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The intimin gene eae, located within the locus of enterocyte effacement pathogenicity island, distinguishes
enteropathogenic Escherichia coli (EPEC) and some Shiga toxin-producing E. coli (STEC) strains from all
other pathotypes of diarrheagenic E. coli. EPEC is a leading cause of infantile diarrhea in developing countries,
and intimin-positive STEC isolates are typically associated with life-threatening diseases such as hemolytic-
uremic syndrome and hemorrhagic colitis. Here we describe the development of a PCR-restriction fragment
length polymorphism (RFLP) assay that reliably differentiates all 11 known intimin types («l, a2, 3, v, K, €,
1M, L, A, 0, and {) and three new intimin genes that show less than 95% nucleotide sequence identity with existing
intimin types. We designated these new intimin genes Int-p, Int-v, and Int-§ The PCR-RFLP assay was used
to screen 213 eae-positive E. coli isolates derived from ovine, bovine, and human sources comprising 60
serotypes. Of these, 82 were STEC isolates, 89 were stx-negative (stx~) and ehxA-positive (ehxA™) isolates, and
42 were stx~ and ehxA-negative isolates. Int-3, the most commonly identified eae subtype (82 of 213 [38.5%]
isolates), was associated with 21 serotypes, followed by Int-C (39 of 213 [18.3%] isolates; 11 serotypes), Int-0
(25 of 213 [11.7%] isolates; 15 serotypes), Int-y (19 of 213 [8.9%] isolates; 9 serotypes), and Int-¢ (21 of 213
[9.9%] isolates; 5 serotypes). Intimin subtypes al, a2, k, A, § p, v, and v were infrequently identified; and
Int-y was not detected. Phylogenetic analyses with the Phylip package of programs clustered the intimin
subtypes into nine distinct families (o, B-§, v, k, €-n-v, v--p, A, 0, and {). Our data confirm that ruminants are

an important source of serologically and genetically diverse intimin-containing E. coli strains.

Enteropathogenic Escherichia coli (EPEC) and a subset of
the Shiga toxin-producing E. coli (STEC) isolates known as the
enterohemorrhagic E. coli (EHEC) represent two of the five
pathotypes of the diarrheagenic E. coli recognized at present
(32). EPEC and STEC isolates are commonly recovered from
the feces of food-producing animals and pose threats to the
health of humans and livestock (32). EPEC isolates are a
leading cause of diarrhea, especially among infants in the de-
veloping world, and EHEC isolates are often recovered from
patients with serious gastrointestinal and systemic diseases
such as hemorrhagic colitis (HC) and hemolytic-uremic syn-
drome (HUS) (38). Unlike other diarrheagenic E. coli isolates,
EPEC and many EHEC isolates share the ability to induce the
formation of a characteristic histological feature known as an
attaching-and-effacing (A/E) lesion on target epithelial cells.
AJE lesions are characterized by localized destruction of brush
border microvilli and the formation of polymerized actin ped-
estals beneath the intimately adhering bacteria (16). eae was
the first gene to be associated with A/E activity and encodes
the intimate bacterial adhesin known as intimin (22).

The expression of intimin among intimin-positive E. coli
isolates is essential for colonization of the intestinal mucosa in
newborn piglets, calves, adult cattle, and humans in in vitro
organ cultures (8, 11, 39, 40). In addition to a role in A/E lesion

* Corresponding author: Mailing address: Elizabeth Macarthur Ag-
ricultural Institute, New South Wales Agriculture, PMB 8, Camden,
New South Wales, 2570, Australia. Phone: 0061-246-406426. Fax:
0061-246-406348. E-mail: steve.djordjevic@agric.nsw.gov.au.

5022

formation, intimin may play a role in tissue tropism, since
studies have shown that O157:H7 strains containing different
intimin subtypes vary in their colonization patterns (39, 40).
Intimin has also been reported to bind to B-integrins and
perhaps another host cell receptor(s), and these interactions
may affect tissue colonization patterns (9, 20, 39).

The origin of the locus of enterocyte effacement (LEE) is
unknown. However, the A+T content of LEE (62%) com-
pared with the average A+T content of the E. coli genome
(49%) suggests that it was acquired by horizontal gene transfer
(30). Although the N-terminal region of 670 amino acids of all
intimin types is highly conserved, the C-terminal region of 280
amino acids, known as Int280, displays considerable sequence
diversity and represents the surface-exposed, immunogenic re-
gion of the molecule that also contains Tir and epithelial cell
binding activity (14). Twenty-three distinctive E. coli clones
representing different pathotypes of the diarrheagenic E. coli
have previously been identified by analysis of 20 housekeeping
genes by multilocus enzyme electrophoresis (52). Distinct mul-
tilocus enzyme types and the conservation of flagellum anti-
gens distinguished two phylogenetic groups within EPEC
(EPEC 1 and EPEC 2) and EHEC (EHEC 1 and EHEC 2)
(51, 52). Distinct serotypes and intimin subtypes were initially
shown to associate within these groups. Serotypes O55:H6 and
0127:H6 (Int-a) and serotypes O111:H2, O111:H—, O128:H2,
and O45:H2 (Int-B) are representative of the EPEC 1 and
EPEC 2 groups, respectively. The site of insertion of LEE in
these clonal lineages disrupts the chromosomal gene sel/C (53).
Similarly, in serotype O157:H7 (Int-y) strains, representative



VoL. 41, 2003

of EHEC 1, and serotype O111:HS, O111:H11, O111:H—,
026:H11, and O111:H— (Int-B) strains, representative of
EHEC 2, LEE is inserted in pheU (51-53).

Int-3 is usually expressed by EPEC strains belonging to se-
rotype O86:H34 (1), and Int-¢ is found among a range of
human STEC serotypes (35). Some EHEC strains with sero-
group O111 express a subset of Int-y known as y2 (51),
whereas others have reported the presence of Int-8 in sero-
group O111 strains (1). Previous studies (44) have shown that
strains with an O111:HS serotype display a mosaic of divergent
gene segments that alternatively cluster with intimin subtypes
a, B, and y and exhibit enough sequence divergence to warrant
a new intimin subtype designation, identified as Int-6. The
Int-6 sequence is almost identical to that of Int-y2 (35). Fur-
thermore, Tarr and Whittam (44) showed that the eae gene
from strains with serotype O111:H9 was more related to Int-{,
which was described recently (23). The complexity of intimin
subtypes identified among strains belonging to serotypes O111:
H2, O111:HS, O111:H9, O111:H—, and O45:H2 suggests that
there have been multiple acquisitions of LEE in the EHEC 2
and EPEC 2 clonal lineages (44).

