu + βtctIt)S + β1(1 − c1)I1S
S → S − 1, I2 → I2 + 1 β1c1I1S + β2(1 − c2)I2S
S → S − 1, I3 → I3 + 1 β2c2I2S + β3I3S
Iu → Iu − 1 νuIu
It → It − 1 νtIt
I1 → I1 − 1 ν1I1
I2 → I2 − 1 ν2I2
I3 → I3 − 1 ν3I3
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Table 2
Model parameters. Values are specific for neuraminidase inhibitor treatment and resistance emergence in influenza A.

symbol meaning values comment

fp fraction of uninfecteds receiving prophylaxis 0 – 1 varied
ft fraction of infecteds receiving treatment 0 – 1 varied
ep efficacy of prophylaxis 0.8 based on AVES in (50), AVESd in (19)
νu clearance rate (1/mean duration of infection) of

untreated infected hosts
1/4.8d−1 based on (5)

νt clearance rate of treated infected hosts 1/3.4d−1 reduction of infectious period by ≈ 30 %,
based on (42,48)

ν1, ν2, ν3 clearance rate of resistant infected hosts 1/4.8d−1 assumption that resistant strain leads to
same duration of infection as sensitive strain

ct probability of resistance generation for treated hosts 10−3 based on Fig. 4A in (20), assuming
treatment at day one for the more realistic
(IR) model

cu probability of resistance generation for untreated
hosts

10−5 similar to value for ineffective (late)
treatment in (20), Fig. 4A, IR model

c1, c2 probability of resistance generation of
compensatory mutants

10−3 see text

Ru reproductive number of susceptible strain (in the
absence of treatment)

2.0 (44,45)

Rt reproductive number of susceptible strain (in the
presence of treatment)

0.68 based on (50)

R1, R2, R3 reproductive numbers of resistant strains 1.5, 1.75, 2.0 assumed
βu, βt β1, β2, β3 transmission parameters calculated as Riνi/N0
N0 population size 3 × 108 U.S. population
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