Phylogenetic studies indicate that there are six distinct in-
timin families, designated «, B, v, 8, € and 6 (1, 35, 44).
Recently, Zhang et al. (55) reported three novel intimin genes
and designated them Int-n, Int-,, and Int-k. Moreover, se-
quences representing two intimin variants identified as { and A
have been deposited in GenBank (accession nos. AJ298279
and AF43953, respectively), but their phylogenetic relation-
ships to the other intimin variants have not been studied in
detail.

EPEC strains are defined as intimin-containing diarrhea-
genic E. coli strains that possess the ability to form A/E lesions
on intestinal cells and that do not possess Shiga toxin genes
(24). However, EPEC strains can be further classified as typical
or atypical. Typical EPEC strains possess a virulence plasmid
(EAF plasmid) that encodes genes for the bundle-forming
pilus, which is required for localized adherence on cultured
epithelial cells; atypical EPEC strains do not possess the EAF
plasmid (24, 49). Typical and atypical EPEC strains (i) usually
belong to different serotype clusters, (ii) differ in their adher-
ence patterns on cultured epithelial cells, (iii) are typically
found in different hosts (typical EPEC strains have only been
recovered from humans), (iv) show different geographic distri-
butions, and (v) display differences in their intimin types (49).
More recently, eae-positive (eae™), EAF-negative, and ehxA-
positive EPEC strains recovered from children with diarrhea
have been described; but their intimin types could not be
identified (49). Thus, typical and atypical EPEC strains appear
to constitute two distinct groups of E. coli. Atypical EPEC
strains appear to be more closely related to STEC strains in
their serotype profiles, animal reservoirs, the toxins that they
produce, and other genetic characteristics and as such are
considered emerging pathogens (49).

Although typical EPEC strains have only been recovered
from humans, ruminants are a recognized source of atypical
EPEC strains (49). Furthermore, cattle and sheep are major
reservoirs of STEC strains capable of causing severe infections
in humans, such as HC and HUS. However, only a subset of
the serotypes found in cattle and sheep has been reported to
cause disease in humans, which usually occurs via fecal con-
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tamination through the food chain. Coupled with this is the
recognition that non-O157 STEC strains, which usually contain
eae, are more commonly recovered from patients with severe
gastrointestinal and renal diseases in humans, especially in
Australia, Sweden, South Africa, and several Latin American
countries (12, 26, 28, 32, 36, 38, 50). Although a number of
studies have determined the eae subtypes of non-O157 STEC
strains isolated from humans, no extensive studies have been
undertaken to determine the intimin subtypes from a serolog-
ically diverse collection of intimin-positive STEC and EPEC
isolates recovered from cattle and sheep. The importance of
subtyping of STEC virulence factors has already been shown to
have clinical significance. Previous studies (5, 41) have dem-
onstrated that STEC strains recovered from sheep usually pos-
sess i and S0 (pieraray SUDtypes that are uncommonly as-
sociated with severe disease in humans (17, 54). A study to
determine the eae subtypes in cattle and sheep STEC strains
may also identify relationships between intimin subtypes, E.
coli serotypes, and Shiga toxin subtypes that are more com-
monly associated with human infections; and such data may be
clinically significant.

Present intimin subtyping methodologies are cumbersome,
in that multiple assays are required to identify all known eae
subtypes. A universal scheme capable of subtyping all known
intimin subtypes has not previously been described. In the
study described here we examined the distribution of intimin
subtypes among a serologically diverse collection (60 sero-
types) of 213 intimin-positive E. coli isolates derived from
ruminant and human sources and developed an intimin typing
scheme for all known intimin variants. Our strategy used a
PCR assay to amplify 840 to 880 bp encoding the C-terminal
280 amino acids (Int280) of all known eae subtypes and restric-
tion fragment length polymorphism (RFLP) analysis to differ-
entiate them. Taking this approach, we discovered three new
intimin types, identified here as Int-p, Int-v, and Int-§; deter-
mined their nucleotide sequences; and adapted our typing
scheme to accommodate these three new subtypes. Compari-
son of the sequences of these genes with intimin sequences
deposited in GenBank with the Phylip package of programs
enabled us to examine the phylogenetic relationships among
the members of the intimin gene family. Our intimin typing
assay will have medical and veterinary clinical applications by
facilitating the characterization of eae among E. coli isolates
recovered from humans and animals experiencing a range of
gastrointestinal and systemic conditions. These data will be
useful in (i) gaining a better understanding of the relationship
between the intimin subtype and the E. coli serotype for phy-
logenetic purposes, (ii) characterizing atypical EPEC strains
from animal sources and understanding their role in human
disease, and (iii) facilitating studies of the role of intimin in
host specificity and tissue tropism.

MATERIALS AND METHODS

Bacterial strains. Two hundred thirteen eae-positive E. coli isolates were used
in this study. The Elizabeth Macarthur Agricultural Institute (Camden, New
South Wales, Australia) provided 165 isolates. Of these, 86 were isolated from
the feces of healthy sheep, 78 were isolated from the feces of healthy cattle, and
1 was isolated from a cow with diarrhea. The 165 isolates were recovered from
feces collected from a geographically widespread area in two Australian states
(New South Wales and Queensland) from 1997 to 2000. The 165 animal isolates
were selected from a collection of over 2,000 STEC isolates on the basis of being
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TABLE 1. Primers used for amplifying and sequencing intimin subtypes

Product size Intimin subtype

Primer Sequence (5’ to 3") Orientation (bp) amplified No. of PCR cycles (cycling conditions) Reference
EaeVF AGYATTACTGAGATTAAG Forward All variants This study
EaeVR AAATTATTYTACACARAY Reverse 840-880* 35 (94°C, 60 s; 41°C, 60 s; 72°C, 60 s) This study
EaeZetaVR AGTTTATTTTACGCAAGT Reverse 840-880” This study
EaelotaVR TTAAATTATTTTATGCAAAC Reverse 840-880° This study
EaeUniVF ACTCATTGTGGTGGAGC Forward 4340 All variants 35 (94°C, 50 s; 52°C, 60 s; 72°C, 45 5) This study
PatonR CCACCTGCAGCAACAAGAGG Reverse 37
Reid F CTGAACGGCGATTACGCGAA Forward 917" All variants 30 (94°C, 60 s; 53°C, 120 s; 72°C, 180 s) 43
Reid R CCAGACGATACGATCCAG Reverse
Gannon F GTGGCGAATACTGGCGAGACT Forward 8907 All variants 35 (94°C, 60 s; 58°C, 60 s; 72°C, 120 5) 18
Gannon R CCCCATTCTTTTTCACCGTCG Reverse
EaeVRF1 CACCTGGTCAGCAGA Forward 331° All variants 30 (94°C, 20 s; 62°C, 30 s; 72°C, 20 5) This study
EaeVRR1 ACCTCTGCCGTTCCAT Reverse This study
EaeVRF2 AACAATGTACAGCTCACTAT Forward 543¢ Int-p 30 (94°C, 30 s; 56°C, 40 s; 72°C, 30 5) This study
EacVRR2 TACCGAGGCAAGACCATC Reverse This study
Eae64/4VRF1 CGCAGTACGCAGAAGATT Forward 793¢ Int-v 30 (94°C, 30 s; 60°C, 40 s; 72°C, 30 s) This study
Eae64/4VRR1 ~ CCGAGCCAGATGTCAGTT Reverse This study
365F1 AACTTCCCTTTGAATACA Forward 298¢ Int-\ 30 (94°C, 30 s; 60°C, 30 s; 72°C, 30 ) This study
EaeVRRI1 ACCTCTGCCGTTCCAT Reverse This study
365F4 TACGGCGGATAAGACT Forward 404 Int- 30 (94°C, 30 s; 54°C, 30 s; 72°C, 30 s) This study
365R4 ACGTTACATCATAGCCC Reverse This study
411F2 CAGCTTACTATTACCGTTC Forward 4718 Int-¢ 30 (94°C, 30 s; 54°C, 30 s; 72°C, 30 ) This study
411R2 AGAGAAGGTCACTTTTTG Reverse This study
H41VRF2 ATTACCGTTCTGTCGAAT Forward 439" Int-a2 30 (94°C, 45 5; 55°C, 40 s; 72°C, 45 5) This study
H41VRRI1 ATACCGGCTGACCATT Reverse This study

“ Primers used to amplify and sequence the 3" end of intimin variants; the size of the amplicon varied depending on the eae gene variant.
b Primers used to sequence the conserved 5' region of all intimin gene variants.

¢ Primers used to sequence intimin p; location within gene, 1618-2160 bp.
4 Primers used to sequence intimin v; location within gene, 1399-2191 bp.
¢ Primers used to sequence intimin A; location within gene, 347-644 bp.
/Primers used to sequence intimin \; location within gene, 1689-2092 bp.
& Primers used to sequence intimin £; location within gene, 1627-2097 bp.
" Primers used to sequence intimin «2; location within gene, 1635-2074 bp.

eae™; more than one isolate from a single animal was avoided unless isolates
from the same animal possessed different virulence factor profiles in the multi-
plex PCR (see below). Thirty-five human isolates were obtained from the Mi-
crobiological Diagnostic Unit (Melbourne, Australia). These consisted of 28
isolates from patients with HUS, bloody diarrhea, infantile diarrhea, infantile
gastroenteritis, or diarrhea; 6 isolates from healthy babies; and 1 isolate from a
human with an unknown history. Of these, 15 have been described previously and
comprise 5 human diarrheal isolates of serotype O26:H— (33, 45); 1 isolate of
serotype O26:H11 from a patient with diarrhea in Canada (34); 1 isolate of
serotype O55:H6 from a patient with infantile diarrhea (45); 1 isolate of serotype
086:H— from a patient with infantile diarrhea in the United Kingdom (34); 2
isolates of serotype O111:H— from a patient with infantile diarrhea in the United
Kingdom (25); 1 isolate of serotype O126:H2 from a patient with infantile
diarrhea in the United Kingdom (46); 2 isolates of serotype O128:H2, 1 of which
was from a healthy Australian human baby and the second of which was from a
patient with infantile gastroenteritis in the United Kingdom (47); 1 isolate of
serotype O128:H2 from a patient with infantile diarrhea in the United Kingdom
(45), and 1 isolate of serotype O157:H— from a patient with HUS in Australia
(3). Andre Burnens from the National Reference Laboratory for Food Borne
Diseases (Bern, Switzerland) kindly provided 13 human isolates from patients
with diarrhea or HUS (7). The source of the Swiss isolates has been described
previously (41).

Intimin gene designation. The nomenclature used to identify intimin subtypes
is based on letters of the Greek alphabet (55). Zhang et al. (55) proposed a cutoff
of less than 95% nucleotide sequence identity to define a new intimin allele, and
this arbitrary value was applied in our study. We used Int-6 to describe intimin

sequences that are almost identical to Int-y2, since phylogenetic studies (44)
suggested that this intimin subtype deserved a new intimin designation. Our
analyses indicate that Int-k (55) and Int-3 (2) possess 99.6% identical amino
acids in the Int280 region. However, the complete nucleotide sequence for Int-3
is not available, and therefore, we use the designation Int-k to describe this
intimin subtype.

Detection of genes encoding intimin, Shiga toxins, and enterohemolysin by
multiplex PCR. DNA from all isolates was prepared and subjected to multiplex
PCR for the detection of STEC virulence factors stx,, stx,, ehxA, and eae (37),
except that the Instagene matrix (Bio-Rad, Richmond, Calif.) was used for the
preparation of template DNA, as described previously (13). Amplified DNA
fragments were resolved by gel electrophoresis with 2% (wt/vol) agarose. The
gels were stained with ethidium bromide (5 wl/ml), visualized by UV illumina-
tion, and imaged with a GelDoc 1000 image analysis station (Bio-Rad).

Amplification and subtyping of the eae gene by PCR-RFLP analysis. A single
forward primer (primer EaeVF) and three reverse primers (primers EaeVR,
EaeZetaVR, and EaelotaVR) (Sigma Genosys, St. Louis, Mo.) (Table 1) were
designed to amplify a 834- to 876-bp fragment (the fragment size varied, de-
pending on the variant amplified) representing the 3’ variable regions (encoding
the C-terminal Int280 amino acids) of all reported intimin variants. Instagene
DNA preparations (5 pl) were each amplified in a reaction mixture that con-
tained 10 mM Tris-HCI (pH 8.3), 10 mM KCI, 2 mM MgCl,, 0.2 mM each
deoxynucleoside triphosphate, 2 U of Tag DNA polymerase, and 50 pmol of each
primer. The reaction volume was made up to 50 wl with distilled H,O. The
thermal cycling conditions used to amplify this region of the intimin variants are
shown in Table 1. A final extension cycle was performed at 72°C for 5 min. The
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TABLE 2. Predicted sizes of restriction fragments used for RFLP
analysis of eae

Expected fragment size(s) (bp) with the following restriction

Intimin enzyme:
type
Alul Rsal Cfol
Int-al 736, 113 725, 84, 40° 437, 412
Int-a2 375, 334,133, 7¢ 590, 135, 84, 40¢ 437, 412
Int-p 475, 374 528, 246, 75¢ 618, 231
Int-y 834 (uncut) 432, 402 834 (uncut)
Int-€ 384, 270, 190, 32¢ 774, 102 345, 260, 195,
76¢
Int-g 605, 203, 38¢ 345, 279, 135, 87¢ 603, 225, 18¢
Int-q 384, 270, 190, 32¢ 774, 102 421, 260, 195
Int-6 527, 165, 110, 21,7 405, 354, 78¢ 837 (uncut)
14¢
Int-u 602, 241 525, 318 843 (uncut)
Int-k 342, 214, 162, 131 231, 201, 159, 120, 84, 624, 225
544
Int-\ 232, 214, 204, 151, 441, 318, 87¢ 846 (uncut)
45¢
Int-p 824, 197 525, 318 843 (uncut)
Int-v 844, 32¢ 774, 102 876 (uncut)
Int-§ 247, 214, 161, 148, 321, 318, 126, 84¢ 313, 311, 225
79¢

“ The fragment was too small to visualize under the electrophoresis conditions
used.

amplified DNA fragments were resolved by agarose gel electrophoresis, as de-
scribed above.

Alignment of Int280 nucleotide sequences with the PileUp program (www
.angis.org.au) enabled us to select restriction endonucleases which were pre-
dicted by computational analyses (Mapplot program; www.angis.org.au) to be
capable of differentiating the known intimin subtypes. PCR products (10 pl)
generated with the primer cocktail EaeVF, EaeVR, EaeZetaVR, and Eaelo-
taVR were incubated separately with 3 U of each of the restriction enzymes Alul,
Rsal, and Cfol in the buffer provided by the manufacturer for a minimum of 4 h
at 37°C. The restriction fragments were separated by agarose gel electrophoresis
and visualized by ethidium bromide staining. Intimin subtypes were identified by
comparing the restriction profile observed with the profile predicted by compu-
tational analyses (Table 2).

Subtyping of Shiga toxin genes. The PCR primers, cycling conditions, and
restriction endonucleases used for the amplification and RFLP analysis of stx,
and stx; have been described previously (5, 6, 41).

DNA sequencing of eae genes. The complete nucleotide sequences of the eae
genes from three E. coli isolates of serotypes Ont:Hnt (where nt is nontypeable),
O2-related:H19, and OR:H— (where R is rough) were determined since their
respective RFLP profiles did not match those of any of the reported intimin
variants. Sequencing of the eae gene from a human E. coli isolate of serotype
0125:H6 possessing Int-a2 was also undertaken, since no prototype sequence of
this subtype was available in public databases. The eae gene from a bovine E. coli
isolate of serotype O2/74:H— was also sequenced. On the basis of RFLP and
DNA sequence analyses, this isolate possessed Int-\. However, the 5’ conserved
region of Int-\ was not available in GenBank, so the whole intimin gene was
sequenced. The strategy used to sequence these intimin genes involved the
amplification of the 3’ region of the genes spanning nucleotides 1975 to nucle-
otides 2805 to 2847 (the fragment sizes varied, depending on the variant gene
amplified), which encodes the C-terminal variable region known as Int280. The
same primers (Table 1) were also used to sequence this region of the eae gene,
and the remaining sequence was obtained by primer walking. To generate se-
quencing templates spanning the 5’ conserved regions of intimin subtypes, pre-
viously published primers (18, 37, 43) and primers generated by primer walking
were used. PCR mixtures contained 100 to 500 ng of template DNA, 10 mM
Tris-HCI (pH 8.3), 10 mM KCI, 2 mM MgCl,, 0.2 mM each deoxynucleoside
triphosphate, 2 U of Tag DNA polymerase, and 50 pmol of each primer; and the
reaction volume was made up to 50 ul with distilled H,O. The primer sequences
and the cycling conditions used to generate the sequencing templates are de-
scribed in Table 1. PCR products were analyzed by agarose gel electrophoresis
and purified with a QIAquick DNA purification kit (Qiagen). DNA sequencing
reactions were performed with a Big Dye terminator cycle sequencing ready
reaction DNA sequencing kit and electrophoresed with an ABI Prism 377 DNA
sequencer (Perkin-Elmer, Santa Clara, Calif.). Compilation and analysis of DNA
sequence data were performed with Auto Assembler software (Perkin-Elmer).
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Nucleotide and amino acid analyses were performed with programs accessed via
the Australian National Genomic Information Service (www.angis.org.au).

Phylogenetic analysis. The Clustal W program (48) was used to produce a
multiple-sequence alignment of 46 inferred Int280 amino acid sequences, which
included the 5 sequences determined in this study and 41 sequences retrieved
from GenBank. Evolutionary gene trees were then estimated with the Phylip
package of programs (http:/bioweb.pasteur.fr/seqanal/phylogeny/phylip-uk
.html). Pairwise distances were calculated with the Protdist program, with the
Dayhoff PAM (percent accepted mutation) matrix specified as the distance
model. Int280 gene trees were then constructed by using the BIONJ program due
to its superior performance compared with that of neighbor joining, particularly
when substitution rates vary among lineages (19). Bootstrap analyses were sub-
sequently performed (1,000 replicates) to assess the relative support for the
nodes in the gene tree.

Nucleotide sequence accession numbers. The nucleotide sequences deter-
mined in this study have been submitted to GenBank and are available under
accession numbers AF530553 to AF530557.

RESULTS

Prevalence of genes encoding Shiga toxins and enterohemo-
lysin among eae* E. coli strains by multiplex PCR. The distri-
butions of the stx genes and efix4 among the 213 isolates used
in this study are shown in Table 3. All 213 isolates contained
eae and belonged to 60 serotypes. Of these, 82 possessed stx
genes and belonged to 25 serotypes, including O5:H—, O7:
H-, 026:H—, 026:H11, O28:H—, O49:H—, O76:H7, O84:
H-, 084:H2, 085:H49, 091:H21, O103:H2, O104:H11, O111:
H-, O118:H16, O121:H19, O145:H—, O157:H—, O157:H7,
0O157:H21, OX3:H21, Ont:H—, Ont:Hnt, OR:H—, and OR:
H31. Forty-eight of 82 (58.5%) isolates possessed stx,, 21 of 82
(25.6%) isolates possessed stx,, and 13 (15.9%) of the remain-
ing 82 isolates contained both stx, and stx,. Sixty-seven of these
82 (81.7%) isolates concomitantly possessed the enterohemo-
lysin gene (ehixA). Of the remaining 131 isolates, 89 (67.9%)
possessed ehxA but were stx negative (stx”) and 42 (32.1%)
contained eae alone (stx~, ehxA negative [ehxA ™~ ]). Of 48 hu-
man isolates (23 serotypes), 21 (43.7%) contained only eae
(putative EPEC isolates); 14 (29.1%) contained stx,, eae, and
ehxA; 5 (10.4%) contained eae and stx,; 5 (10.4%) contained
stx, and eae; and 3 (6.2%) possessed stx,, eae, and ehxA. Al-
though no human isolates simultaneously contained stx,, stx,,
eae, and ehxA, 11 isolates of animal origin possessed all four
genes.

Shiga toxin subtypes among eae* E. coli strains. Of 61
stx,-positive isolates, only 3 (4.9%) showed an RFLP profile
indicative of the presence of stx,. (formerly stx,ox3). Stx -
positive (stx,. ") isolates belonged to serotypes O5:H— (one
isolate) and O26:H— (two isolates). The stx,." O5:H— isolate
was recovered from a patient with HUS in New Zealand, and
the two stx, " O26:H— isolates (which also possessed stx;)
were recovered from ovine feces. All three stx, . " isolates pos-
sessed an Int-B intimin subtype.

Of 34 stx,-containing E. coli isolates, 16 (47%) possessed an
stx, subtype, 9 (26.5%) contained stx,1,,, 3 (8.8%) contained
StXounp, 2 (5.9%) possessed a combination of subtypes stx, and
SXoynp, 1 (2.9%) contained a combination of subtypes stx, and
Syhas a0 2 (5.9%) possessed the six,gpicraray SUbtype. One
isolate of serotype O85:H49 was positive for a Shiga toxin 2
gene when it was isolated, but it appeared to have lost it upon
storage. Isolates containing stx, were serologically diverse and
contained one of four intimin subtypes including Int-B (three
isolates of serotypes O7:H— and O26:H— recovered from un-
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TABLE 3. Distributions of stx,, stx,, and ehix4 among 213 eae-containing E. coli isolates

No. (%) of animals or samples containing E. coli isolates positive for:

No. of animals or

Source
samples (%) stxy, eae six,, eae Stxle_’a?XZ’ Sttl}’;;w’ St’;z};;;le’ Stx":hb;fé eae, eae, ehxA eae
Human 48 (22.5) 5(10.4) 5(10.4) 14 (29.1) 3(6.2) 21 (43.7)
Bovine 79 (37.1) 1(1.2) 1(1.2) 18 (22.7) 9(11.3) 6(7.5) 39 (49.3) 5(6.3)
Ovine 86 (40.4) 2(2.3) 1(1.1) 11 (12.7) 1(1.1) 5(5.8) 50 (58.1) 16 (18.6)
Total 213 (100) 5(2.3) 8(3.7) 2(1.0) 43 (20.2) 13 (6.1) 11(5.2) 89 (41.8) 42 (19.7)

related HUS patients and isolates of serotypes O26:H11 and
OX3:H21 recovered from bovine feces), Int-y (one isolate of
serotype O145:H— from a patient with diarrhea), Int-€ (two
isolates of serotype O121:H19, one from a patient with HUS
and one from a patient with diarrhea), or Int-6 (five O111:H—
isolates and an isolate of serotype O76:H7, all from bovine
feces). Eight of the nine isolates containing stx,,,, possessed
Int-y and belonged to the O157 serogroup; the remaining
isolate was of serotype OR:H31. Similarly, all three isolates
containing stx,.,, contained Int-y and were of serotypes
0O145:H— (one isolate from a patient with HUS) and O157:H7
(two isolates from bovine feces). Isolates containing two stx,
subtypes belonged to serotypes O49:H— and OR:H— and pos-
sessed stx, and stx,,p,;, (Subtypes Int-{ and Int-g, respectively).
A single isolate of serotype OR:H— possessed stx, and stx,,,,
(Int-{). Only two isolates (serotypes O91:H21 and O104:H11,
both from bovine feces) possessed sty (picrardy SUDLYpES.

Development of a PCR-RFLP assay for subtyping of intimin
genes. Primers were designed (Table 1) to amplify 840 to 880
bp of the 3’ ends of the genes for all known intimin subtypes.
This region of eae encodes the C-terminal 280 amino acids and
was used for RFLP analysis because it possesses the greatest
degree of sequence variation between subtypes. An amplifica-
tion product was generated for 10 known subtypes (al, o2, B,
Y, K, & L, A\, 0, and {) and 3 new subtypes designated Int-p,
Int-v, and Int-£. Although we did not possess an E. coli isolate
that contained the recently described Int-m subtype, sequence
alignments indicate that our primer combination should be
able to amplify an 876-bp fragment representing the 3’ end of
the gene for this subtype. Computational analyses of aligned
intimin gene sequences with the Mapplot program indicated
that Alul, Rsal, and Cfol could potentially distinguish between
all known intimin subtypes (Table 2). Alul differentiated 13 of
14 subtypes, although intimin subtypes v, w, and v (Fig. 1)
produced restriction fragments (824 to 844 bp) that could not
be easily distinguished by agarose gel electrophoresis. Rsal
distinguished 9 of 14 subtypes but failed to differentiate v and
p (Fig. 1) and € and v (Fig. 1), and therefore, both enzymes
were required to reliably differentiate 13 of the 14 intimin
subtypes. Cfol was also used to subtype eae-containing strains
because Int-€ and Int-n could not be differentiated with Alul
and Rsal (Table 2). Representative RFLP profiles generated
with these enzymes are depicted in Fig. 1A and B.

Int-B was the most common subtype identified among the E.
coli isolates represented in this study (82 of 213 [38.5%] iso-
lates) and was found to be associated with the greatest diversity
of serotypes (n = 21) (Table 4). Int-{ (39 of 213 [18.3%]
isolates) was the second most common subtype and was rep-

resented by 11 serotypes (Table 4). Int-0 was identified as the
third most common subtype (25 of 213 [11.7%] isolates; 15
serotypes), followed by Int-y (22 of 213 [10.3%] isolates; 10
serotypes). Int-€ was identified in 21 isolates representing five
serotypes. Int-\ (one isolate), Int-k (seven isolates), and in-
timin  (four isolates) were infrequently identified (Table 4);
and Int-m) was not identified. We did not observe PCR-RFLP
profiles that indicated the presence of more than one intimin
type in any one of the 213 E. coli isolates examined in this
study, suggesting that only a single eae gene is present in each
isolate. However, epidemiologically unrelated isolates with the
same serotype or serogroup may possess different intimin sub-
types (see below).

Distribution of intimin subtypes among E. coli isolates from
cattle, sheep, and humans. Figure 2 shows the distribution and
relative frequencies of the intimin subtypes among cattle,
sheep, and humans. E. coli isolates possessing, most intimin
types were isolated from both ruminant species and humans,
with the following exceptions: Int-al (no cattle isolates),
Int-a2 (no ruminant isolates), Int-p. (no cattle or human iso-
lates), Int-§ (no sheep or human isolates), Int-\ (no sheep or
human isolates), and Int-v (no cattle or human isolates). E. coli
isolates possessing Int-u were also not identified among the
human isolates (Fig. 2). Interestingly, we did not identify an E.
coli isolate possessing Int-a2 among the 165 intimin-positive
isolates recovered from both ruminant species. Thus, isolates
with Int-a2 may be representative of typical EPEC, as the only
isolate that we identified with this intimin subtype possessed a
O125:H6 serotype and did not possess the stx or the esixA gene.
Several of these intimin subtypes (Int-w, Int-v, and Int-§) are
reported here for the first time and may be rare. However, it is
premature to hypothesize that these intimin species associate
exclusively with a particular host.

Relationship among intimin subtype, virulence gene profile,
and E. coli serotype. The relationship among the intimin sub-
type, virulence gene profile, and E. coli serotype is shown in
Table 4. The 82 stx-positive (stx*) E. coli isolates examined in
this study possessed 6 intimin subtypes and were represented
by 26 serotypes. Of 131 non-stx™ E. coli isolates, 89 (67.9%)
possessed ehxA and comprised 27 serotypes and 7 intimin
types. The remaining 42 isolates (which possessed eae alone)
belonged to 25 serotypes and 11 intimin types. Several of the
42 eae™, stx~, and ehxA ™ isolates, including isolates of sero-
types O26:H— (Int-B), O55:H6 (Int-al), O86:H— (Int-k),
O111:H- (Int-B), O126:H2 (Int-B), O127:H— (Int-al), and
0128:H2 (Int-B), were isolated prior to 1955 (25, 33, 34, 45—
47); and the majority of these were from patients with infantile
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FIG. 1. RFLP analysis of the 3’ 840 to 880 bp of all known intimin subtypes with Alul (A) and Rsal (B). Lanes: M, 100-bp-plus molecular weight
marker; al, O127:H— (human); o2, O125:H6 (human); B, O26:H11 (ovine); y, O157:H— (ovine); 6, O111:H— (bovine); €, O103:H3 (ovine); ¢,
084:H2 (ovine); k, O37:H— (ovine); v, Ont:H8 (ovine); w, OR:H— (ovine); v, O2-related:H19 (ovine); N, O2/74:H— (bovine); and & Ont:Hnt

(bovine).

diarrhea. Thus, these isolates probably represent typical EPEC
isolates, although further studies are needed to confirm this.
In many instances, E. coli isolates belonging to a particular
serotype often possessed the same intimin subtype, irrespective
of the host species from which it was recovered. In some
instances the same intimin subtype was identified within a
serogroup. This was most strikingly exemplified by isolates
belonging to the 026 serogroup (O26:H— and O26:H11),
which all possessed Int-B, irrespective of the host source. How-
ever, isolates belonging to a particular serogroup but display-
ing different H (flagellum) types more commonly possessed
different intimin subtypes. For example, isolates of serogroup
084 possessed Int-{ (O84:H—, O84:H2) Int-0 (O84:H2S5), and
Int-al (O84:H49). Importantly, epidemiologically unrelated
isolates belonging to serotypes O5:H11, O15:H2, O49:H—,
0103:H2, O111:H—, and O145:H— possessed different intimin
subtypes, suggesting that isolates of these serotypes represent
different clonal lineages. It should be noted that isolates pos-
sessing the same serotype but different virulence gene at-
tributes (e.g., 049:H—, O111:H—, and O145:H—) may belong
to the EHEC or the EPEC lineage and thus are not expected
to possess identical intimin types. Furthermore, isolates be-

longing to the Ont and OR serogroups probably represent
phylogenetically diverse clones, and new antisera and molecu-
lar methods are required to distinguish serotypes and/or clonal
lineages within these two serogroups before any valid conclu-
sions may be drawn.

Sequence and phylogenetic analysis of novel eze genes. The
RFLP profiles of the eae genes from three isolates of serotypes
Ont:Hnt, O2-related:H19, and OR:H— did not match any pat-
tern predicted with the intimin gene sequences deposited in
GenBank, suggesting that these isolates possess novel intimin
subtypes. DNA sequence analysis of the eae genes from these
strains was performed by using a panel of primers published
previously and by primer walking (Table 1). Alignment of the
Int280 sequences deduced from these three genes showed con-
siderable sequence divergence with known intimin subtypes.
The predicted amino acid sequence of the intimin gene char-
acterized from an ovine isolate (VR45) of serotype OR:H—
showed 89.1% nucleotide sequence identity with Int-v (Gen-
Bank accession no. AJ308551). Phylogenetic analysis con-
firmed the close relationship of these two intimin subtypes
(Fig. 3).

The predicted amino acid sequence of the intimin gene from
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TABLE 4. Associations between serotype, virulence profile, and
intimin subtype

Serotype
Int-type + +
P eae™, stxt eugh);;gc ’ eae™, ehxA™ eae™
Int-al  O85:H49¢ O127:H-
0O85:H49"
0O55:H6
Int-a2 0O125:H6
Int-B 026:H— O5:H—* O5:H11¢ O15:H—
026:H11  O7:H-“ 026:H11 O15:H2¢
OX3:H21¢ O26:H— 0109:H-* 026:H—
026:H11 O145:H-“ O88:H25“
0104:H11* O157:H11*  O111:H-
O118:H16 Ont:H— 0O126:H2*
OR:H- Ont:H11 0O128:H2*
Ont:Hnt
Int-y O1572H- O028:H-“ 0O28:H-“
O157:H—  O28:HR“
O157:H7 098:H—“
O157:H21¢ O172:H1¢
OR:H31*  OR:Hnt*
Int-¢ 0O102:H19 0103:H2 O15:H2¢
0103:H2 OR:H- 0166:H49¢
Int-{ O49:H— O5:H11 028:H31
0O84:H— 084:H2 0O156:H1
O91:H21 Ont:H25 Ont:H25
Ont:H— OR:H2
OR:H—-
Int-6 Ol111:H- O76:H7 O3:H-“ O3:H8*
Ol111:H-  OS5:H11¢ O153:H11/21¢
0O35:H25¢ 0O156-related:H8"
O76:H7¢ Ont:H7¢
084:H25¢ Ont:H8*
0103:H2¢
O172:H25¢
Ont:H—*
Ont:H25“
Int-v Ont:H8
Int-x 049:H— O37:H—-
OR:H—- O86:H—
Ont:HR
Int-\ 02/74:H—
O145:H—
Int-p OR:H—
Int-v O2-related:H19
Int-¢ Ont:Hnt

“ Not previously reported to possess these intimin types.

an ovine isolate (VR64/4) of serotype O2-related:H19 showed
91.7% nucleotide sequence identity with the Int-e sequence. In
addition, it also showed 93.1% nucleotide sequence identity
with the Int-n sequence. Phylogenetic analysis resolved these
three intimin subtypes as being the closest relatives. The pre-
dicted intimin sequence from a bovine isolate (KB411) with
serotype Ont:Hnt revealed 90.9% nucleotide sequence identity
with the Int-B sequence. Phylogenetic analysis confirmed the
association of the sequence of the intimin from Ont:Hnt with
the Int-B sequence (Fig. 3). Intimin sequences from ovine
isolates of serotypes OR:H— and O2 related:H19 and the
bovine isolate of serotype Ont:Hnt showed less than 95% nu-
cleotide sequence identity with the sequences of the intimin
subtypes in public databases. According to the arbitrary cutoff
values described by Zhang et al. (55), this level of sequence
divergence is enough to warrant new intimin gene designa-
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tions. We propose that they be identified as Int-p, Int-v, and
Int-¢, respectively, in accordance with the accepted nomencla-
ture (55).

The Int280 sequence from an E. coli isolate (KB365) of
serotype 02/74:H— showed 98.8% nucleotide sequence iden-
tity with the Int-A sequence (GenBank accession no.
AF439538). RFLP analysis showed that the sequence of the
intimin gene from O2/74:H— was indistinguishable from that
of Int-\. Since only a partial (Int280) sequence for Int-\ exists
in GenBank, we were unable to accurately determine the de-
gree of sequence identity between the two intimin sequences.
However, phylogenetic analysis strongly supports the affiliation
of the Eae protein sequence from serotype O2/74:H— with
Int-\ (Fig. 3).

DISCUSSION

The intimin typing scheme described here is capable of dis-
tinguishing between all 11 previously described intimin vari-
ants (al, a2, B, v, , € M, v, \, 0, and {) and another three new
intimin types identified here as p, v, and & The application of
this typing scheme to 213 E. coli strains representing 60 dif-
ferent serotypes is the most comprehensive intimin subtyping
study described so far. Although humans, cattle, and sheep
harbor eae ™ E. coli strains possessing a range of intimin types,
we observed that some intimin types were preferentially asso-
ciated with specific flagellum types. Int-B was the most com-
mon subtype identified in this study, and 78 of 82 Int-B-positive
isolates (95.1%) possessed H—, H2, or H11 flagellar antigens.
Int-k was identified in only seven isolates comprising five se-
rotypes (O37:H—, O49:H—, O86:H—, Ont:H—, and OR:H-),
none of which expressed a flagellar antigen. Only a limited
number of E. coli serotypes (O55:H6, O125:H6, O127:H—,
0O127:H6, O157:H—, and O157:H45) have been reported to
possess Int-a (referred to as Int-al in this study), and the H6
flagellar type predominates (35). Twenty-five isolates with
Int-0 belonged to 15 serotypes and possessed a range of flagel-
lar antigens, including H—, H2, H7, HS8, H11, and H25. Of
these 25, 19 (76%) possessed the H—, H7, and H25 flagellar
types. Int-{ and Int-y were associated with a range of flagellar
antigens (Int-¢ flagellar types comprised H—, H1, H2, H11,
H21, H25, and H31; and Int-y flagellar types comprised H—,
H1, H7, H21, H31, HR, and Hnt). However, 31 of 39 (79.5%)
Int-{-positive isolates possessed the H— and H25 flagellar an-
tigens, and 12 of 19 (63.2%) Int-y-positive isolates possessed
the H— flagellar type. Of 21 isolates with Int-g, 19 (90.5%)
possessed the H2 and H19 flagellar types. Further studies with
a larger collection of eae™ isolates from different geographic
locations are required to confirm these flagellar antigen-in-
timin subtype associations.

Phylogenetic analysis of 46 Int280 sequences (including 5
from this study) confirmed (100% bootstrap support; Fig. 3)
the previous division of the intimin family into the six subtypes
a, B, v, K, € and 6 (1, 35, 44). In addition, our analysis sup-
ported the validity of the newly designated Int-{ subtype (23)
and showed that it is most closely related to Int-a.. Similarly,
the newly designated v (55) and N\ groups were resolved as
distinct groups (Fig. 3), but their relationship to other intimin
types was less clear. Our analysis indicates that the \, v-p, and
€-m-v groups of intimins are most closely related to each other
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FIG. 2. Frequency and host distribution of intimin subtypes in 213
E. coli isolates from sheep, cattle, and humans. n, total number of E.
coli isolates examined in each group.
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rather than to any other intimin subtype (32% bootstrap sup-
port), but the relationships among these three groups of sub-
types could not be determined with confidence. The sequence
data suggest that the \ subtype is most closely related to the v-p
subtype group, with €, n, and v being more remotely related to
the other two groups, but bootstrap support for this is uncon-
vincing (43%). The branches with low levels of support (41 and
47% bootstrap proportions) are very short, suggesting that
these intimin subtypes diverged over a short period of time.
Furthermore, the branches leading to the &-mn-v, -, and A\
groups are very long, indicating that each of these groups is
quite divergent from the other groups.

Although the Int-w, Int-v, and Int-§ subtypes showed con-
siderable sequence diversity in the C-terminal Int280 region,
each retained amino acid residues considered essential for
interactions with Tir (15, 29, 42). Two cysteine residues which
form the disulfide bond required for epithelial cell binding
activity (15) and four tryptophan residues (W117/776, W136/
795, W222/881, and W240/899) (the positions are numbered
according to the Int280a sequence and the complete intimin o
sequence) which reside within the receptor-binding superdo-
main of intimin (2) were conserved. W240/899, which is located
on a conserved loop on the D3 domain, is important in A/E
lesion formation and intimin-Tir interactions (2), and its re-
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FIG. 3. Neighbor-joining gene tree based on the C-terminal Int280 amino acids of different intimin subtypes (amino acids 658 to 938) showing
the resolutions of various intimin families. The numbers after the branches are the accession numbers in GenBank for the intimin sequences. The
highlighted accession numbers represent the sequences determined in this study. The numbers at the nodes correspond to bootstrap proportions.

The scale bar indicates the number of amino acid replacements per site.
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placement with alanine (W240/899A) in site-directed mutagen-
esis studies generated a phenotype in which intimin could no
longer bind to Tir or induce A/E lesions on HEp-2 cells or
colonic hyperplasia in vivo (42). Similarly, the phenotype as-
sociated with W136/795A showed an intimin-Tir interaction
but no A/E lesion formation, and this tryptophan residue is
believed to play a central role in maintaining the integrity of
the D2 and D3 superdomain (42). The remaining two trypto-
phan residues are postulated to play roles in Tir-independent
host-receptor interactions (42). The preservation of these tryp-
tophan residues among 14 different intimin subtypes supports
the hypothesis that these residues are essential for the biolog-
ical function(s) of intimin.

According to Trabulsi et al. (49), typical EPEC strains pro-
duce virulence factors encoded by LEE and plasmid EAF,
although some strains possess genes for a cytolethal distending
toxin and the enteroaggregative heat-stable toxin (EAST 1). In
contrast, atypical EPEC strains are more heterogeneous in
their virulence characteristics, commonly possessing EAST 1,
ehxA, aggregative adherence, and the afimbrial adhesin (49).
Of 131 eae™, stx™~ isolates examined in our study, 89 (67.9%)
possessed ehix4 and none were recovered from humans. Fur-
thermore, none of the 48 human isolates examined in this study
were stix—, eae”, and ehxA™. Since typical EPEC strains have
not been recovered from animal reservoirs, these isolates prob-
ably represent atypical EPEC isolates. However, we cannot
discount the possibility that some of these isolates were STEC
isolates that have lost stx genes. Human isolates with the vir-
ulence profile eae™ stx™, and ehx ™ possess a diverse range of 11
intimin types. We are not sure if isolates with rarer intimin
types (v, w, & and v) that we isolated from cattle and sheep
(serotypes Ont:H8, Ont:Hnt, OR:H—, and O2-related:H19)
play a role in gastrointestinal disease in humans. The isolates
of serotypes O26:H— (Int-B), O55:H6 (Int-al), O86:H— (Int-
k), O111:H— (Int-B), O126:H2 (Int-B), O127:H— (Int-al),
and O128:H2, (Int-B) isolated prior to 1955 are mostly from
patients with infantile diarrhea and may represent typical
EPEC isolates. Further studies are required to examine the
adherence patterns of eae™ and stx™ isolates on tissue culture
cells and to determine if these isolates possess genes for EAST
1, bundle-forming pilus, afimbrial adhesin, and cytolethal dis-
tending toxin (49).

Of the 213 intimin-containing E. coli isolates tested, 82 pos-
sessed at least one Shiga toxin gene (putative EHEC isolates),
and 73 of these displayed non-O157:H— and non-O157:H7
serotypes. Although epidemiological studies strongly implicate
E. coli O157:H7 and O157:H— strains as serious disease-caus-
ing agents, the role of most non-O157 STEC strains remains
obscure. Serogroup O157 STEC isolates are not the predom-
inant cause of HC and HUS in some countries, including
Australia (12), Sweden (50), South Africa (32), Chile (32), and
Argentina (28). Furthermore, recent studies suggest that non-
0157 STEC strains are responsible for up to 30% of cases of
these diseases in the United States (26, 31, 36). We character-
ized 21 non-O157 STEC serotypes among isolates from hu-
mans in this study. Eleven of these serotypes contained Int-8;
two contained Int-{, Int-a1, and Int-g; and only a single sero-
type each possessed Int-v, Int-6, Int-a2, and Int-«. Ten of these
serotypes (O5:H—, O7:H—, O26:H—, O26:H11, O118:H16,
and OX3:H21 [all Int-B]; O76:H7 and O111:H— [Int-6];
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0145:H— [Int-y]; and O121:H19 [Int-€]) have been recovered
from patients with HC and HUS; and most of these belong to
the EHEC 2 clonal cluster (52). Collectively, our data show
that the vast majority of serologically diverse eae™ STEC iso-
lates typically possess Shiga toxin gene subtypes that comprise
the stx,, stx,,1,, and stx,,,, subtypes (or combinations of these
genes) and/or the non-stx,. subtype. Furthermore, 67 of 82
(81.7%) stx* and eae™ E. coli isolates also possessed ehxA.
These virulence gene patterns are commonly associated with
STEC serotypes recovered from patients with bloody diarrhea,
HC, and HUS (17) and are increasingly being isolated from
patients with diarrhea.

Studies clearly show that different STEC serotypes prefer-
entially colonize healthy cattle, sheep, and swine and that only
a small percentage (approximately 10%) of these isolates pos-
sess intimin (4, 5, 6, 10, 21, 27, 41). Although intimin probably
plays an important role in tissue tropism, little is known about
the effects of intimin sequence variation on cell adherence and
host range. In this study we show that most intimin variants are
equally distributed among E. coli isolates recovered from both
sheep and cattle, which strongly suggests that intimin plays
little, if any, role in the ability of different serotypes to prefer-
entially colonize ruminant hosts. The STEC serotypes com-
monly recovered from outbreaks of HUS and HC (O157:H—,
O157:H7, O111:H—, O111:H2, O26:H11, and others) typically
possess the Int-y, Int-B, or Int-6 subtype. However, STEC
isolates of serotypes O5:H—, O7:H—, O157:H21, O26:H—,
028:H—, O76:H7, O103:H2, O104:H11, O111:H—, O118:
H16, O145:H—, OX3:H21, Ont:H—, Ont:Hnt, and OR:H—
also possess these intimin subtypes; and many of these have
been isolated from sporadic cases of HUS or related afflictions.
These data suggest that intimin subtype may be a good diag-
nostic indicator of the potential of STEC isolates derived from
ruminant sources to cause disease in humans. Furthermore,
the observation that the vast majority of eae™ STEC isolates
recovered from ruminants posSess StX,, SXoyn,, OF Stroyp, OF
combinations of these genes and/or stx; (non-stx,. subtype)
genes that are commonly associated with EHEC strengthens
this hypothesis. Although the available evidence suggests that
the stx, subtype plays a key role in the severity of disease
induced by EHEC (17, 54), the intimin subtyping assay re-
ported here should facilitate studies to further our understand-
ing of the associations among serotype, eae and stx subtype,
and the phylogenetic relationships between various STEC se-

rotypes.
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